Alam R, Sazzadur Rahman M, Seraj ZI, Thomson MJ, Ismail AM, Tumimbang-Raiz E, Gregorio G (2011) Investigation of seedling-stage salinity tolerance QTLs using backcross lines derived from Oryza sativa L. Pokkali. Plant Breed 130:430–437. https://doi.org/10.1111/j.1439-0523.2010.01837.x
Article
CAS
Google Scholar
Babu NN, Krishnan SG, Vinod KK, Krishnamurthy SL, Singh VK, Singh MP, Singh R, Ellur RK, Rai V, Bollinedi H, Bhowmick PK, Yadav AK, Nagarajan M, Singh NK, Prabhu KV, Singh AK (2017) Marker aided incorporation of Saltol, a major QTL associated with seedling stage salt tolerance, into Oryza sativa “Pusa Basmati 1121.” Front Plant Sci 8:41. https://doi.org/10.3389/fpls.2017.00041
Article
Google Scholar
Bajji M, Kinet JM, Lutts S (2002) The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul 36:61–70. https://doi.org/10.1023/A:1014732714549
Article
CAS
Google Scholar
Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity techniques for estimating water deficits in leaves. Aust J Biol Sci 15:413–428. https://doi.org/10.1071/BI9620413
Article
Google Scholar
Bimpong IK, Manneh B, Sock M, Diaw F, Kofi N, Amoah A, Ismail AM, Gregorio G, Singh RK, Wopereis M (2016) Improving salt tolerance of lowland rice cultivar ‘Rassi’ throughmarker-aided backcross breeding in West Africa. Plant Sci 242(2016):288–299. https://doi.org/10.1016/j.plantsci.2015.09.020
Article
CAS
Google Scholar
Bonilla P, Dvorak J, Mackill DJ, Deal K, Gregorio G (2002) RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philipp Agric Sci 85:68–76
Google Scholar
Bundó M, Martín-Cardoso H, Pesenti M, Gómez-Ariza J, Castillo L, Frouin J, Serrat X, Nogués S, Courtois B, Grenier C, Sacchi GA, San Segundo B (2022) Integrative approach for precise genotyping and transcriptomics of salt tolerant introgression rice lines. Front Plant Sci 12:797141. https://doi.org/10.3389/fpls.2021.797141
Article
Google Scholar
Campo S, Baldrich P, Messeguer J, Lalanne E, Coca M, San Segundo B (2014) Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation. Plant Physiol 165:688–704. https://doi.org/10.1104/pp.113.230268
Article
CAS
Google Scholar
Chen T, Shabala S, Niu Y, Chen Z-H, Shabala L, Meinke H, Venkataraman G, Pareek A, Xu J, Zhou M (2021) Molecular mechanisms of salinity tolerance in rice. Crop J 9:506–520. https://doi.org/10.1016/j.cj.2021.03.005
Article
Google Scholar
Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448. https://doi.org/10.2135/cropsci2005.0437
Article
CAS
Google Scholar
Chuamnakthong S, Nampei M, Ueda A (2019) Characterization of Na+ exclusion mechanism in rice under saline-alkaline stress conditions. Plant Sci 287:110171. https://doi.org/10.1016/j.plantsci.2019.110171
Article
CAS
Google Scholar
Daliakopoulos IN, Tsanis IK, Koutroulis A, Kourgialas NN, Varouchakis AE, Karatzas GP, Ritsema CJ (2016) The threat of soil salinity: A European scale review. Sci Total Environ 573:727–739. https://doi.org/10.1016/j.scitotenv.2016.08.177
Article
CAS
Google Scholar
Das P, Lakra N, Nutan KK, Singla-Pareek SL, Pareek A (2019) A unique bZIP transcription factor imparting multiple stress tolerance in Rice. Rice 12:58. https://doi.org/10.1186/s12284-019-0316-8
Article
Google Scholar
De Leon TB, Linscombe S, Subudhi PK (2017) Identification and validation of QTLs for seedling salinity tolerance in introgression lines of a salt tolerant rice landrace “Pokkali.” PLoS ONE 12:e0175361. https://doi.org/10.1371/journal.pone.0175361
Article
CAS
Google Scholar
Demidchik V, Straltsova D, Medvedev SS, Pozhvanov GA, Sokolik A, Yurin V (2014) Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. J Exp Bot 65:1259–1270. https://doi.org/10.1093/jxb/eru004
Article
CAS
Google Scholar
FAO (2016) FAO soils portal. http://www.fao.org/soils-portal/soilmanagement/management-of-some-problem-soils/salt-affected-soils/moreinformation-on-salt-affected-soils/en/
Formentin E, Sudiro C, Perin G, Riccadonna S, Barizza E, Baldoni E, Lavezzo E, Stevanato P, Sacchi GA, Fontana P, Toppo S, Morosinotto T, Zottini M, Lo Schiavo F (2018) Transcriptome and cell physiological analyses in different rice cultivars provide new insights into adaptive and salinity stress responses. Front Plant Sci 9:204. https://doi.org/10.3389/fpls.2018.00204
Article
Google Scholar
Frouin J, Languillaume A, Mas J, Mieulet D, Boisnard A, Labeyrie A, Bettembourg M, Bureau C, Lorenzini E, Portefaix M, Turquay P, Vernet A, Périn C, Ahmadi N, Courtois B (2018) Tolerance to mild salinity stress in japonica rice: a genome-wide association mapping study highlights calcium signaling and metabolism genes. PLoS ONE 13:e0190964. https://doi.org/10.1371/journal.pone.0190964
Article
CAS
Google Scholar
Ganie SA, Borgohain MJ, Kritika K, Talukdar A, Pani DR, Mondal TK (2016) Assessment of genetic diversity of Saltol QTL among the rice (Oryza sativa L.) genotypes. Physiol Mol Biol Plants 22:107–114. https://doi.org/10.1007/s12298-016-0342-6
Article
CAS
Google Scholar
Geetha S, Vasuki A, Jagadeesh Selvam P, Saraswathi R, Krishnamurthy SL, Palanichamy DM, Thamodharan G, Baskar M (2017) Development of sodicity tolerant rice varieties through marker assisted backcross breeding. Electron J Plant Breed 8(4):1013–1021. https://doi.org/10.5958/0975-928X.2017.00151.X
Article
Google Scholar
Ghosh B, Md NA, Gantait S (2016) Response of rice under salinity stress: a review update. J Res Rice. https://doi.org/10.4172/2375-4338.1000167
Article
Google Scholar
Gregorio GB (1997) Tagging salinity tolerance genes in rice using amplified fragment length polymorphism (AFLP). Ph.D. Thesis, University of the Phillipines, Los Banos, pp 1–118
Gregorio G, Senadhira D, Mendoza R, Manigbas N, Roxas JP, Guerta CQ (2002) Progress in breeding for salinity tolerance and associated abiotic stresses in rice. Field Crops Res 76:91–101. https://doi.org/10.1016/S0378-4290(02)00031-X
Article
Google Scholar
Gregorio GB, Islam MR, Vergara GV, Thirumeni S (2013) Recent advances in rice science to design salinity and other abiotic stress tolerant rice varieties. SABRAO J Breed Genet 45:31–41
Google Scholar
Grieve CM, Grattan SR, Maas EV (2012) Plant salt tolerance. In: Wallender WW, Tanji KK (eds) Agricultural salinity assessment and management 2E. American Society of Civil Engineers, Reston, pp 405–459
Google Scholar
Guo L, Ye G (2014) Use of major quantitative trait loci to improve grain yield of rice. Rice Sci 21:65–82. https://doi.org/10.1016/S1672-6308(13)60174-2
Article
Google Scholar
Han JH, Shin NH, Moon JH, Yi C, Yoo SC, Chin JH (2020) Genetic and phenotypic characterization of rice backcrossed inbred sister lines of Saltol in temperate saline reclaimed area. Plant Breed Biotechnol 8:58–68. https://doi.org/10.9787/PBB.2020.8.1.58
Article
Google Scholar
Hasan MM, Rafii MY, Ismail MR, Mahmood M, Rahim HA, Alam MA, Ashkani S, Malek MA, Latif MA (2015) Marker-assisted backcrossing: a useful method for rice improvement. Biotechnol Biotechnol Equip 29:237–254. https://doi.org/10.1080/13102818.2014.995920
Article
Google Scholar
Ho VT, Thomson MJ, Ismail AM (2016) Development of salt tolerant IR64 near isogenic lines through marker-assisted breeding. J Crop Sci Biotechnol 19:373–381. https://doi.org/10.1007/s12892-016-0049-9
Article
Google Scholar
Hoang TML, Tran TN, Nguyen TKT, Williams B, Wurm P, Bellairs S, Mundree S (2016) Improvement of salinity stress tolerance in rice: challenges and opportunities. Agronomy 6:54. https://doi.org/10.3390/agronomy6040054
Article
CAS
Google Scholar
Horie T, Karahara I, Katsuhara M (2012) Salinity tolerance mechanisms in glycophytes: an overview with the central focus on rice plants. Rice 5:11. https://doi.org/10.1186/1939-8433-5-11
Article
Google Scholar
Huyen LTN, Cuc LM, Ismail AM, Ham LH (2012) Introgression the salinity tolerance QTLs Saltol into AS996, the elite rice variety of Vietnam. Am J Plant Sci 3:981–987. https://doi.org/10.4236/ajps.2012.37116
Article
CAS
Google Scholar
Huyen LTN, Cuc LM, Ham LH, Khanh TD (2013) Introgression the SALTOL QTL into Q5DB, the elite variety of Vietnam using marker-assisted-selection (MAS). Am J BioSci 1(4):80–84. https://doi.org/10.11648/j.ajbio.20130104.15
Article
CAS
Google Scholar
IRRI (2013) Standard evaluation system (SES) for rice, 3rd edn. International Rice Research Institute, Manila
Google Scholar
Ismail AM, Heuer S, Thomson MJ, Wissuwa M (2007) Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol Biol 65:547–570. https://doi.org/10.1007/s11103-007-9215-2
Article
CAS
Google Scholar
Kakar N, Jumaa SH, Redoña ED, Warburton ML, Reddy KR (2019) Evaluating rice for salinity using pot-culture provides a systematic tolerance assessment at the seedling stage. Rice 12:57. https://doi.org/10.1186/s12284-019-0317-7
Article
Google Scholar
Khatun S, Rizzo CA, Flowers TJ (1995) Genotypic variation in the effect of salinity on fertility in rice. Plant Soil 173:239–250. https://doi.org/10.1007/BF00011461
Article
CAS
Google Scholar
Kobayashi NI, Yamaji N, Yamamoto H, Okubo K, Ueno H, Costa A, Tanoi K, Matsumura H, Fujii-Kashino M, Horiuchi T, Al Nayef M, Shabala S, An G, Ma JF, Horie T (2017) OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice. Plant J 91:657–670. https://doi.org/10.1111/tpj.13595
Article
CAS
Google Scholar
Krishnamurthy SL, Pundir P, Warraich AS, Rathor S, Lokeshkumar BM, Singh NK, Sharma PC (2020) Introgressed Saltol QTL lines improves the salinity tolerance in rice at seedling stage. Front Plant Sci 11:883. https://doi.org/10.3389/fpls.2020.00833
Article
Google Scholar
le Linh H, Linh TH, Xuan TD, le Ham H, Ismail AM, Khanh TD (2012) Molecular breeding to improve salt tolerance of rice (Oryza sativa L.) in the Red River Delta of Vietnam. Int J Plant Genomics. https://doi.org/10.1155/2012/949038
Article
Google Scholar
Li Y-F, Zheng Y, Vemireddy LR, Panda SK, Jose S, Ranjan A, Panda P, Govindan G, Cui J, Wei K, Yaish MW, Naidoo GC, Sunkar R (2018) Comparative transcriptome and translatome analysis in contrasting rice genotypes reveals differential mRNA translation in salt-tolerant Pokkali under salt stress. BMC Genomics 19:935. https://doi.org/10.1186/s12864-018-5279-4
Article
CAS
Google Scholar
Lutts S, Kinet JM, Bouharmont J (1995) Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. J Exp Bot 46:1843–1852. https://doi.org/10.1093/jxb/46.12.1843
Article
CAS
Google Scholar
Mirdar Mansuri R, Shobbar ZS, Babaeian Jelodar N (2020) Salt tolerance involved candidate genes in rice: an integrative meta-analysis approach. BMC Plant Biol 20:452. https://doi.org/10.1186/s12870-020-02679-8
Article
CAS
Google Scholar
Monaco S, Volante A, Orasen G, Cochrane N, Oliver V, Price AH, The YA, Martínez-Eixarch M, Thomas C, Courtois B, Valé G (2021) Effects of the application of a moderate alternate wetting and drying technique on the performance of different European varieties in Northern Italy rice system. Field Crops Res 270:108220. https://doi.org/10.1016/j.fcr.2021.108220
Article
Google Scholar
Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
Article
CAS
Google Scholar
Nair MM, Shylaraj KS (2021) Introgression of dual abiotic stress tolerance QTLs (Saltol QTL and Sub1 gene) into Rice (Oryza sativa L.) variety Aiswarya through marker assisted backcross breeding. Physiol Mol Biol Plants 27(3):497–514. https://doi.org/10.1007/s12298-020-00893-0
Article
CAS
Google Scholar
Negrao S, Courtois B, Ahmadi N, Abreu I, Saibo N, Oliveira MM (2011) Recent updates on salinity stress in rice: from physiological to molecular responses. Crit Rev Plant Sci 30:329–377. https://doi.org/10.1080/07352689.2011.587725
Article
CAS
Google Scholar
Nejad G, Arzani A, Rezai AM, Singh RK, Gregorio GB (2008) Assessment of rice genotypes for salt tolerance using microsatellite markers associated with the Saltol QTL. Afr J Biotechnol 7:730–736
Google Scholar
Nutan KK, Kushwaha HR, Singla-Pareek SL, Pareek A (2017) Transcription dynamics of Saltol QTL localized genes encoding transcription factors, reveals their differential regulation in contrasting genotypes of rice. Funct Integr Genomics 17:69–83. https://doi.org/10.1007/s10142-016-0529-5
Article
CAS
Google Scholar
Nutan KK, Singla-Pareek SL, Pareek A (2020) The Saltol QTL-localized transcription factor OsGATA8 plays an important role in stress tolerance and seed development in Arabidopsis and rice. J Exp Bot 71(2):684–698. https://doi.org/10.1093/jxb/erz368
Article
CAS
Google Scholar
Platten JD, Edgane JA, Ismail AM (2013) Salinity tolerance, Na+ exclusion and allele mining of HKT1;5 in Oryza sativa and Oryza glaberrima: many sources, many genes, one mechanism? BMC Plant Biol 13:32. https://doi.org/10.1186/1471-2229-13-32
Article
CAS
Google Scholar
R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
Rahman MA, Thomson MJ, Alam MS, De Ocampo M, Egdane J, Ismail AM (2016) Exploring novel genetic sources of salinity tolerance in rice through molecular and physiological characterization. Ann Bot 117:1083–1097. https://doi.org/10.1093/aob/mcw030
Article
Google Scholar
Reddy INBL, Kim BKK, Yoon IS, Kim KH (2017) Salt tolerance in rice: focus on mechanisms and approaches. Rice Sci 24:123–144. https://doi.org/10.1016/j.rsci.2016.09.004
Article
Google Scholar
Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146. https://doi.org/10.1038/ng1643
Article
CAS
Google Scholar
Risterucci AM, Grivet L, N’goran JAK, Pieretti I, Flament MH, Lanaud C (2000) A high-density linkage map of Theobroma cacao L. Theor Appl Genet 101:948–955. https://doi.org/10.1007/s001220051566
Article
CAS
Google Scholar
Singh RK, Redoña E, Refuerzo L (2009) Varietal improvement for abiotic stress tolerance in crop plants: special reference to salinity in rice. In: Pareek A, Sopory S, Bohnert H (eds) Abiotic stress adaptation in plants. Springer, Dordrecht, pp 387–415
Chapter
Google Scholar
Singh VK, Singh BD, Kumar A, Maurya S, Krishnan SG, Vinod KK, Singh MR, Ellur KR, Bhowmick PK, Singh AK (2018) Marker-Assisted Introgression of Saltol QTL enhances seedling stage salt tolerance in the rice variety “Pusa Basmati 1.” Int J Genomics 2018:8319879. https://doi.org/10.1155/2018/8319879
Article
CAS
Google Scholar
Soda N, Gupta BK, Anwar K, Sharan A, Govindjee S-P, Pareek A (2018) Rice intermediate filament, OsIF, stabilizes photosynthetic machinery and yield under salinity and heat stress. Sci Rep 8:4072. https://doi.org/10.1038/s41598-018-22131-0
Article
CAS
Google Scholar
Thompson MJ, de Ocampo M, Edgane J, Rahman MA, Sajise AG, Adorada DL, Tumimbang-Raiz E, Blumwald E, Seraj ZI, Singh RK, Gregorio GB, Ismail AM (2010) Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice 3:148–160. https://doi.org/10.1007/s12284-010-9053-8
Article
Google Scholar
Vij S, Tyagi AK (2007) Emerging trends in functional genomics of abiotic response in crop plants. Plant Biotechnol J 5:361–380. https://doi.org/10.1111/j.1467-7652.2007.00239.x
Article
CAS
Google Scholar
Volante A, Desiderio F, Tondelli A, Perrini R, Orasen G, Biselli C, Riccardi P, Vattari A, Cavalluzzo D, Urso S, Ben Hassen M, Fricano A, Piffanelli P, Cozzi P, Biscarini F, Sacchi GA, Cattivelli L, Valè G (2017) Genome-wide analysis of japonica rice performance under limited water and permanent flooding conditions. Front Plant Sci 8:1862. https://doi.org/10.3389/fpls.2017.01862
Article
Google Scholar
Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wanamaker SI, Mandal J, Xu J, Cui X, Close TJ (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol 122:822–835. https://doi.org/10.1104/pp.105.065961
Article
CAS
Google Scholar
Waziri A, Kumar P, Purty RS (2016) Saltol QTL and their role in salinity tolerance in rice. Austin J Biotechnol Bioeng 3:1–5
Google Scholar
Yadav AK, Kumar A, Grover N, Ellur KR, Krishnan SG, Bollinedi H, Bhowmick K, Vinod KK, Nagarajan M, Krishnamurthy SL, Singh AK (2020) Marker aided introgression of “Saltol”, a major QTL for seedling stage salinity tolerance into an elite Basmati rice variety “Pusa Basmati 1509.” Sci Rep 10:13877. https://doi.org/10.1038/s41598-020-70664-0
Article
CAS
Google Scholar
Zeng L, Shannon MC (2000) Effects of salinity on grain yield and yield components of rice at different seeding densities. Agron J 92:418–423. https://doi.org/10.2134/agronj2000.923418x
Article
Google Scholar
Zhao X, Wang W, Zhang F, Deng J, Li Z, Fu B (2014) Comparative metabolite profiling of two rice genotypes with contrasting salt stress tolerance at the seedling stage. PLoS ONE 9:e108020. https://doi.org/10.1371/journal.pone.0108020
Article
CAS
Google Scholar