Boone FR: Weather and other environmental factors influencing crop responses to tillage and traffic. Soil Tillage Res 1988, 11: 283–324.
Article
Google Scholar
Chaitra J, Vinod MS, Sharma N, Hittalmani S, Shashidhar HE: Validation of markers linked to maximum root length in rice (Oryza sativa L.). Curr Sci 2006, 90: 835–838.
Google Scholar
Chhun T, Taketa S, Tsurumi S, Ichii M: Interaction between two auxin-resistant mutants and their effects on lateral root formation in rice (Oryza sativa L.). J Exp Bot 2003, 54: 2701–2708.
Article
CAS
PubMed
Google Scholar
Cho JY, Son JG, Choi JK, Song CH, Chung BY: Surface and subsurface losses of N and P from salt-affected rice paddy fields of Saemangeum reclaimed land in South Korea. Paddy Water Environ 2008, 6: 211–219.
Article
Google Scholar
Debi BR, Mushika J, Taketa S, Miyao A, Hirochika H, Ichii M: Isolation and characterization of a short lateral root mutant in rice (Oryza sativa L.). Plant Sci 2003, 165: 895–903.
Article
CAS
Google Scholar
Debi BR, Chhun T, Taketa S, Tsurumi S, Xia K, Miyao A, Hirochika H, Ichii M: Defects in root development and gravity response in the aem1 mutant of rice are associated with reduced auxin efflux. J Plant Physiol 2005, 162: 678–685.
Article
CAS
PubMed
Google Scholar
Ge Z, Rubio G, Lynch JP: The importance of root gravitropism for inter-root competition and phosphorus acquisition efficiency: results from a geometric simulation model. Plant Soil 2000, 218: 159–171.
Article
CAS
PubMed
Google Scholar
Ge L, Chen H, Jian J-F, Zhao Y, Xu M-L, Xu Y-Y, Tan K-H, Xu Z-H, Chong K: Overexpression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity. Plant Physiol 2004, 135: 1502–1513.
Article
PubMed Central
PubMed
Google Scholar
Hao Z, Ichii M: A mutant RM109 of rice (Oryza sativa L.) exhibiting altered lateral root initiation and gravitropism. Jpn J Crop Sci 1999, 68: 245–252.
Article
CAS
Google Scholar
Hardtke CS, Okamoto H, Stoop-Myer C, Deng XW: Biochemical evidence for ubiquitin ligase activity of the Arabidopsis COP1 interacting protein 8 (CIP8). Plant J 2002, 30: 385–394.
Article
CAS
PubMed
Google Scholar
Hirochika H: Retrotransposons of rice: their regulation and use for genome analysis. Plant Mol Biol 1997, 35: 231–240.
Article
CAS
PubMed
Google Scholar
Hodge A, Berta G, Doussan C, Merchan F, Crespi M: Plant root growth, architecture and function. Plant Soil 2009, 321: 153–187.
Article
CAS
Google Scholar
Holm M, Ma LG, Qu LJ, Deng WX: Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev 2002, 16: 1247–1259.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hu J, Aguirre M, Peto C, Alonso J, Ecker J, Chory J: A role for peroxisomes in photomorphogenesis and development of Arabidopsis. Science 2002, 297: 405–409.
Article
CAS
PubMed
Google Scholar
Ichii M, Ishikawa M: Genetic analysis of newly induced short-root mutants in rice (Oryza sativa L.). Breed Sci 1997, 47: 121–125.
Google Scholar
Inukai Y, Miwa M, Nagato Y, Kitano H, Yamauchi A: Characterization of rice mutants deficient in the formation of crown roots. Breed Sci 2001, 51: 123–129.
Article
CAS
Google Scholar
Iwao MJ, You T, Taketa S, Miyao A, Hirochika H, Ichii M: Molecular genetic analysis of a Tos17 -tagged mutant line related to root morphology in rice. Breed Res 2005, 7: 171–178.
Article
Google Scholar
Kim CM, Park SH, Je BI, Park SH, Park SJ, Piao HL, Eun MY, Dolan L, Han CD: OsCSLD1, a cellulose synthase-like D1 gene, is required for root hair morphogenesis in rice. Plant Physiol 2007, 143: 1220–1230.
Article
PubMed Central
CAS
PubMed
Google Scholar
King J, Gay A, Sylvester-Bradley R, Bingham I, Foulkes J, Gregory P, Robinson D: Modelling cereal root systems for water and nitrogen capture: Towards an economic optimum. Ann Bot 2003, 91: 383–390.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kohno E, Ogawa Y, Iwata S: Productivity of paddy fields. In Paddy fields in the world. Edited by: Tabuchi T, Hasegawa S. Drainage and Reclamation Engineering. Tokyo: The Japanese Society of Irrigation; 1995:341–349.
Google Scholar
Lafitte HR, Champoux MC, McLaren G, O’Toole JC: Rice root morphological traits are related to isozyme group and adaptation. Field Crops Res 2001, 71: 57–70.
Article
Google Scholar
Liao H, Yan X, Rubio G, Beebe SE, Blair MW, Lynch JP: Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean. Funct Plant Biol 2004, 31: 959–970.
Article
CAS
Google Scholar
Lynch JP: Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 2011, 156: 1041–1049.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lynch JP: Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot 2013, 112: 347–357.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lynch JP, Brown KM: Topsoil foraging – an architectural adaptation of plants to low phosphorus availability. Plant Soil 2001, 237: 225–237.
Article
CAS
Google Scholar
Lynch JP, Brown KM: New roots for agriculture: exploiting the root phenome. Phil Trans Royal Soc B Biolog Sci 2012, 367: 1598–1604.
Article
Google Scholar
Mano Y, Muraki M, Fujimori M, Takamizo T, Kindiger B: Identification of QTL controlling adventitious root formation during flooding conditions in teosinte (Zea mays ssp. huehuetenangensis) seedlings. Euphytica 2005, 142: 33–42.
Article
Google Scholar
Manske GGB, Ortiz-Monasterio JI, Ginkel MV, Gonzalez RM, Rajaram S, Molina E, Vlek PLG: Traits associated with improved P-uptake efficiency in CIMMYT’s semi dwarf spring bread wheat grown on an acid Andisol in Mexico. Plant Soil 2000, 221: 189–204.
Article
CAS
Google Scholar
Matsuda N, Suzuki T, Tanaka K, Nakano A: Rma 1, a novel type of RING finger protein conserved from Arabidopsis to human, is a membrane-bound ubiquitin ligase. J Cell Sci 2001, 114: 1949–1957.
CAS
PubMed
Google Scholar
McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L: Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 2002, 9: 199–207.
Article
CAS
PubMed
Google Scholar
Molnảr G, Bancoṣ S, Nagy F, Szekeres M: Characterisation of BRH1, a brassinosteroid-responsive RING-H2 gene from Arabidopsis thaliana. Planta 2002, 215: 127–133.
Article
PubMed
Google Scholar
Morita Y, Kyozuka J: Characterization of OsPID, the rice ortholog of PINOID, and its possible involvement in the control of polar auxin transport. Plant Cell Physiol 2007, 48: 540–549.
Article
CAS
PubMed
Google Scholar
Morita S, Yamazaki K: Root system. Morphology. In Science of the Rice Plant. Volume 1. Edited by: Matsuo T, Hoshikawa K. Tokyo: Food and Agriculture Policy Research Center; 1993:161–186.
Google Scholar
Nakamoto T, Oyanagi A: The direction of growth of seminal roots of Triticum aestivum L. and experimental modification thereof. Ann Bot 1994, 73: 363–367.
Article
Google Scholar
Oyanagi A, Nakamoto T, Morita S: The gravitropic response of roots and the shaping of the root system in cereal plants. Environ Exp Bot 1993, 33: 141–158.
Article
Google Scholar
Phupaibul P, Chitbuntanorm C, Chinoim N, Kangyawangha P, Matoh T: Phosphorus accumulation in soils and nitrate contamination in underground water under export-oriented asparagus farming in Nong Ngu Lauen village, Nakhon Pathom province, Thailand. Soil Sci Plant Nutr 2004, 50: 385–393.
Article
Google Scholar
Ponnamperuma FN, Tianco EM, Loy T: Redox equilibria in flooded soils: I. the iron hydroxide systems. Soil Sci 1967, 103: 374–382.
Article
CAS
Google Scholar
Rich SM, Watt M: Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver. J Exp Bot 2013, 64: 1193–1208.
Article
CAS
PubMed
Google Scholar
Sakai T, Michizuki S, Haga K, Uehara Y, Suzuki A, Harada A, Wada T, Ishiguro S, Okada K: The wavy growth 3 E3 ligase family controls the gravitropic response in Arabidopsis roots. Plant J 2012, 70: 303–314.
Article
CAS
PubMed
Google Scholar
Serrano M, Guzmán P: Isolation and gene expression analysis of Arabidopsis thaliana mutants with constitutive expression of ATL2, an early elicitor-response RING-H2 zinc-finger gene. Genetics 2004, 167: 919–929.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stone SL, Hauksdόttir H, Troy A, Herschleb J, Kraft E, Callis J: Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol 2005, 137: 13–30.
Article
PubMed Central
CAS
PubMed
Google Scholar
Suzuki N, Taketa S, Ichii M: Morphological and physiological characteristics of a root-hairless mutant in rice (Oryza sativa L.). Plant Soil 2003, 255: 9–17.
Article
CAS
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28: 2731–2739.
Article
PubMed Central
CAS
PubMed
Google Scholar
Temnykh S, Park WD, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR: Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet 2000, 100: 697–712.
Article
CAS
Google Scholar
Ueno K, Sato T: Aerial root formation in rice ecotype Bulu. Jpn J Trop Agr 1989, 33: 173–175.
Google Scholar
Ueno K, Sato T: Varietal difference in growth directions of rice crown roots and relation to gravitropic response and diameter of crown roots. Jpn J Breed 1992, 42: 779–786.
Article
Google Scholar
Uga Y, Hanzawa E, Nagai S, Sasaki K, Yano M, Sato T: Identification of qSOR1, a major rice QTL involved in soil surface rooting in paddy fields. Theor Appl Genet 2012, 124: 75–86.
Article
PubMed
Google Scholar
Whittaker CA, Hynes RO: Distribution and evolution of von Willebrand/Integrin A domains: Widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell 2002, 13: 3369–3387.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xie Q, Guo HS, Dallman G, Fang SY, Weissman AM, Chua NH: SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature 2002, 419: 167–170.
Article
CAS
PubMed
Google Scholar
Xu R, Li QQ: A RING-H2 zinc-finger protein gene RIE1 is essential for seed development in Arabidopsis. Plant Mol Biol 2003, 53: 37–50.
Article
CAS
PubMed
Google Scholar
Yoshida S: Fundamentals of rice crop science. The International Rice Research Institute. Philippines: Manila; 1981.
Google Scholar
Yuo T, Toyota M, Ichii M, Taketa S: Molecular cloning of a root hairless gene rth1 in rice. Breed Sci 2009, 59: 13–20.
Article
CAS
Google Scholar
Yuo T, Shiotani K, Shitsukawa N, Miyao A, Hirochika H, Ichii M, Taketa S: Root hairless 2 (rth2 ) mutant represents a loss-of-function allele of the cellulose synthase-like gene OsCSLD1 in rice (Oryza sativa L.). Breed Sci 2011, 61: 225–233.
Article
CAS
Google Scholar