Alonso-Blanco C, Koornneef M (2000) Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci 5(1):22–29. https://doi.org/10.1016/S1360-1385(99)01510-1
Article
CAS
PubMed
Google Scholar
Chen H, Zhao Z, Jiang L, Wan X, Liu L, Wu X, Wan J (2011) Molecular genetic analysis on percentage of grains with chalkiness in rice (Oryza sativa L.). Afr J Biotechnol 10:6891–6903
Article
CAS
Google Scholar
Chen L, Gao W, Chen S, Wang L, Zou J, Liu Y, Wang H, Chen Z, Guo T (2016) High-resolution QTL mapping for grain appearance traits and co-localization of chalkiness-associated differentially expressed candidate genes in rice. Rice 9(1):48. https://doi.org/10.1186/s12284-016-0121-6
Article
PubMed
PubMed Central
Google Scholar
Doi K, Iwata N, Yoshimura A (1997) The construction of chromosome substitution lines of African rice (Oryza glaberrima Steud.) in the background of japonica rice (O.sativa L.). Rice Genet Newsl 14:39–41
CAS
Google Scholar
Duncan DB (1955) Multiple range and multiple F tests. Biometrics 11(1):1–42. https://doi.org/10.2307/3001478
Ebitani T, Takeuchi Y, Nonoue Y, Yamamoto T, Takeuchi K, Yano M (2005) Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of indica rice cultivar 'kasalath' in a genetic background of japonica elite cultivar 'koshihikari'. Breed Sci 55(1):65–73. https://doi.org/10.1270/jsbbs.55.65
Article
CAS
Google Scholar
Ebitani T, Yamamoto Y, Yano M, Funane M (2008) Identification of quantitative trait loci for grain appearance using chromosome segment substitution lines in rice. Breed Res 10(3):91–99. https://doi.org/10.1270/jsbbr.10.91
Article
Google Scholar
Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141(3):1147–1162. https://doi.org/10.1093/genetics/141.3.1147
Article
CAS
PubMed
PubMed Central
Google Scholar
Fang C, Li L, He R, Wang D, Wang M, Hu Q, Ma Q, Qin K, Feng X, Zhang G, Fu X, Liu Z (2019) Identification of S23 causing both interspecific hybrid male sterility and environment-conditioned male sterility in rice. Rice 12(1):10. https://doi.org/10.1186/s12284-019-0271-4
Article
PubMed
PubMed Central
Google Scholar
Gao Y, Liu C, Li Y, Zhang A, Dong G, Xie L, Zhang B, Ruan B, Hong K, Xue D, Zeng D, Guo L, Qian Q, Gao Z (2016) QTL analysis for chalkiness of rice and fine mapping of a candidate gene for qACE9. Rice 9(1):41. https://doi.org/10.1186/s12284-016-0114-5
Article
PubMed
PubMed Central
Google Scholar
Guo T, Liu X, Wan X, Weng J, Liu S, Liu X, Chen M, Li J, Su N, Wu F, Cheng Z, Guo X, Lei C, Wang J, Jiang L, Wan J (2011) Identification of a stable quantitative trait locus for percentage grains with white chalkiness in rice (Oryza sativa). J Integr Plant Biol 53(8):598–607. https://doi.org/10.1111/j.1744-7909.2011.01041.x
Article
CAS
PubMed
Google Scholar
Hao W, Zhu M, Gao J, Sun S, Lin H (2009) Identification of quantitative trait loci for rice quality in a population of chromosome segment substitution lines. J Integr Plant Biol 51(5):500–512. https://doi.org/10.1111/j.1744-7909.2009.00822.x
Article
CAS
PubMed
Google Scholar
He P, Li SG, Qian Q, Ma YQ, Li JZ, Wang WM, Chen Y, Zhu LH (1999) Genetic analysis of rice grain quality. Theor Appl Genet 98(3-4):502–508. https://doi.org/10.1007/s001220051098
Article
CAS
Google Scholar
Howell PM, Lydiate DJ, Marshall DF (1996) Towards developing intervarietal substitution lines in brassica napus using marker-assisted selection. Genome 39(2):348–358. https://doi.org/10.1139/g96-045
Article
CAS
PubMed
Google Scholar
Ishimaru T, Parween S, Saito Y, Shigemitsu T, Yamakawa H, Nakazono M, Masumura T, Nishizawa NK, Kondo M, Sreenivasulu N (2019) Laser microdissection-based tissue-specific transcriptome analysis reveals a novel regulatory network of genes involved in heat-induced grain chalk in rice endosperm. Plant Cell Physiol 60(3):626–642. https://doi.org/10.1093/pcp/pcy233
Article
CAS
PubMed
Google Scholar
Keurentjes JJB, Bentsink L, Alonso-Blanco C, Hanhart CJ, Vries HBD, Effgen S, Vreugdenhil D, Koornneef M (2007) Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population. Genetics 175(2):891–905. https://doi.org/10.1534/genetics.106.066423
Article
CAS
PubMed
PubMed Central
Google Scholar
Kobayashi A, Genliang B, Shenghai Y, Tomita K (2007) Detection of quantitative trait loci for white-back and basal-white kernels under high temperature stress in japonica rice varieties. Breed Sci 57(2):107–116. https://doi.org/10.1270/jsbbs.57.107
Article
Google Scholar
Kobayashi A, Sonoda J, Sugimoto K, Kondo M, Iwasawa N, Hayashi T, Tomita K, Yano M, Shimizu T (2013) Detection and verification of QTLs associated with heat-induced quality decline of rice (Oryza sativa L.) using recombinant inbred lines and near-isogenic lines. Breed Sci 63(3):339–346. https://doi.org/10.1270/jsbbs.63.339
Article
CAS
PubMed
PubMed Central
Google Scholar
Kubo T, Aida Y, Nakamura K, Tsunematsu H, Doi K, Yoshimura A (2002) Reciprocal chromosome segment substitution series derived from japonica and indica cross of rice (Oryza sativa L.). Breed Sci 52(4):319–325. https://doi.org/10.1270/jsbbs.52.319
Article
CAS
Google Scholar
Laborte AG, Paguirigan NC, Moya PF, Nelson A, Sparks AH, Gregorio GB (2015) Farmers’ preference for rice traits: insights from farm surveys in Central Luzon, Philippines, 1966-2012. PLoS One 10:e136562
Article
Google Scholar
Lalitha S (2000) Primer premier 5. Biotech Software Internet Rep 1(6):270–272. https://doi.org/10.1089/152791600459894
Article
Google Scholar
Li Y, Fan C, Xing Y, Yun P, Luo L, Yan B, Peng B, Xie W, Wang G, Li X, Xiao J, Xu C, He Y (2014) Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice. Nat Genet 46(4):398–404. https://doi.org/10.1038/ng.2923
Article
CAS
PubMed
Google Scholar
Liu X, Wan X, Ma X, Wan J (2011) Dissecting the genetic basis for the effect of rice chalkiness, amylose content, protein content, and rapid viscosity analyzer profile characteristics on the eating quality of cooked rice using the chromosome segment substitution line population across eight environments. Genome 54:64–80
Article
CAS
Google Scholar
Liu X, Wang Y, Wang SW (2012) QTL analysis of percentage of grains with chalkiness in japonica rice (Oryza sativa). Genet Mol Res 11(1):717–724. https://doi.org/10.4238/2012.March.22.1
Article
CAS
PubMed
Google Scholar
Masutomi Y, Arakawa M, Minoda T, Yonekura T, Shimada T (2015) Critical air temperature and sensitivity of the incidence of chalky rice kernels for the rice cultivar “sai-no-kagayaki”. Agric For Meteorol 203:11–16. https://doi.org/10.1016/j.agrformet.2014.11.016
Article
Google Scholar
McCouch SR, Cho YG, Yano M, Paul E, Blinstrub M, Mor-ishima H, Kinosita T (1997) II. Report from coordinators. (1) report on QTL nomenclature. Rice Genet Newsl 14:11–12
Google Scholar
Misra G, Anacleto R, Badoni S, Butardo V, Molina L, Graner A, Demont M, Morell MK, Sreenivasulu N (2019) Dissecting the genome-wide genetic variants of milling and appearance quality traits in rice. J Exp Bot 70(19):5115–5130. https://doi.org/10.1093/jxb/erz256
Article
CAS
PubMed
PubMed Central
Google Scholar
Misra G, Badoni S, Parween S, Singh RK, Leung H, Ladejobi O, Mott R, Sreenivasulu N (2020) Genome-wide association coupled gene to gene interaction studies unveil novel epistatic targets among major effect loci impacting rice grain chalkiness. Plant Biotechnol J. https://doi.org/10.1111/pbi.13516
Miyahara K, Wada T, Sonoda J, Tsukaguchi T, Miyazaki M, Tsubone M, Yamaguchi O, Ishibashi M, Iwasawa N, Umemoto T, Kondo M (2017) Detection and validation of QTLs for milky-white grains caused by high temperature during the ripening period in Japonica rice. Breed Sci 67(4):333–339. https://doi.org/10.1270/jsbbs.16203
Article
CAS
PubMed
PubMed Central
Google Scholar
Monforte AJ, Tanksley SD (2000) Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: a tool for gene mapping and gene discovery. Genome 43:803–813
Morita S, Wada H, Matsue Y (2016) Countermeasures for heat damage in rice grain quality under climate change. Plant Prod Sci 19(1):1–11. https://doi.org/10.1080/1343943X.2015.1128114
Article
CAS
Google Scholar
Murray M, Thompson W (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4325. https://doi.org/10.1093/nar/8.19.4321
Article
CAS
PubMed
PubMed Central
Google Scholar
Nevame AYM, Emon RM, Malek MA, Hasan MM, Alam MA, Muharam FM, Aslani F, Rafii MY, Ismail MR (2018) Relationship between high temperature and formation of chalkiness and their effects on quality of rice. Biomed Res Int 2018:1–18
Google Scholar
Peng B, Wang L, Fan C, Jiang G, Luo L, Li Y, He Y (2014) Comparative mapping of chalkiness components in rice using five populations across two environments. BMC Genet 15(1):49. https://doi.org/10.1186/1471-2156-15-49
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci U S A 101(27):9971–9975. https://doi.org/10.1073/pnas.0403720101
Article
CAS
PubMed
PubMed Central
Google Scholar
Sreenivasulu N, Butardo VM, Misra G, Cuevas RP, Anacleto R, Kavi Kishor PB (2015) Designing climate-resilient rice with ideal grain quality suited for high-temperature stress. J Exp Bot 66(7):1737–1748. https://doi.org/10.1093/jxb/eru544
Article
CAS
PubMed
PubMed Central
Google Scholar
Sui F, Zhao D, Zhu H, Gong Y, Tang Z, Huang X, Zhang G, Zhao F (2019) Map-based cloning of a new total loss-of-function allele of OsHMA3 causes high cadmium accumulation in rice grain. J Exp Bot 70(10):2857–2871. https://doi.org/10.1093/jxb/erz093
Article
CAS
PubMed
Google Scholar
Tabata M, Hirabayashi H, Takeuchi Y, Ando I, Iida Y, Ohsawa R (2007) Mapping of quantitative trait loci for the occurrence of white-back kernels associated with high temperatures during the ripening period of rice (Oryza sativa L.). Breed Sci 57(1):47–52. https://doi.org/10.1270/jsbbs.57.47
Article
Google Scholar
Tan Q, Wang C, Luan X, Zheng L, Ni Y, Yang W, Yang Z, Zhu H, Zeng R, Liu G, Wang S, Zhang G (2021) Dissection of closely linked QTLs controlling stigma exsertion rate in rice by substitution mapping. Theor Appl Genet 134(4):1253-1262.
Tan Q, Zou T, Zheng M, Ni Y, Luan X, Li X, Yang W, Yang Z, Zhu H, Zeng R, Liu G, Wang S, Fu X, Zhang G (2020) Substitution mapping of the major quantitative trait loci controlling stigma exsertion rate from Oryza glumaepatula. Rice 13(1):37. https://doi.org/10.1186/s12284-020-00397-1
Article
PubMed
PubMed Central
Google Scholar
Tan YF, Xing YZ, Li JX, Yu SB, Xu CG, Zhang Q (2000) Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theor Appl Genet 101(5-6):823–829. https://doi.org/10.1007/s001220051549
Article
CAS
Google Scholar
Teng B, Zeng R, Wang Y, Liu Z, Zhang Z, Zhu H, Ding X, Li W, Zhang G (2012) Detection of allelic variation at the Wx locus with single-segment substitution lines in rice (Oryza sativa L.). Mol Breed 30(1):583–595. https://doi.org/10.1007/s11032-011-9647-x
Article
Google Scholar
Wada T, Miyahara K, Sonoda J, Tsukaguchi T, Miyazaki M, Tsubone M, Ando T, Ebana K, Yamamoto T, Iwasawa N, Umemoto T, Kondo M, Yano M (2015) Detection of QTLs for white-back and basal-white grains caused by high temperature during ripening period in japonica rice. Breed Sci 65(3):216–225. https://doi.org/10.1270/jsbbs.65.216
Article
PubMed
PubMed Central
Google Scholar
Wan XY, Wan JM, Weng JF, Jiang L, Bi JC, Wang CM, Zhai HQ (2005) Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theor Appl Genet 110(7):1334–1346. https://doi.org/10.1007/s00122-005-1976-x
Article
CAS
PubMed
Google Scholar
Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44(8):950–954. https://doi.org/10.1038/ng.2327
Article
CAS
PubMed
Google Scholar
Wang X, Pang Y, Wang C, Chen K, Zhu Y, Shen C, Ali J, Xu J, Li Z (2017) New candidate genes affecting rice grain appearance and milling quality detected by genome-wide and gene-based association analyses. Front Plant Sci 7:1998
PubMed
PubMed Central
Google Scholar
Xi Z, He F, Zeng R, Zhang Z, Ding X, Li W, Zhang G (2006) Development of a wide population of chromosome single-segment substitution lines in the genetic background of an elite cultivar of rice (Oryza sativa L.). Genome 49(5):476–484. https://doi.org/10.1139/g06-005
Article
CAS
PubMed
Google Scholar
Yang T, Zhang S, Zhao J, Liu Q, Huang Z, Mao X, Dong J, Wang X, Zhang G, Liu B (2016) Identification and pyramiding of QTLs for cold tolerance at the bud bursting and the seedling stages by use of single segment substitution lines in rice (Oryza sativa L.). Mol Breed 36:96
Article
Google Scholar
Yang W, Guo Z, Huang C, Duan L, Chen G, Jiang N, Fang W, Feng H, Xie W, Lian X, Wang G, Luo Q, Zhang Q, Liu Q, Xiong L (2014) Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat Commun 5(1):5087. https://doi.org/10.1038/ncomms6087
Article
CAS
PubMed
PubMed Central
Google Scholar
Yun P, Zhu Y, Wu B, Gao G, Sun P, Zhang Q, He Y (2016) Genetic mapping and confirmation of quantitative trait loci for grain chalkiness in rice. Mol Breed 36(12):162. https://doi.org/10.1007/s11032-016-0600-x
Article
CAS
Google Scholar
Zeng R, Zhang Z, He F, Xi Z, Talukdar A, Shi J, Qin L, Huang C, Zhang G (2006) Identification of multiple alleles at the Wx locus and development of single segment substitution lines for the alleles in rice. Rice Sci 13:9–14
Google Scholar
Zhang G (2019) The platform of breeding by design based on the SSSL library in rice. Hereditas (Beijing) 41:754–760 (in Chinese with English abstract)
Google Scholar
Zhang G, Zeng R, Zhang Z, Ding X, Li W, Liu G, He F, Tulukdar A, Huang C, Xi Z, Qin L, Shi J, Zhao F, Feng M, Shan Z, Chen L, Guo X, Zhu H, Lu Y (2004) The construction of a library of single segment substitution lines in rice (Oryza sativa L.). Rice Genet Newsl 21:85–87
Google Scholar
Zhang Y, Yang J, Shan Z, Chen S, Qiao W, Zhu X, Xie Q, Zhu H, Zhang Z, Zeng R, Ding X, Zhang G (2012) Substitution mapping of QTLs for blast resistance with SSSLs in rice (Oryza sativa L.). Euphytica 184(1):141–150. https://doi.org/10.1007/s10681-011-0601-0
Article
Google Scholar
Zhao X, Daygon VD, McNally KL, Hamilton RS, Xie F, Reinke RF, Fitzgerald MA (2016) Identification of stable QTLs causing chalk in rice grains in nine environments. Theor Appl Genet 129(1):141–153. https://doi.org/10.1007/s00122-015-2616-8
Article
CAS
PubMed
Google Scholar
Zhao X, Zhou L, Ponce K, Ye G (2015) The usefulness of known genes/QTLs for grain quality traits in an indica population of diverse breeding lines tested using association analysis. Rice 8(1):29. https://doi.org/10.1186/s12284-015-0064-3
Article
PubMed
PubMed Central
Google Scholar
Zhou H, Yang W, Ma S, Luan X, Zhu H, Wang A, Huang C, Rong B, Dong S, Meng L, Wang S, Zhang G, Liu G (2020) Unconditional and conditional analysis of epistasis between tillering QTLs based on single segment substitution lines in rice. Sci Rep 10(1):15912. https://doi.org/10.1038/s41598-020-73047-7
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou Y, Xie Y, Cai J, Liu C, Zhu H, Jiang R, Zhong Y, Zhang G, Tan B, Liu G, Fu X, Liu Z, Wang S, Zhang G, Zeng R (2017) Substitution mapping of QTLs controlling seed dormancy using single segment substitution lines derived from multiple cultivated rice donors in seven cropping seasons. Theor Appl Genet 130(6):1191–1205. https://doi.org/10.1007/s00122-017-2881-9
Article
CAS
PubMed
Google Scholar
Zhu A, Zhang Y, Zhang Z, Wang B, Xue P, Cao Y, Chen Y, Li Z, Liu Q, Cheng S, Cao L (2018a) Genetic dissection of qPCG1 for a quantitative trait locus for percentage of chalky grain in rice (Oryza sativa L.). Front Plant Sci 9:1173
Article
Google Scholar
Zhu H, Li Y, Liang J, Luan X, Xu P, Wang S, Zhang G, Liu G (2018b) Analysis of QTLs on heading date based on single segment substitution lines in rice (Oryza sativa L.). Sci Rep 8:13232
Zhu Y, Zuo S, Chen Z, Chen X, Li G, Zhang Y, Zhang G, Pan X (2014) Identification of two major rice sheath blight resistance QTLs, qSB1-1HJX74 and qSB11HJX74, in field trials using chromosome segment substitution lines. Plant Dis 98(8):1112–1121. https://doi.org/10.1094/PDIS-10-13-1095-RE
Article
CAS
PubMed
Google Scholar