Abe K, Araki E, Suzuki Y, Toki S, Saika H (2018) Production of high oleic/low linoleic rice by genome editing. Plant Physiol Biochem 131:58–62
Article
CAS
PubMed
Google Scholar
Akama K, Akter N, Endo H, Kanesaki M, Endo M, Toki S (2020) An in vivo targeted deletion of the calmodulin-binding domain from rice glutamate decarboxylase 3 (OsGAD3) increases γ-aminobutyric acid content in grains. Rice 13:20
Article
PubMed
PubMed Central
Google Scholar
Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149–157
Article
CAS
PubMed
PubMed Central
Google Scholar
Bigelyte G, Young JK, Karvelis T, Budre K, Zedaveinyte R, Djukanovic V, Van Ginkel E, Paulraj S, Gasior S, Jones S, Feigenbutz L, Clair GS, Barone P, Bohn J, Acharya A, Zastrow-Hayes G, Henkel-Heinecke S, Silanskas A, Seidel R, Siksnys V (2021) Miniature type V-F CRISPR-Cas nucleases enable targeted DNA modification in cells. Nat Commun 12:6191
Article
PubMed
PubMed Central
Google Scholar
Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41:7429–7437
Article
CAS
PubMed
PubMed Central
Google Scholar
Bradbury LMT, Gillies SA, Brushett DJ, Waters DLE, Henry RJ (2008) Inactivation of an aminoaldehyde dehydrogenase is responsible for fragrance in rice. Plant Mol Biol 68:439–449
Article
CAS
PubMed
Google Scholar
Butt H, Eid A, Ali Z, Atia MAM, Mokhtar MM, Hassan N, Lee CM, Bao G, Mahfouz MM (2017) Efficient CRISPR/Cas9-mediated genome editing using a chimeric single-guide RNA molecule. Front Plant Sci 8:1441
Article
PubMed
PubMed Central
Google Scholar
Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, PR Iyer E, Lin S, Kiani S, Guzman CD, Wiegand DJ, Ter-Ovanesyan D, Braff JL, Davidsohn N, Housden BE, Perrimon N, Weiss R, Aach J, Collins JJ, Church GM (2015) Highly efficient Cas9-mediated transcriptional programming. Nat Methods 12:326–328
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen S, Yang Y, Shi W, Ji Q, He F, Zhang Z, Cheng Z, Liu X, Xu M (2008) Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. Plant Cell 20:1850–1861
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen PJ, Hussmann JA, Yan J, Knipping F, Ravisankar P, Chen PF, Chen C, Nelson JW, Newby GA, Sahin M, Osborn MJ, Weissman JS, Adamson B, Liu DR (2021) Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184:5635-5652.e5629
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng AW, Wang H, Yang H, Shi L, Katz Y, Theunissen TW, Rangarajan S, Shivalila CS, Dadon DB, Jaenisch R (2013) Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res 23:1163–1171
Article
CAS
PubMed
PubMed Central
Google Scholar
Dang TT, Shimatani Z, Kawano Y, Terada R, Shimamoto K (2013) Gene editing a constitutively active OsRac1 by homologous recombination-based gene targeting induces immune responses in rice. Plant Cell Physiol 54:2058–2070
Article
CAS
PubMed
Google Scholar
Demorest ZL, Coffman A, Baltes NJ, Stoddard TJ, Clasen BM, Luo S, Retterath A, Yabandith A, Gamo ME, Bissen J, Mathis L, Voytas DF, Zhang F (2016) Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil. BMC Plant Biol 16:225
Article
PubMed
PubMed Central
Google Scholar
Dong OX, Yu S, Jain R, Zhang N, Duong PQ, Butler C, Li Y, Lipzen A, Martin JA, Barry KW, Schmutz J, Tian L, Ronald PC (2020) Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9. Nat Commun 11:1178
Article
CAS
PubMed
PubMed Central
Google Scholar
Endo M, Osakabe K, Ichikawa H, Toki S (2006) Molecular characterization of true and ectopic gene targeting events at the acetolactate synthase gene in Arabidopsis. Plant Cell Physiol 47:372–379
Article
CAS
PubMed
Google Scholar
Endo M, Osakabe K, Ono K, Handa H, Shimizu T, Toki S (2007) Molecular breeding of a novel herbicide-tolerant rice by gene targeting. Plant J 52:157–166
Article
CAS
PubMed
Google Scholar
Endo A, Masafumi M, Kaya H, Toki S (2016) Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Sci Rep 6:38169
Article
CAS
PubMed
PubMed Central
Google Scholar
Endo A, Saika H, Takemura M, Misawa N, Toki S (2019a) A novel approach to carotenoid accumulation in rice callus by mimicking the cauliflower Orange mutation via genome editing. Rice 12:81
Article
PubMed
PubMed Central
Google Scholar
Endo M, Mikami M, Endo A, Kaya H, Itoh T, Nishimasu H, Nureki O, Toki S (2019b) Genome editing in plants by engineered CRISPR-Cas9 recognizing NG PAM. Nat Plants 5:14–17
Article
CAS
PubMed
Google Scholar
Endo M, Iwakami S, Toki S (2020) Precision genome editing in plants via gene targeting and subsequent break-induced single-strand annealing. Plant Biotechnol J 19(3):563–574
Article
PubMed
PubMed Central
Google Scholar
Fauser F, Roth N, Pacher M, Ilg G, Sanchez-Fernandez R, Biesgen C, Puchta H (2012) In planta gene targeting. Proc Natl Acad Sci U S A 109:7535–7540
Article
CAS
PubMed
PubMed Central
Google Scholar
Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551:464–471
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451
Article
CAS
PubMed
PubMed Central
Google Scholar
Hanin M, Volrath S, Bogucki A, Briker M, Ward E, Paszkowski J (2001) Gene targeting in Arabidopsis. Plant J 28:671–677
Article
CAS
PubMed
Google Scholar
Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L, Voytas DF, Zhang F (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12:934–940
Article
CAS
PubMed
Google Scholar
Helmy M, Smith D, Selvarajoo K (2020) Systems biology approaches integrated with artificial intelligence for optimized metabolic engineering. Metab Eng Commun 11:e00149
Article
PubMed
PubMed Central
Google Scholar
Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z, Liu DR (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556:57–63
Article
CAS
PubMed
PubMed Central
Google Scholar
Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H (2012) Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc Natl Acad Sci 109:19166–19171
Article
CAS
PubMed
PubMed Central
Google Scholar
Jayathilaka K, Sheridan SD, Bold TD, Bochenska K, Logan HL, Weichselbaum RR, Bishop DK, Connell PP (2008) A chemical compound that stimulates the human homologous recombination protein RAD51. Proc Natl Acad Sci U S A 105:15848–15853
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang B-C, Yun J-Y, Kim S-T, Shin Y, Ryu J, Choi M, Woo JW, Kim J-S (2018) Precision genome engineering through adenine base editing in plants. Nat Plants 4:427–431
Article
CAS
PubMed
Google Scholar
Kanno T, Komatsu A, Kasai K, Dubouzet JG, Sakurai M, Ikejiri-Kanno Y, Wakasa K, Tozawa Y (2005) Structure-based in vitro engineering of the anthranilate synthase, a metabolic key enzyme in the plant tryptophan pathway. Plant Physiol 138:2260–2268
Article
CAS
PubMed
PubMed Central
Google Scholar
Kazama T, Okuno M, Watari Y, Yanase S, Koizuka C, Tsuruta Y, Sugaya H, Toyoda A, Itoh T, Tsutsumi N, Toriyama K, Koizuka N, Arimura S-i (2019) Curing cytoplasmic male sterility via TALEN-mediated mitochondrial genome editing. Nat Plants 5:722–730
Article
CAS
PubMed
Google Scholar
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424
Article
CAS
PubMed
PubMed Central
Google Scholar
Konermann S, Brigham MD, Trevino A, Hsu PD, Heidenreich M, Cong L, Platt RJ, Scott DA, Church GM, Zhang F (2013) Optical control of mammalian endogenous transcription and epigenetic states. Nature 500:472–476
Article
CAS
PubMed
PubMed Central
Google Scholar
Kurt IC, Zhou R, Iyer S, Garcia SP, Miller BR, Langner LM, Grünewald J, Joung JK (2021) CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat Biotechnol 39:41–46
Article
CAS
PubMed
Google Scholar
Li M, Li X, Zhou Z, Wu P, Fang M, Pan X, Lin Q, Luo W, Wu G, Li H (2016) Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front Plant Sci 7:377
PubMed
PubMed Central
Google Scholar
Li Z, Zhang D, Xiong X, Yan B, Xie W, Sheen J, Li JF (2017) A potent Cas9-derived gene activator for plant and mammalian cells. Nat Plants 3:930–936
Article
CAS
PubMed
PubMed Central
Google Scholar
Li C, Zong Y, Wang Y, Jin S, Zhang D, Song Q, Zhang R, Gao C (2018) Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol 19:59
Article
PubMed
PubMed Central
Google Scholar
Li S, Li J, He Y, Xu M, Zhang J, Du W, Zhao Y, Xia L (2019) Precise gene replacement in rice by RNA transcript-templated homologous recombination. Nat Biotechnol 37:445–450
Article
CAS
PubMed
Google Scholar
Li C, Zhang R, Meng X, Chen S, Zong Y, Lu C, Qiu JL, Chen YH, Li J, Gao C (2020) Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nat Biotechnol 38:875–882
Article
CAS
PubMed
Google Scholar
Li R, Char SN, Liu B, Liu H, Li X, Yang B (2021) High-efficiency plastome base editing in rice with TAL cytosine deaminase. Mol Plant 14:1412–1414
Article
CAS
PubMed
Google Scholar
Lian J, HamediRad M, Hu S, Zhao H (2017) Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system. Nat Commun 8:1688
Article
PubMed
PubMed Central
Google Scholar
Lin Q, Zong Y, Xue C, Wang S, Jin S, Zhu Z, Wang Y, Anzalone AV, Raguram A, Doman JL, Liu DR, Gao C (2020) Prime genome editing in rice and wheat. Nat Biotechnol 38:582–585
Article
CAS
PubMed
Google Scholar
Lin Q, Jin S, Zong Y, Yu H, Zhu Z, Liu G, Kou L, Wang Y, Qiu J-L, Li J, Gao C (2021) High-efficiency prime editing with optimized, paired pegRNAs in plants. Nat Biotechnol 39:923–927
Article
CAS
PubMed
Google Scholar
Liu X, Liu H, Zhang Y, He M, Li R, Meng W, Wang Z, Li X, Bu Q (2021) Fine-tuning flowering time via genome editing of upstream open reading frames of heading date 2 in rice. Rice 14:59
Article
CAS
PubMed
PubMed Central
Google Scholar
Lopez-Huertas E (2010) Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks. A review of intervention studies. Pharmacol Res 61:200–207
Article
CAS
PubMed
Google Scholar
Lu S, Van Eck J, Zhou X, Lopez AB, O’Halloran DM, Cosman KM, Conlin BJ, Paolillo DJ, Garvin DF, Vrebalov J, Kochian LV, Kupper H, Earle ED, Cao J, Li L (2006) The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of β-carotene accumulation. Plant Cell 18:3594–3605
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu Y, Wang J, Chen B, Mo S, Lian L, Luo Y, Ding D, Ding Y, Cao Q, Li Y, Li Y, Liu G, Hou Q, Cheng T, Wei J, Zhang Y, Chen G, Song C, Hu Q, Sun S, Fan G, Wang Y, Liu Z, Song B, Zhu J-K, Li H, Jiang L (2021) A donor-DNA-free CRISPR/Cas-based approach to gene knock-up in rice. Nat Plants 7:1445–1452
Article
CAS
PubMed
Google Scholar
Lv Y, Shao G, Jiao G, Sheng Z, Xie L, Hu S, Tang S, Wei X, Hu P (2021) Targeted mutagenesis of POLYAMINE OXIDASE 5 that negatively regulates mesocotyl elongation enables the generation of direct-seeding rice with improved grain yield. Mol Plant 14:344–351
Article
CAS
PubMed
Google Scholar
Mansour SL, Thomas KR, Capecchi MR (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336:348–352
Article
CAS
PubMed
Google Scholar
Ming M, Ren Q, Pan C, He Y, Zhang Y, Liu S, Zhong Z, Wang J, Malzahn AA, Wu J, Zheng X, Qi Y (2020) CRISPR-Cas12b enables efficient plant genome engineering. Nat Plants 6:202–208
Article
CAS
PubMed
Google Scholar
Molla KA, Sretenovic S, Bansal KC, Qi Y (2021) Precise plant genome editing using base editors and prime editors. Nat Plants 7:1166–1187
Article
CAS
PubMed
Google Scholar
Morisaka H, Yoshimi K, Okuzaki Y, Gee P, Kunihiro Y, Sonpho E, Xu H, Sasakawa N, Naito Y, Nakada S, Yamamoto T, Sano S, Hotta A, Takeda J, Mashimo T (2019) CRISPR-Cas3 induces broad and unidirectional genome editing in human cells. Nat Commun 10:5302
Article
CAS
PubMed
PubMed Central
Google Scholar
Negishi K, Kaya H, Abe K, Hara N, Saika H, Toki S (2019) An adenine base editor with expanded targeting scope using SpCas9-NGv1 in rice. Plant Biotechnol J 17:1476–1478
Article
PubMed
PubMed Central
Google Scholar
Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, Mochizuki M, Miyabe A, Araki M, Hara KY, Shimatani Z, Kondo A (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353:aaf8729
Article
PubMed
Google Scholar
Nishimasu H, Shi X, Ishiguro S, Gao L, Hirano S, Okazaki S, Noda T, Abudayyeh OO, Gootenberg JS, Mori H, Oura S, Holmes B, Tanaka M, Seki M, Hirano H, Aburatani H, Ishitani R, Ikawa M, Yachie N, Zhang F, Nureki O (2018) Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361:1259–1262
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishizawa-Yokoi A, Endo M, Ohtsuki N, Saika H, Toki S (2015) Precision genome editing in plants via gene targeting and piggyBac-mediated marker excision. Plant J 81:160–168
Article
CAS
PubMed
Google Scholar
Nishizawa-Yokoi A, Cermak T, Hoshino T, Sugimoto K, Saika H, Mori A, Osakabe K, Hamada M, Katayose Y, Starker C, Voytas DF, Toki S (2016) A defect in DNA Ligase4 enhances the frequency of TALEN-mediated targeted mutagenesis in rice. Plant Physiol 170:653–666
Article
CAS
PubMed
Google Scholar
Nishizawa-Yokoi A, Mikami M, Toki S (2020) A universal system of CRISPR/Cas9-mediated gene targeting using all-in-one vector in plants. Front Genome Ed 2:6289
Article
Google Scholar
Nonaka S, Arai C, Takayama M, Matsukura C, Ezura H (2017) Efficient increase of ɣ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Sci Rep 7:7057
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohtsuki N, Kizawa K, Mori A, Nishizawa-Yokoi A, Komatsuda T, Yoshida H, Hayakawa K, Toki S, Saika H (2020) Precise genome editing in miRNA target site via gene targeting and subsequent single-strand-annealing-mediated excision of the marker gene in plants. Front Genome Ed 2:617713
Article
PubMed
Google Scholar
Osakabe K, Wada N, Miyaji T, Murakami E, Marui K, Ueta R, Hashimoto R, Abe-Hara C, Kong B, Yano K, Osakabe Y (2020) Genome editing in plants using CRISPR type I-D nuclease. Commun Biol 3:648
Article
CAS
PubMed
PubMed Central
Google Scholar
Osakabe K, Wada N, Murakami E, Miyashita N, Osakabe Y (2021) Genome editing in mammalian cells using the CRISPR type I-D nuclease. Nucleic Acids Res 49:6347–6363
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan C, Sretenovic S, Qi Y (2021) CRISPR/dCas-mediated transcriptional and epigenetic regulation in plants. Curr Opin Plant Biol 60:101980
Article
CAS
PubMed
Google Scholar
Powles SB, Yu Q (2010) Evolution in action: plants resistant to herbicides. In: Merchant S, Briggs WR, Ort D (eds) Annual review of plant biology, pp 317–347
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183
Article
CAS
PubMed
PubMed Central
Google Scholar
Qin R, Li J, Li H, Zhang Y, Liu X, Miao Y, Zhang X, Wei P (2019) Developing a highly efficient and wildly adaptive CRISPR-SaCas9 toolset for plant genome editing. Plant Biotechnol J 17:706–708
Article
PubMed
PubMed Central
Google Scholar
Ren Q, Sretenovic S, Liu S, Tang X, Huang L, He Y, Liu L, Guo Y, Zhong Z, Liu G, Cheng Y, Zheng X, Pan C, Yin D, Zhang Y, Li W, Qi L, Li C, Qi Y, Zhang Y (2021) PAM-less plant genome editing using a CRISPR–SpRY toolbox. Nat Plants 7:25–33
Article
CAS
PubMed
Google Scholar
Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:470-480.e478
Article
PubMed
Google Scholar
Saika H, Oikawa A, Matsuda F, Onodera H, Saito K, Toki S (2011) Application of gene targeting to designed mutation breeding of high-tryptophan rice. Plant Physiol 156:1269–1277
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakata RC, Ishiguro S, Mori H, Tanaka M, Tatsuno K, Ueda H, Yamamoto S, Seki M, Masuyama N, Nishida K, Nishimasu H, Arakawa K, Kondo A, Nureki O, Tomita M, Aburatani H, Yachie N (2020) Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nat Biotechnol 38:865–869
Article
CAS
PubMed
Google Scholar
Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355
Article
CAS
PubMed
PubMed Central
Google Scholar
Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24:2155–2167
Article
CAS
PubMed
PubMed Central
Google Scholar
Shan Q, Zhang Y, Chen K, Zhang K, Gao C (2015) Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol J 13:791–800
Article
CAS
PubMed
Google Scholar
Shimatani Z, Nishizawa-Yokoi A, Endo M, Toki S, Terada R (2015) Positive-negative-selection-mediated gene targeting in rice. Front Plant Sci 5:748
Article
PubMed
PubMed Central
Google Scholar
Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T, Ishii H, Teramura H, Yamamoto T, Komatsu H, Miura K, Ezura H, Nishida K, Ariizumi T, Kondo A (2017) Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 35:441–443
Article
CAS
PubMed
Google Scholar
Smith JD, Suresh S, Schlecht U, Wu M, Wagih O, Peltz G, Davis RW, Steinmetz LM, Parts L, St Onge RP (2016) Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design. Genome Biol 17:45
Article
PubMed
PubMed Central
Google Scholar
Sretenovic S, Liu S, Li G, Cheng Y, Fan T, Xu Y, Zhou J, Zheng X, Coleman G, Zhang Y, Qi Y (2021) Exploring C-To-G base editing in rice, tomato, and poplar. Front Genome Ed 3:756766–756766
Article
PubMed
PubMed Central
Google Scholar
Tang L, Mao B, Li Y, Lv Q, Zhang L, Chen C, He H, Wang W, Zeng X, Shao Y, Pan Y, Hu Y, Peng Y, Fu X, Li H, Xia S, Zhao B (2017a) Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep 7:14438
Article
PubMed
PubMed Central
Google Scholar
Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X, Voytas DF, Zhong Z, Chen Y, Ren Q, Li Q, Kirkland ER, Zhang Y, Qi Y (2017b) A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3:17018
Article
CAS
PubMed
Google Scholar
Tang Y, Abdelrahman M, Li J, Wang F, Ji Z, Qi H, Wang C, Zhao K (2021) CRISPR/Cas9 induces exon skipping that facilitates development of fragrant rice. Plant Biotechnol J 19:642–644
Article
CAS
PubMed
Google Scholar
Terada R, Urawa H, Inagaki Y, Tsugane K, Iida S (2002) Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 20:1030–1034
Article
CAS
PubMed
Google Scholar
Terada R, Nagahara M, Furukawa K, Shimamoto M, Yamaguchi K, Iida S (2010) Cre-loxP mediated marker elimination and gene reactivation at the waxy locus created in rice genome based on strong positive-negative selection. Plant Biotechnol 27:29–37
Article
CAS
Google Scholar
Usman B, Nawaz G, Zhao N, Liu Y, Li R (2020) Generation of high yielding and fragrant rice (Oryza sativa L.) lines by CRISPR/Cas9 targeted mutagenesis of three homoeologs of cytochrome P450 gene family and OsBADH2 and transcriptome and proteome profiling of revealed changes triggered by mutations. Plants 9:788
Article
CAS
PubMed Central
Google Scholar
Wakasa K, Ishihara A (2009) Metabolic engineering of the tryptophan and phenylalanine biosynthetic pathways in rice. Plant Biotechnol 26:523–533
Article
CAS
Google Scholar
Walton RT, Christie KA, Whittaker MN, Kleinstiver BP (2020) Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368:290–296
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu Z, Zhang Y, Yu H, Pan D, Wang Y, Wang Y, Li F, Liu C, Nan H, Chen W, Ji Q (2021) Programmed genome editing by a miniature CRISPR-Cas12f nuclease. Nat Chem Biol 17:1132–1138
Article
CAS
PubMed
Google Scholar
Xu X, Chemparathy A, Zeng L, Kempton HR, Shang S, Nakamura M, Qi LS (2021a) Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing. Mol Cell 81:4333-4345.e4334
Article
CAS
PubMed
Google Scholar
Xu Y, Lin Q, Li X, Wang F, Chen Z, Wang J, Li W, Fan F, Tao Y, Jiang Y, Wei X, Zhang R, Zhu Q-H, Bu Q, Yang J, Gao C (2021b) Fine-tuning the amylose content of rice by precise base editing of the Wx gene. Plant Biotechnol J 19:11–13
Article
CAS
PubMed
Google Scholar
Xu Z, Kuang Y, Ren B, Yan D, Yan F, Spetz C, Sun W, Wang G, Zhou X, Zhou H (2021c) SpRY greatly expands the genome editing scope in rice with highly flexible PAM recognition. Genome Biol 22:6
Article
CAS
PubMed
PubMed Central
Google Scholar
Zafar K, Sedeek KEM, Rao GS, Khan MZ, Amin I, Kamel R, Mukhtar Z, Zafar M, Mansoor S, Mahfouz MM (2020) Genome editing technologies for rice improvement: progress, prospects, and safety concerns. Front Genome Ed 2:5
Article
PubMed
PubMed Central
Google Scholar
Zaplin ES, Liu Q, Li Z, Butardo VM, Blanchard CL, Rahman S (2013) Production of high oleic rice grains by suppressing the expression of the OsFAD2-1 gene. Funct Plant Biol 40:996–1004
Article
CAS
PubMed
Google Scholar
Zeng D, Liu T, Ma X, Wang B, Zheng Z, Zhang Y, Xie X, Yang B, Zhao Z, Zhu Q, Liu Y-G (2020) Quantitative regulation of Waxy expression by CRISPR/Cas9-based promoter and 5’UTR-intron editing improves grain quality in rice. Plant Biotechnol J 18:2385–2387
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang P, Du H, Wang J, Pu Y, Yang C, Yan R, Yang H, Cheng H, Yu D (2020) Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus. Plant Biotechnol J 18:1384–1395
Article
CAS
PubMed
Google Scholar
Zhao D, Li J, Li S, Xin X, Hu M, Price MA, Rosser SJ, Bi C, Zhang X (2021) Glycosylase base editors enable C-to-A and C-to-G base changes. Nat Biotechnol 39:35–40
Article
CAS
PubMed
Google Scholar
Zhong Z, Sretenovic S, Ren Q, Yang L, Bao Y, Qi C, Yuan M, He Y, Liu S, Liu X, Wang J, Huang L, Wang Y, Baby D, Wang D, Zhang T, Qi Y, Zhang Y (2019) Improving plant genome editing with high-fidelity xCas9 and non-canonical PAM-targeting Cas9-NG. Mol Plant 12:1027–1036
Article
CAS
PubMed
Google Scholar
Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y, Qiu JL, Wang D, Gao C (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35:438–440
Article
CAS
PubMed
Google Scholar
Zong Y, Song Q, Li C, Jin S, Zhang D, Wang Y, Qiu JL, Gao C (2018) Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat Biotechnol 36:950–953
Article
CAS
Google Scholar