Adachi S, Tsuru Y, Nito N, Murata K, Yamamoto T, Ebitani T, Ookawa T, Hirasawa T (2011) Identification and characterization of genomic regions on chromosomes 4 and 8 that control the rate of photosynthesis in rice leaves. J Exp Bot 62(6):1927–1938
Article
CAS
Google Scholar
Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S, Coen E (1996) Control of inflorescence architecture in Antirrhinum. Nature 379(6568):791–797. https://doi.org/10.1038/379791a0
Article
CAS
PubMed
Google Scholar
Chardon F, Damerval C (2005) Phylogenomic analysis of the PEBP gene family in cereals. J Mol Evol 61(5):579–590. https://doi.org/10.1007/s00239-004-0179-4
Article
CAS
PubMed
Google Scholar
Chen S, Tao L, Zeng L, Vega-Sanchez ME, Umemura K, Wang GL (2006) A highly efficient transient protoplast system for analyzing defence gene expression and protein-protein interactions in rice. Mol Plant Pathol 7(5):417–427. https://doi.org/10.1111/j.1364-3703.2006.00346.x
Article
CAS
PubMed
Google Scholar
Danilevskaya ON, Meng X, Hou Z, Ananiev EV, Simmons CR (2008) A genomic and expression compendium of the expanded PEBP gene family from maize. Plant Physiol 146(1):250–264. https://doi.org/10.1104/pp.107.109538
Article
CAS
PubMed
PubMed Central
Google Scholar
Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004) Ehd1 a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 18(8):926–936. https://doi.org/10.1101/gad.1189604
Article
CAS
PubMed
PubMed Central
Google Scholar
Du H, Huang F, Wu N, Li X, Hu H, Xiong L (2018) Integrative regulation of drought escape through ABA-dependent and -independent pathways in rice. Mol Plant 11(4):584–597. https://doi.org/10.1016/j.molp.2018.01.004
Article
CAS
PubMed
Google Scholar
Fang M, Zhou Z, Zhou X, Yang H, Li M, Li H (2019) Overexpression of OsFTL10 induces early flowering and improves drought tolerance in Oryza sativa L. PeerJ 7:e6422. https://doi.org/10.7717/peerj.6422
Article
CAS
PubMed
PubMed Central
Google Scholar
Galbiati F, Chiozzotto R, Locatelli F, Spada A, Genga A, Fornara F (2016) Hd3a, RFT1 and Ehd1 integrate photoperiodic and drought stress signals to delay the floral transition in rice. Plant Cell Environ 39(9):1982–1993. https://doi.org/10.1111/pce.12760
Article
CAS
PubMed
Google Scholar
Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW (2011) Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell 23(4):1512–1522. https://doi.org/10.1105/tpc.111.084525
Article
CAS
PubMed
PubMed Central
Google Scholar
Halliwell J, Borrill P, Gordon A, Kowalczyk R, Pagano ML, Saccomanno B, Bentley AR, Uauy C, Cockram J (2016) Systematic investigation of FLOWERING LOCUS T-Like poaceae gene families identifies the short-day expressed flowering Pathway Gene, TaFT3 in Wheat (Triticum aestivum L.). Front Plant Sci. https://doi.org/10.3389/fpls.2016.00857
Article
PubMed
PubMed Central
Google Scholar
Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6(2):271–282. https://doi.org/10.1046/j.1365-313X.1994.6020271.x
Article
CAS
PubMed
Google Scholar
Hu H, Xiong L (2014) Genetic engineering and breeding of drought-resistant crops. Annu Rev Plant Biol 65:715–741. https://doi.org/10.1146/annurev-arplant-050213-040000
Article
CAS
PubMed
Google Scholar
Hu X, Meng X, Liu Q, Li J, Wang K (2018) Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice. Plant Biotechnol J 16(1):292–297. https://doi.org/10.1111/pbi.12771
Article
CAS
PubMed
Google Scholar
Igarashi D, Ishida S, Fukazawa J, Takahashi Y (2001) 14-3-3 proteins regulate intracellular localization of the bZIP transcriptional activator RSG. Plant Cell 13(11):2483–2497. https://doi.org/10.1105/tpc.010188
Article
CAS
PubMed
PubMed Central
Google Scholar
Izawa T (2007) Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice. J Exp Bot 58(12):3091–3097. https://doi.org/10.1093/jxb/erm159
Article
CAS
PubMed
Google Scholar
Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M, Shimamoto K (2002) Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev 16(15):2006–2020. https://doi.org/10.1101/gad.999202
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaneko-Suzuki M, Kurihara-Ishikawa R, Okushita-Terakawa C, Kojima C, Nagano-Fujiwara M, Ohki I, Tsuji H, Shimamoto K, Taoka K-I (2018) TFL1-Like proteins in rice antagonize rice FT-Like protein in Inflorescence development by competition for complex formation with 14-3-3 and FD. Plant Cell Physiol 59(3):458–468. https://doi.org/10.1093/pcp/pcy021
Article
CAS
PubMed
Google Scholar
Karlgren A, Gyllenstrand N, Källman T, Sundström JF, Moore D, Lascoux M, Lagercrantz U (2011) Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution. Plant Physiol 156(4):1967–1977. https://doi.org/10.1104/pp.111.176206
Article
CAS
PubMed
PubMed Central
Google Scholar
Kobayashi K, Yasuno N, Sato Y, Yoda M, Yamazaki R, Kimizu M, Yoshida H, Nagamura Y, Kyozuka J (2012) Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-like MADS box genes and PAP2, a SEPALLATA MADS box gene. Plant Cell 24(5):1848–1859. https://doi.org/10.1105/tpc.112.097105
Article
CAS
PubMed
PubMed Central
Google Scholar
Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43(10):1096–1105. https://doi.org/10.1093/pcp/pcf156
Article
CAS
PubMed
Google Scholar
Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K (2008) Hd3a and RFT1 are essential for flowering in rice. Development 135(4):767–774. https://doi.org/10.1242/dev.008631
Article
CAS
PubMed
Google Scholar
Komiya R, Yokoi S, Shimamoto K (2009) A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136(20):3443–3450. https://doi.org/10.1242/dev.040170
Article
CAS
PubMed
Google Scholar
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096
Article
CAS
PubMed
PubMed Central
Google Scholar
Kusumi K, Hirotsuka S, Kumamaru T, Iba K (2012) Increased leaf photosynthesis caused by elevated stomatal conductance in a rice mutant deficient in SLAC1, a guard cell anion channel protein. J Exp Bot 63(15):5635–5644. https://doi.org/10.1093/jxb/ers216
Article
CAS
PubMed
PubMed Central
Google Scholar
Lifschitz E, Ayre BG, Eshed Y (2014) Florigen and anti-florigen: a systemic mechanism for coordinating growth and termination in flowering plants. Front Plant Sci 5:465. https://doi.org/10.3389/fpls.2014.00465
Article
PubMed
PubMed Central
Google Scholar
Nakagawa M, Shimamoto K, Kyozuka J (2002) Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice. Plant J 29(6):743–750. https://doi.org/10.1046/j.1365-313x.2002.01255.x
Article
CAS
PubMed
Google Scholar
Nakamura S, Abe F, Kawahigashi H, Nakazono K, Tagiri A, Matsumoto T, Utsugi S, Ogawa T, Handa H, Ishida H, Mori M, Kawaura K, Ogihara Y, Miura H (2011) A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination. Plant Cell 23(9):3215–3229. https://doi.org/10.1105/tpc.111.088492
Article
CAS
PubMed
PubMed Central
Google Scholar
Nemoto Y, Nonoue Y, Yano M, Izawa T (2016) Hd1, a CONSTANS ortholog in rice, functions as an Ehd1 repressor through interaction with monocot-specific CCT-domain protein Ghd7. Plant J 86(3):221–233. https://doi.org/10.1111/tpj.13168
Article
CAS
PubMed
Google Scholar
Pasriga R, Cho LH, Yoon J, An G (2018) Identification of the regulatory region responsible for vascular tissue-specific expression in the Rice Hd3a promoter. Mol Cells 41(4):342–350. https://doi.org/10.14348/molcells.2018.2320
Article
CAS
PubMed
PubMed Central
Google Scholar
Preston JC, Kellogg EA (2006) Reconstructing the evolutionary history of paralogous APETALA1/FRUITFULL-Like genes in grasses (Poaceae). Genetics 174(1):421–437. https://doi.org/10.1534/genetics.106.057125
Article
CAS
PubMed
PubMed Central
Google Scholar
Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133(4):1755–1767. https://doi.org/10.1104/pp.103.025742
Article
CAS
PubMed
PubMed Central
Google Scholar
Riboni M, Galbiati M, Tonelli C, Conti L (2013) GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS. Plant Physiol 162(3):1706–1719. https://doi.org/10.1104/pp.113.217729
Article
CAS
PubMed
PubMed Central
Google Scholar
Shim JS, Jang G (2020) Environmental signal-dependent regulation of flowering time in rice. Int J Mol Sci 21(17):6165. https://doi.org/10.3390/ijms21176155
Article
CAS
Google Scholar
Sohn EJ, Rojas-Pierce M, Pan S, Carter C, Serrano-Mislata A, Madueño F, Rojo E, Surpin M, Raikhel NV (2007) The shoot meristem identity gene TFL1 is involved in flower development and trafficking to the protein storage vacuole. Proc Natl Acad Sci USA 104(47):18801–18806. https://doi.org/10.1073/pnas.0708236104
Article
PubMed
PubMed Central
Google Scholar
Song YH, Shim JS, Kinmonth-Schultz HA, Imaizumi T (2015) Photoperiodic flowering: time measurement mechanisms in leaves. Annu Rev Plant Biol 66:441–464. https://doi.org/10.1146/annurev-arplant-043014-115555
Article
CAS
PubMed
Google Scholar
Sun C, Chen D, Fang J, Wang P, Deng X, Chu C (2014) Understanding the genetic and epigenetic architecture in complex network of rice flowering pathways. Protein Cell 5(12):889–898. https://doi.org/10.1007/s13238-014-0068-6
Article
CAS
PubMed
PubMed Central
Google Scholar
Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316(5827):1033–1036. https://doi.org/10.1126/science.1141753
Article
CAS
PubMed
Google Scholar
Tamaki S, Tsuji H, Matsumoto A, Fujita A, Shimatani Z, Terada R, Sakamoto T, Kurata T, Shimamoto K (2015) FT-like proteins induce transposon silencing in the shoot apex during floral induction in rice. Proc Natl Acad Sci USA 112(8):E901-910. https://doi.org/10.1073/pnas.1417623112
Article
CAS
PubMed
PubMed Central
Google Scholar
Taoka K, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri YA, Tamaki S, Ogaki Y, Shimada C, Nakagawa A, Kojima C, Shimamoto K (2011) 14–3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476(7360):332–335. https://doi.org/10.1038/nature10272
Article
CAS
PubMed
Google Scholar
Taoka K, Ohki I, Tsuji H, Kojima C, Shimamoto K (2013) Structure and function of florigen and the receptor complex. Trends Plant Sci 18(5):287–294. https://doi.org/10.1016/j.tplants.2013.02.002
Article
CAS
PubMed
Google Scholar
Vaistij FE, Barros-Galvão T, Cole AF, Gilday AD, He Z, Li Y, Harvey D, Larson TR, Graham IA (2018) MOTHER-OF-FT-AND-TFL1 represses seed germination under far-red light by modulating phytohormone responses in Arabidopsis thaliana. Proc Natl Acad Sci 115(33):8442–8447. https://doi.org/10.1073/pnas.1806460115
Article
CAS
PubMed
PubMed Central
Google Scholar
Valim HF, McGale E, Yon F, Halitschke R, Fragoso V, Schuman MC, Baldwin IT (2019) The clock gene TOC1 in shoots, not roots, determines fitness of Nicotiana attenuata under drought. Plant Physiol 181(1):305–318. https://doi.org/10.1104/pp.19.00286
Article
CAS
PubMed
PubMed Central
Google Scholar
Waadt R, Schmidt LK, Lohse M, Hashimoto K, Bock R, Kudla J (2008) Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta. Plant J 56(3):505–516. https://doi.org/10.1111/j.1365-313X.2008.03612.x
Article
CAS
PubMed
Google Scholar
Wang Y, Lu Y, Guo Z, Ding Y, Ding C (2020) RICE CENTRORADIALIS 1, a TFL1-like gene, responses to drought stress and regulates rice flowering transition. Rice (NY) 13(1):70. https://doi.org/10.1186/s12284-020-00430-3
Article
CAS
Google Scholar
Wei FJ, Tsai YC, Wu HP, Huang LT, Chen YC, Chen YF, Wu CC, Tseng YT, Hsing YC (2016) Both Hd1 and Ehd1 are important for artificial selection of flowering time in cultivated rice. Plant Sci 242:187–194. https://doi.org/10.1016/j.plantsci.2015.09.005
Article
CAS
PubMed
Google Scholar
Xi W, Liu C, Hou X, Yu H (2010) MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell 22(6):1733–1748. https://doi.org/10.1105/tpc.109.073072
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115(1):35–46. https://doi.org/10.1007/s00122-007-0538-9
Article
CAS
PubMed
Google Scholar
Xu Y-F, Ookawa T, Ishihara K (1997) Analysis of the photosynthetic characteristics of the high-yielding rice cultivar Takanari. Jpn J Crop Sci 66(4):616–623
Article
CAS
Google Scholar
Yang Y, Peng Q, Chen GX, Li XH, Wu CY (2013) OsELF3 is involved in circadian clock regulation for promoting flowering under long-day conditions in rice. Mol Plant 6(1):202–215. https://doi.org/10.1093/mp/sss062
Article
CAS
PubMed
Google Scholar
Zhan Z, Zhang C, Zhang H, Li X, Wen C, Liang Y (2017) Molecular cloning, expression analysis, and subcellular localization of FLOWERING LOCUS T (FT) in carrot (Daucus carota L.). Mol Breeding. https://doi.org/10.1007/s11032-017-0749-y
Article
Google Scholar
Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D, Wang J, Wang H (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7(1):30. https://doi.org/10.1186/1746-4811-7-30
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang C, Liu J, Zhao T, Gomez A, Li C, Yu C, Li H, Lin J, Yang Y, Liu B, Lin C (2016) A drought-inducible transcription factor delays reproductive timing in rice. Plant Physiol 171(1):334–343. https://doi.org/10.1104/pp.16.01691
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang S, Jin Y, Hao H, Liang S, Ma X, Luan W (2020) Characterization and identification of OsFTL8 gene in rice. Plant Biotechnol Rep 14(6):683–694. https://doi.org/10.1007/s11816-020-00644-3
Article
Google Scholar
Zhu G, Ye N, Zhang J (2009) Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis. Plant Cell Physiol 50(3):644–651. https://doi.org/10.1093/pcp/pcp022
Article
CAS
PubMed
Google Scholar
Zong W, Tang N, Yang J, Peng L, Ma S, Xu Y, Li G, Xiong L (2016) Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription factor targets drought-resistance-related genes. Plant Physiol 171(4):2810–2825. https://doi.org/10.1104/pp.16.00469
Article
CAS
PubMed
PubMed Central
Google Scholar