Barkan A, Small I (2014) Pentatricopeptide repeat proteins in plants. Annu Rev Plant Biol 65:415–442. https://doi.org/10.1146/annurev-arplant-050213-040159
Article
PubMed
CAS
Google Scholar
Bi C, Ma Y, Jiang SC, Mei C, Wang XF, Zhang DP (2019) Arabidopsis translation initiation factors eIFiso4G1/2 link repression of mRNA cap-binding complex eIFiso4F assembly with RNA-binding protein SOAR1-mediated ABA signaling. New Phytol 223(3):1388–1406. https://doi.org/10.1111/nph.15880
Article
PubMed
CAS
Google Scholar
Chen G, Zou Y, Hu J, Ding Y (2018) Genome-wide analysis of the rice PPR gene family and their expression profiles under different stress treatments. BMC Genomics 19(1):720. https://doi.org/10.1186/s12864-018-5088-9
Article
PubMed
PubMed Central
CAS
Google Scholar
Cheng S, Gutmann B, Zhong X, Ye Y, Fisher MF, Bai F et al (2016) Redefining the structural motifs that determine RNA binding and RNA editing by pentatricopeptide repeat proteins in land plants. Plant J 85(4):532–547. https://doi.org/10.1111/tpj.13121
Article
PubMed
CAS
Google Scholar
Emami H, Kumar A, Kempken F (2020) Transcriptomic analysis of poco1, a mitochondrial pentatricopeptide repeat protein mutant in Arabidopsis thaliana. BMC Plant Biol 20(1):1–21. https://doi.org/10.1186/s12870-020-02418-z
Article
CAS
Google Scholar
Ganguly M, Datta K, Roychoudhury A, Gayen D, Sengupta DN, Datta SK (2012) Overexpression of Rab16A gene in indica rice variety for generating enhanced salt tolerance. Plant Signali Behav 7(4):502–509. https://doi.org/10.4161/psb.19646
Article
CAS
Google Scholar
Ganie SA, Reddy AS (2021) Stress-induced changes in alternative splicing landscape in rice: functional significance of splice isoforms in stress tolerance. Biology 10(4):309. https://doi.org/10.3390/biology10040309
Article
PubMed
PubMed Central
CAS
Google Scholar
Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM (1992) Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4(10):1251–1261. https://doi.org/10.1105/tpc.4.10.1251
Article
PubMed
PubMed Central
CAS
Google Scholar
Gong X, Su Q, Lin D, Jiang Q, Xu J, Zhang J et al (2014) The rice OsV4 encoding a novel pentatricopeptide repeat protein is required for chloroplast development during the early leaf stage under cold stress. J Integr Plant Biol 56(4):400–410. https://doi.org/10.1111/jipb.12138
Article
PubMed
CAS
Google Scholar
Hammani K, Gobert A, Hleibieh K, Choulier L, Small I, Giegé P (2011) An Arabidopsis dual-localized pentatricopeptide repeat protein interacts with nuclear proteins involved in gene expression regulation. Plant Cell 23(2):730–740. https://doi.org/10.4161/psb.6.5.15148
Article
PubMed
PubMed Central
CAS
Google Scholar
Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol 51(1):463–499. https://doi.org/10.1146/annurev.arplant.51.1.463
Article
CAS
Google Scholar
Jabre I, Reddy AS, Kalyna M, Chaudhary S, Khokhar W, Byrne LJ et al (2019) Does co-transcriptional regulation of alternative splicing mediate plant stress responses? Nucleic Acids Res 47(6):2716–2726. https://doi.org/10.1093/nar/gkz121
Article
PubMed
PubMed Central
CAS
Google Scholar
Jiang SC, Mei C, Liang S, Yu YT, Lu K, Wu Z et al (2015) Crucial roles of the pentatricopeptide repeat protein SOAR1 in Arabidopsis response to drought, salt and cold stresses. Plant Mol Biol 88(4–5):369–385. https://doi.org/10.1007/s11103-015-0327-9
Article
PubMed
PubMed Central
CAS
Google Scholar
Laloum T, Martín G, Duque P (2018) Alternative splicing control of abiotic stress responses. Trends Plant Sci 23(2):140–150. https://doi.org/10.1016/j.tplants.2017.09.019
Article
PubMed
CAS
Google Scholar
Laluk K, AbuQamar S, Mengiste T (2011) The Arabidopsis mitochondria-localized pentatricopeptide repeat protein PGN functions in defense against necrotrophic fungi and abiotic stress tolerance. Plant Physiol 156(4):2053–2068. https://doi.org/10.1104/pp.111.177501
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee H, Cha J, Choi C, Choi N, Ji H-S, Park SR et al (2018) Rice WRKY11 plays a role in pathogen defense and drought tolerance. Rice 11(1):1–12. https://doi.org/10.1186/s12284-018-0199-0
Article
Google Scholar
Li YF, Zheng Y, Vemireddy LR, Panda SK, Jose S, Ranjan A et al (2018) (2018) Comparative transcriptome and translatome analysis in contrasting rice genotypes reveals differential mRNA translation in salt-tolerant Pokkali under salt stress. BMC Genomics 19(Suppl 10):935. https://doi.org/10.1186/s12864-018-5279-4
Article
PubMed
PubMed Central
CAS
Google Scholar
Li X, Sun M, Liu S, Teng Q, Li S, Jiang Y (2021) Functions of PPR proteins in plant growth and development. Int J Mol Sci 22(20):11274. https://doi.org/10.3390/ijms222011274
Article
PubMed
PubMed Central
CAS
Google Scholar
Ling Y, Alshareef S, Butt H, Lozano-Juste J, Li L, Galal AA et al (2017) Pre-mRNA splicing repression triggers abiotic stress signaling in plants. Plant J 89(2):291–309. https://doi.org/10.1111/tpj.13383
Article
PubMed
CAS
Google Scholar
Liu Y, He J, Chen Z, Ren X, Hong X, Gong Z (2010) ABA overly-sensitive 5 (ABO5), encoding a pentatricopeptide repeat protein required for cis-splicing of mitochondrial nad2 intron 3, is involved in the abscisic acid response in Arabidopsis. Plant J 63(5):749–765. https://doi.org/10.1111/j.1365-313x.2010.04280.x
Article
PubMed
CAS
Google Scholar
Liu J-M, Zhao J-Y, Lu P-P, Chen M, Guo C-H, Xu Z-S et al (2016) The E-subgroup pentatricopeptide repeat protein family in Arabidopsis thaliana and confirmation of the responsiveness PPR96 to abiotic stresses. Front Plant Sci 7:1825. https://doi.org/10.3389/fpls.2016.01825
Article
PubMed
PubMed Central
Google Scholar
Lurin C, Andreés C, Aubourg S, Bellaoui M, Bitton F, Bruyère C et al (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16(8):2089–2103. https://doi.org/10.1105/tpc.104.022236
Article
PubMed
PubMed Central
CAS
Google Scholar
Ma Y, Zhang S, Bi C, Mei C, Jiang S-C, Wang X-F et al (2020) Arabidopsis exoribonuclease USB1 interacts with the PPR-domain protein SOAR1 to negatively regulate abscisic acid signaling. J Exp Bot 71(19):5837–5851. https://doi.org/10.1093/jxb/eraa315
Article
PubMed
PubMed Central
CAS
Google Scholar
Mei C, Jiang SC, Lu YF, Wu FQ, Yu YT, Liang S et al (2014) Arabidopsis pentatricopeptide repeat protein SOAR1 plays a critical role in abscisic acid signaling. J Exp Bot 65(18):5317–5330. https://doi.org/10.1093/jxb/eru293
Article
PubMed
PubMed Central
CAS
Google Scholar
Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
Article
PubMed
CAS
Google Scholar
Murayama M, Hayashi S, Nishimura N, Ishide M, Kobayashi K, Yagi Y et al (2012) Isolation of Arabidopsis ahg11, a weak ABA hypersensitive mutant defective in nad4 RNA editing. J Exp Bot 63(14):5301–5310. https://doi.org/10.1093/jxb/ers188
Article
PubMed
PubMed Central
CAS
Google Scholar
Nishimura A, Aichi I, Matsuoka M (2006) A protocol for Agrobacterium-mediated transformation in rice. Nat Protoc 1(6):2796–2802. https://doi.org/10.1038/nprot.2006.469
Article
PubMed
CAS
Google Scholar
Qiu T, Zhao X, Feng H, Qi L, Yang J, Peng Y-L et al (2021) OsNBL3, a mitochondrion-localized pentatricopeptide repeat protein, is involved in splicing nad5 intron 4 and its disruption causes lesion mimic phenotype with enhanced resistance to biotic and abiotic stresses. Plant Biotech J 19(11):2277–2290. https://doi.org/10.1111/pbi.13659
Article
CAS
Google Scholar
Roy SJ, Tucker EJ, Tester M (2011) Genetic analysis of abiotic stress tolerance in crops. Curr Opin Plant Biol 14(3):232–239. https://doi.org/10.1016/j.pbi.2011.03.002
Article
PubMed
CAS
Google Scholar
Saradadevi GP, Das D, Mangrauthia SK, Mohapatra S, Chikkaputtaiah C, Roorkiwal M et al (2021) Genetic, epigenetic, genomic and microbial approaches to enhance salt tolerance of plants: a comprehensive review. Biology 10(12):1255. https://doi.org/10.3390/biology10121255
Article
PubMed
PubMed Central
CAS
Google Scholar
Shang X, Cao Y, Ma L (2017) Alternative splicing in plant genes: a means of regulating the environmental fitness of plants. Int J Mol Sci 18(2):432. https://doi.org/10.3390/ijms18020432
Article
PubMed
PubMed Central
CAS
Google Scholar
Shen C, Zhang D, Guan Z, Liu Y, Yang Z, Yang Y et al (2016) Structural basis for specific single-stranded RNA recognition by designer pentatricopeptide repeat proteins. Nat Commun 7:1–8. https://doi.org/10.1038/ncomms11285
Article
CAS
Google Scholar
Small ID, Peeters N (2000) The PPR motif—a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci 25(2):45–47. https://doi.org/10.1016/S0968-0004(99)01520-0
Article
Google Scholar
Tan J, Tan Z, Wu F, Sheng P, Heng Y, Wang X et al (2014) A novel chloroplast-localized pentatricopeptide repeat protein involved in splicing affects chloroplast development and abiotic stress response in rice. Mol Plant 7(8):1329–1349. https://doi.org/10.1093/mp/ssu054
Article
PubMed
CAS
Google Scholar
Tang H, Luo D, Zhou D, Zhang Q, Tian D, Zheng X et al (2014) The rice restorer Rf4 for wild-abortive cytoplasmic male sterility encodes a mitochondrial-localized PPR protein that functions in reduction of WA352 transcripts. Mol Plant 7(9):1497–1500. https://doi.org/10.1093/mp/ssu047
Article
PubMed
CAS
Google Scholar
Van Zelm E, Zhang Y, Testerink C (2020) Salt tolerance mechanisms of plants. Annu Rev Plant Biol 71:403–433. https://doi.org/10.1146/annurev-arplant-050718-100005
Article
PubMed
CAS
Google Scholar
Wankhade SD, Bahaji A, Mateu-Andrés I, Cornejo M-J (2010) Phenotypic indicators of NaCl tolerance levels in rice seedlings: variations in development and leaf anatomy. Acta Physiol 32(6):1161–1169. https://doi.org/10.1007/s11738-010-0511-0
Article
Google Scholar
Wu L, Wu J, Liu Y, Gong X, Xu J, Lin D et al (2016) The rice pentatricopeptide repeat gene TCD10 is needed for chloroplast development under cold stress. Rice 9(1):1–13. https://doi.org/10.1186/s12284-016-0134-1
Article
Google Scholar
Wu GZ, Chalvin C, Hoelscher M, Meyer EH, Wu XN, Bock R (2018) Control of retrograde signaling by rapid turnover of GENOMES UNCOUPLED1. Plant Physiol 176(3):2472–2495. https://doi.org/10.1104/pp.18.00009
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang Y, Guo Y (2018) Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol 217(2):523–539. https://doi.org/10.1111/nph.14920
Article
PubMed
CAS
Google Scholar
Yin P, Li Q, Yan C, Liu Y, Liu J, Yu F et al (2013) Structural basis for the modular recognition of single-stranded RNA by PPR proteins. Nature 504:168–171. https://doi.org/10.1038/nature12651
Article
PubMed
CAS
Google Scholar
Yuan H, Liu D (2012) Functional disruption of the pentatricopeptide protein SLG1 affects mitochondrial RNA editing, plant development, and responses to abiotic stresses in Arabidopsis. Plant J 70(3):432–444. https://doi.org/10.1111/j.1365-313X.2011.04883.x
Article
PubMed
CAS
Google Scholar
Zhang Y, Lu C (2019) The enigmatic roles of PPR-SMR proteins in plants. Adv Sci 6(13):1900361. https://doi.org/10.1002/advs.201900361
Article
CAS
Google Scholar
Zhao P, Wang F, Li N, Shi D-Q, Yang WC (2020) Pentatricopeptide repeat protein MID1 modulates nad2 intron 1 splicing and Arabidopsis development. Sci Rep 10(1):1–16. https://doi.org/10.1038/s41598-020-58495-5
Article
CAS
Google Scholar
Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273. https://doi.org/10.1146/annurev.arplant.53.091401.143329
Article
PubMed
PubMed Central
CAS
Google Scholar
Zsigmond L, Rigó G, Szarka A, Szekely G, Otvos K, Darula Z et al (2008) Arabidopsis PPR40 connects abiotic stress responses to mitochondrial electron transport. Plant Physiol 146(4):1721–1737. https://doi.org/10.1104/pp.107.111260
Article
PubMed
PubMed Central
CAS
Google Scholar