Alibi S, Crespo D, Navas J (2021) Plant-derivatives small molecules with antibacterial activity. Antibiotics (Basel) 10:1–19. https://doi.org/10.3390/antibiotics10030231
Article
CAS
Google Scholar
Arpan D, Praveen J, Ajay S (2013) Antibacterial activity of rice bran oil. Recent Res Sci Technol 5(2):18–19
Google Scholar
Atwell BJ, Wang H, Scafaro AP (2014) Could abiotic stress tolerance in wild relatives of rice be used to improve Oryza sativa? Plant Sci 215–216:48–58. https://doi.org/10.1016/j.plantsci.2013.10.007
Article
CAS
Google Scholar
Baltas N, Pakyildiz S, Can Z, Dincer B, Kolayli S (2017) Biochemical properties of partially purified polyphenol oxidase and phenolic compounds of Prunus spinosa L. subsp. dasyphylla as measured by HPLC-UV. Int J Food Prop 20:1377–1391. https://doi.org/10.1080/10942912.2017.1343349
Article
CAS
Google Scholar
Bednarek P, Osbourn A (2009) Plant-microbe interactions: chemical diversity in plant defense. Science 324:746–748. https://doi.org/10.1126/science.1171661
Article
CAS
Google Scholar
Ben-Abu Y, Itsko M (2021) Changes in “natural antibiotic” metabolite composition during tetraploid wheat domestication. Sci Rep. https://doi.org/10.1038/s41598-021-98764-5
Article
Google Scholar
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 57:289–300
Google Scholar
Benov L (2021) Improved formazan dissolution for bacterial MTT assay. Microbiol Spectrum 9:e01637-e1721. https://doi.org/10.1128/spectrum.01637-21
Article
CAS
Google Scholar
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635. https://doi.org/10.1093/bioinformatics/btm308
Article
CAS
Google Scholar
Bubonja-Sonje M, Giacometti J, Abram M (2011) Antioxidant and antilisterial activity of olive oil, cocoa and rosemary extract polyphenols. Food Chem 127:1821–1827. https://doi.org/10.1016/j.foodchem.2011.02.071
Article
CAS
Google Scholar
Cartwright DW, Langcake P, Pryce RJ, Leworthy DP, Ride JP (1981) Isolation and characterization of two phytoalexins from rice as momilactones A and B. Phytochemistry 20:535–537. https://doi.org/10.1016/S0031-9422(00)84189-8
Article
CAS
Google Scholar
Castanho A, Lageiro M, Calhelha RC, Ferreira ICFR, Sokovic M, Cunha LM, Brites C (2019) Exploiting the bioactive properties of γ-oryzanol from bran of different exotic rice varieties. Food Funct 10:2382–2389. https://doi.org/10.1039/C8FO02596G
Article
CAS
Google Scholar
Dalling JW, Davis AS, Schutte BJ, Elizabeth Arnold A (2011) Seed survival in soil: interacting effects of predation, dormancy and the soil microbial community. J Ecol 99:89–95. https://doi.org/10.1111/j.1365-2745.2010.01739.x
Article
Google Scholar
Dalling JW, Davis AS, Arnold AE, Sarmiento C, Zalamea PC (2020) Extending plant defense theory to seeds. Ann Rev Ecol Evol Syst 51:123–141. https://doi.org/10.1146/annurev-ecolsys-012120-115156
Article
Google Scholar
DePristo MA, Banks E, Poplin R (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43(5):491–498. https://doi.org/10.1038/ng.806
Article
CAS
Google Scholar
Ebana K, Kojima Y, Fukuoka S, Nagamine T, Kawase M (2008) Development of mini core collection of Japanese rice landrace. Breed Sci 58:281–291. https://doi.org/10.1270/jsbbs.58.281
Article
Google Scholar
Eloff JN (1998) A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med 64:711–713. https://doi.org/10.1055/s-2006-957563
Article
CAS
Google Scholar
Ferdes M, Ungureanu C, Radu N, Chirvase AA (2009) Antimicrobial effect of Monascus purpureus red rice against some bacterial and fungal strains. New Biotechnol 25:S194. https://doi.org/10.1016/j.nbt.2009.06.119
Article
Google Scholar
Friedman M (2013) Rice brans, rice bran oils, and rice hulls: composition, food and industrial uses, and bioactivities in humans, animals, and cells. J Agric Food Chem 61:10626–10641. https://doi.org/10.1021/jf403635v
Article
CAS
Google Scholar
Fuerst EP, Erson JV, Kennedy AC, Gallagher RS (2011) Induction of polyphenol oxidase activity in dormant wild oat (Avena fatua) seeds and caryopses: a defense response to seed decay fungi. Weed Sci 59:137–144. https://doi.org/10.1614/WS-D-10-00123.1
Article
CAS
Google Scholar
Fuerst EP, Okubara PA, Erson JV, Morris CF (2014) Polyphenol oxidase as a biochemical seed defense mechanism. Front Plant Sci 5:689. https://doi.org/10.3389/fpls.2014.00689
Article
Google Scholar
Fuerst EP, James MS, Pollard AT, Okubara PA (2018) Defense enzyme responses in dormant wild oat and wheat caryopses challenged with a seed decay pathogen. Front Plant Sci 8:2259. https://doi.org/10.3389/fpls.2017.02259
Article
Google Scholar
Fukuta M, Xuan TD, Deba F, Tawata S, Khanh TD, Chung IM (2007) Comparative efficacies in vitro of antibacterial, fungicidal, antioxidant, and herbicidal activities of momilatones A and B. J Plant Interact 2:245–251. https://doi.org/10.1080/17429140701713811
Article
CAS
Google Scholar
Gergerich RC, Dolja VV (2006) Introduction to plant viruses, the invisible foe. Plant Health Inst. https://doi.org/10.1094/PHI-I-2006-0414-01
Article
Google Scholar
Gianinetti A, Finocchiaro F, Maisenti F, Satsap DK, Morcia C, Ghizzoni R, Terzi V (2018) The caryopsis of red-grained rice has enhanced resistance to fungal attack. J Fungi 4(2):71. https://doi.org/10.3390/jof4020071
Article
CAS
Google Scholar
Grela E, Ząbek A, Grabowiecka A (2015) Interferences in the optimization of the MTT assay for viability estimation of Proteus mirabilis. Avicenna J Med Biotechnol 7:159–167
Google Scholar
Haase H, Jordan L, Keitel L, Keil C, Mahltig B (2017) Comparison of methods for determining the effectiveness of antibacterial functionalized textiles. PLoS ONE 12(11):e0188304. https://doi.org/10.1371/journal.pone.0188304
Article
CAS
Google Scholar
Ishihara A (2021) Defense mechanisms involving secondary metabolism in the grass family. J Pestic Sci 46:382–392. https://doi.org/10.1584/jpestics.J21-05
Article
CAS
Google Scholar
Ishihara A, Hashimoto Y, Tanaka C, Dubouzet JG, Nakao T, Matsuda F, Nishioka T, Miyagawa H, Wakasa K (2008) The tryptophan pathway is involved in the defense responses of rice against pathogenic infection via serotonin production. Plant J 54:481–495. https://doi.org/10.1111/j.1365-313X.2008.03441.x
Article
CAS
Google Scholar
Izawa T, Shimamoto K (1996) Becoming a model plant: the importance of rice to plant science. Trends Plant Sci 1:95–99. https://doi.org/10.1016/S1360-1385(96)80041-0
Article
Google Scholar
Jacquemin J, Bhatia D, Singh K, Wing RA (2013) The International Oryza Map Alignment Project: development of a genus-wide comparative genomics platform to help solve the 9 billion-people question. Curr Opin Plant Biol 16:147–156. https://doi.org/10.1016/j.pbi.2013.02.014
Article
CAS
Google Scholar
Jeandet P (2018) Structure, chemical analysis, biosynthesis, metabolism, molecular engineering, and biological functions of phytoalexins. Molecules 23(1):61. https://doi.org/10.3390/molecules23010061
Article
CAS
Google Scholar
Jerkovic A, Kriegel AM, Bradner JR, Atwell BJ, Roberts TH, Willows RD (2010) Strategic distribution of protective proteins within bran layers of wheat protects the nutrient-rich endosperm. Plant Physiol 152:1459–1470. https://doi.org/10.1104/pp.109.149864
Article
CAS
Google Scholar
Kajiya-Kanegae H, Ohyanagi H, Ebata T, Tanizawa Y, Onogi A, Sawada Y, Hirai MY, Wang ZX, Han B, Toyoda A (2021) OryzaGenome2.1: database of diverse genotypes in wild Oryza species. Rice 14(1):24. https://doi.org/10.1186/s12284-021-00468-x
Article
CAS
Google Scholar
Kakar K, Xuan TD, Quan NV, Wafa IK, Tran HD, Khanh TD, Dat TD (2019) Efficacy of N-Methyl-N-Nitrosourea mutation on physicochemical properties, phytochemicals, and momilactones A and B in rice. Sustainability (Switzerland) 11(23):6862. https://doi.org/10.3390/su11236862
Article
CAS
Google Scholar
Kariya K, Murata K, Kokubo Y, Ube N, Ueno K, Yabuta Y, Teraishi M, Okumoto Y, Mori N, Ishihara A (2019) Variation of diterpenoid phytoalexin oryzalexin A production in cultivated and wild rice. Phytochemistry 166:112057. https://doi.org/10.1016/j.phytochem.2019.112057
Article
CAS
Google Scholar
Kariya K, Ube N, Ueno M, Teraishi M, Okumoto Y, Mori N, Ueno K, Ishihara A (2020) Natural variation of diterpenoid phytoalexins in cultivated and wild rice species. Phytochemistry 180:112518. https://doi.org/10.1016/j.phytochem.2020.112518
Article
CAS
Google Scholar
Kato T, Kabuto C, Sasaki N, Tsunagawa M, Aizawa H, Fujita K, Kato Y, Kitahara Y (1973) Momilactones, growth inhibitors from rice, Oryza sativa L. Tetrahedron Lett 39:3861–3864. https://doi.org/10.1016/S0040-4039(01)87058-1
Article
Google Scholar
Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S, Childs KL, Davidson RM, Lin H, Quesada-Ocampo L, Vaillancourt B, Sakai H, Lee SS, Kim J, Numa H, Itoh T, Buell CR, Matsumoto T (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice (N Y) 6(1):1–10. https://doi.org/10.1186/1939-8433-6-4
Article
Google Scholar
Kodama O, Miyakawa J, Akatsuka T, Kiyosawa S (1992) Sakuranetin, a flavanone phytoalexin from ultraviolet-irradiated rice leaves. Phytochemistry 31:3807–3809. https://doi.org/10.1016/S0031-9422(00)97532-0
Article
CAS
Google Scholar
Kojima Y, Ebana K, Fukuoka S, Nagamine T, Kawase M (2005) Development of an RFLP-based rice diversity research set of germplasm. Breed Sci 55:431–440. https://doi.org/10.1270/jsbbs.55.431
Article
CAS
Google Scholar
Kurata N, Satoh H, Kitano H, Nagato Y, Endo T, Sato K, Akashi R, Ezura H, Kusaba M, Kobayashi M et al (2010) NBRP, national bioresource project of Japan and plant bioresource management. Breed Sci 60:461–468. https://doi.org/10.1270/jsbbs.60.461
Article
Google Scholar
Lee CW, Yoneyama K, Takeuchi Y, Konnai M, Tamagoshi S, Kodama O (1999) Momilactones A and B in rice straw harvested at different growth stages. Biosci Biotechnol Biochem 63(7):1318–1320. https://doi.org/10.1271/bbb.63.1318
Article
CAS
Google Scholar
Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993. https://doi.org/10.1093/bioinformatics/btr509
Article
CAS
Google Scholar
Liu H, Du Y, Chu H, Shih CH, Wong YW, Wang M, Chu IK, Tao Y, Lo C (2010) Molecular dissection of the pathogen-inducible 3-deoxyanthocyanidin biosynthesis pathway in sorghum. Plant Cell Physiol 51:1173–1185. https://doi.org/10.1093/pcp/pcq080
Article
CAS
Google Scholar
Lu F, Ammiraju JSS, Sanyal A, Zhang S, Son R, Chen J, Li G, Sui Y, Song X, Cheng Z et al (2009) Comparative sequence analysis of MONOCULM1-orthologous regions in 14 Oryza genomes. Proc Natl Acad Sci U S A 106:2071–2076. https://doi.org/10.1073/pnas.0812798106
Article
Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303. https://doi.org/10.1101/gr.107524.110
Article
CAS
Google Scholar
Minh TN, Xuan TD, Ahmad A, Elzaawely AA, Teschke R, Van TM (2018) Efficacy from different extractions for chemical profile and biological activities of rice husk. Sustainability (Switzerland) 10:1356. https://doi.org/10.3390/su10051356
Article
CAS
Google Scholar
Miyamoto K, Fujita M, Shenton MR, Akashi S, Sugawara C, Sakai A, Horie K, Hasegawa M, Kawaide H, Mitsuhashi W et al (2016) Evolutionary trajectory of phytoalexin biosynthetic gene clusters in rice. Plant J Cell Mol Biol 87:293–304. https://doi.org/10.1111/tpj.13200
Article
CAS
Google Scholar
Mizobuchi R, Fukuoka S, Tsuiki C, Tsushima S, Sato H (2018) Evaluation of major Japanese rice cultivars for resistance to bacterial grain rot caused by Burkholderia glumae and identification of standard cultivars for resistance. Breed Sci 68:413–419. https://doi.org/10.1270/jsbbs.18018
Article
CAS
Google Scholar
Morimoto N, Ueno K, Teraishi M, Okumoto Y, Mori N, Ishihara A (2018) Induced phenylamide accumulation in response to pathogen infection and hormone treatment in rice (Oryza sativa). Biosci Biotechnol Biochem 82:407–416. https://doi.org/10.1080/09168451.2018.1429889
Article
CAS
Google Scholar
Morrissey JP, Osbourn AE (1999) Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol Mol Biol Rev 63:708–724. https://doi.org/10.1128/MMBR.63.3.708-724.1999
Article
CAS
Google Scholar
Murata K, Kitano T, Yoshimoto R, Takata R, Ube N, Ueno K, Ueno M, Yabuta Y, Teraishi M, Holland CK et al (2020) Natural variation in the expression and catalytic activity of a naringenin 7-O-methyltransferase influences antifungal defenses in diverse rice cultivars. Plant J 101:1103–1117. https://doi.org/10.1111/tpj.14577
Article
CAS
Google Scholar
Nonomura KI, Morishima H, Miyabayashi T, Yamaki S, Eiguchi M, Kubo T, Kurata N (2010) The wild Oryza collection in National BioResource Project (NBRP) of Japan: History, biodiversity and utility. Breed Sci 60:502–508. https://doi.org/10.1270/jsbbs.60.502
Article
Google Scholar
Oros G, Kállai Z (2019) Phytoanticipins: the constitutive defense compounds as potential botanical fungicides. In: Bioactive molecules in plant defense: signaling in growth and stress. Springer, pp 179–229. https://doi.org/10.1007/978-3-030-27165-7_11
Park HL, Lee SW, Jung KH, Hahn TR, Cho MH (2013) Transcriptomic analysis of UV-treated rice leaves reveals UV-induced phytoalexin biosynthetic pathways and their regulatory networks in rice. Phytochemistry 96:57–71. https://doi.org/10.1016/j.phytochem.2013.08.012
Article
CAS
Google Scholar
Park HL, Yoo Y, Hahn TR, Bhoo SH, Lee SW, Cho MH (2014) Antimicrobial activity of UV-induced phenylamides from rice leaves. Molecules 19:18139–18151. https://doi.org/10.3390/molecules191118139
Article
CAS
Google Scholar
Peters RJ (2006) Uncovering the complex metabolic network underlying diterpenoid phytoalexin biosynthesis in rice and other cereal crop plants. Phytochemistry 67:2307–2317. https://doi.org/10.1016/j.phytochem.2006.08.009
Article
CAS
Google Scholar
Pumirat P, Luplertlop N (2013) The in-vitro antibacterial effect of colored rice crude extracts against staphylococcus aureus associated with skin and soft-tissue infection. J Agric Sci 5:102–109. https://doi.org/10.5539/jas.v5n11p102
Article
Google Scholar
Quan NV, Thien DD, Khanh TD, Tran HD, Xuan TD (2019a) Momilactones A, B, and tricin in rice grain and by-products are potential skin aging inhibitors. Foods 8(12):602. https://doi.org/10.3390/foods8120602
Article
CAS
Google Scholar
Quan NV, Tran HD, Xuan TD, Ahmad A, Dat TD, Khanh TD, Teschke R (2019b) Momilactones A and B are α-amylase and α-glucosidase inhibitors. Molecules 24(3):482. https://doi.org/10.3390/molecules24030482
Article
CAS
Google Scholar
Sato Y, Tsuda K, Yamagata Y, Matsusaka H, Kajiya-Kanegae H, Yoshida Y, Agata A, Ta KN, Shimizu-Sato S, Suzuki T et al (2021) Collection, preservation and distribution of Oryza genetic resources by the national bioresource project rice (NBRP-rice). Breed Sci 71:291–298. https://doi.org/10.1270/jsbbs.21005
Article
CAS
Google Scholar
Schmelz EA, Kaplan F, Huffaker A, Dafoe NJ, Vaughan MM, Ni X, Rocca JR, Alborn HT, Teal PE (2011) Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize. Proc Natl Acad Sci U S A 108:5455–5460. https://doi.org/10.1073/pnas.1014714108
Article
Google Scholar
Schmelz EA, Huffaker A, Sims JW, Christensen SA, Lu X, Okada K, Peters RJ (2014) Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins. Plant J 79:659–678. https://doi.org/10.1111/tpj.12436
Article
CAS
Google Scholar
Shimizu-Sato S, Tsuda K, Nosaka-Takahashi M, Suzuki T, Ono S, Ta KN, Yoshida Y, Nonomura KI, Sato Y (2020) Agrobacterium-mediated genetic transformation of wild Oryza species using immature embryos. Rice 13:33. https://doi.org/10.1186/s12284-020-00394-4
Article
Google Scholar
Shin J-H, Blay S, McNeney B, Graham J (2006) LDheatmap: an R function for graphical display of pairwise linkage disequilibria between single nucleotide polymorphisms. J Stat Softw Code Snippets 16(3):1–9. https://doi.org/10.18637/jss.v016.c03
Article
Google Scholar
Tanaka N, Shenton M, Kawahara Y, Kumagai M, Sakai H, Kanamori H, Yonemaru J, Fukuoka S, Sugimoto K, Ishimoto M et al (2020) Whole-genome sequencing of the NARO World Rice Core Collection (WRC) as the basis for diversity and association studies. Plant Cell Physiol 61:922–932. https://doi.org/10.1093/pcp/pcaa019
Article
CAS
Google Scholar
Tanaka N, Shenton M, Kawahara Y, Kumagai M, Sakai H, Kanamori H, Yonemaru JI, Fukuoka S, Sugimoto K, Ishimoto M et al (2021) Investigation of the genetic diversity of a rice core collection of Japanese landraces using whole-genome sequencing. Plant Cell Physiol 61:2087–2096. https://doi.org/10.1093/pcp/pcaa125
Article
CAS
Google Scholar
Tsukatani T, Higuchi T, Suenaga H, Akao T, Ishiyama M, Ezoe T, Matsumoto K (2009) Colorimetric microbial viability assay based on reduction of water-soluble tetrazolium salts for antimicrobial susceptibility testing and screening of antimicrobial substances. Anal Biochem 393:117–125. https://doi.org/10.1016/j.ab.2009.06.026
Article
CAS
Google Scholar
Turner SD (2014) qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. Biorxiv, 005165. https://doi.org/10.1101/005165
Ube N, Katsuyama Y, Kariya K, Tebayashi SI, Sue M, Tohnooka T, Ueno K, Taketa S, Ishihara A (2021) Identification of methoxylchalcones produced in response to CuCl2 treatment and pathogen infection in barley. Phytochemistry 184:112650. https://doi.org/10.1016/j.phytochem.2020.112650
Article
CAS
Google Scholar
Valgas C, De Souza SM, Smânia EFA, Smânia A (2007) Screening methods to determine antibacterial activity of natural products. Braz J Microbiol 38:369–380. https://doi.org/10.1590/S1517-83822007000200034
Article
Google Scholar
VanEtten HD, Mansfield JW, Bailey JA, Farmer EE (1994) Two classes of plant antibiotics: phytoalexins versus “phytoanticipins.” Plant Cell. https://doi.org/10.1105/tpc.6.9.1191
Article
Google Scholar
Yamane H (2013) Biosynthesis of phytoalexins and regulatory mechanisms of it in rice. Biosci Biotechnol Biochem 77:1141–1148. https://doi.org/10.1271/bbb.130109
Article
CAS
Google Scholar
Zhang C, Dong SS, Xu JY, He WM, Yang TL (2019) PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35(10):1786–1788. https://doi.org/10.1093/bioinformatics/bty875
Article
CAS
Google Scholar