Asano K, Yamasaki M, Takuno S, Miura K, Katagiri S, Ito T, Doi K, Wu J, Ebana K, Matsumoto T, Innan H, Kitano H, Ashikari M, Matsuoka M (2011) Artificial selection for a green revolution gene during japonica rice domestication. Proc Natl Acad Sci U.S.A 108(27):11034–11039. https://doi.org/10.1073/pnas.1019490108
Article
PubMed
PubMed Central
Google Scholar
Caicedo AL, Williamson SH, Hernandez RD, Boyko A, Fledel-Alon A, York TL, Polato NR, Olsen KM, Nielsen R, McCouch SR, Bustamante CD, Purugganan MD (2007) Genome-wide patterns of nucleotide polymorphism in domesticated rice. PLoS Genet 3(9):1745–1756. https://doi.org/10.1371/journal.pgen.0030163
Article
PubMed
CAS
Google Scholar
Chakhonkaen S, Pitnjam K, Saisuk W, Ukoskit K, Muangprom A (2012) Genetic structure of Thai rice and rice accessions obtained from the international rice research institute. Rice 5(1):19. https://doi.org/10.1186/1939-8433-5-19
Article
PubMed
PubMed Central
Google Scholar
Chang TT (1976) The origin, evolution, cultivation, dissemnination, and diversificaiton of Asian and Africa rice. Euphytica 25:425–441
Article
Google Scholar
Chin HS, Wu YP, Hour AL, Hong CY, Lin YR (2016) Genetic and evolutionary analysis of purple leaf sheath in rice. Rice 9(1):8. https://doi.org/10.1186/s12284-016-0080-y
Article
PubMed
PubMed Central
Google Scholar
Choi JY, Platts AE, Fuller DQ, Hsing YL, Wing RA, Purugganan MD (2017) The rice paradox: multiple origins but single domestication in Asian rice. Mol Biol Evol 34(4):969–979. https://doi.org/10.1093/molbev/msx049
Article
PubMed
PubMed Central
CAS
Google Scholar
Choi JY, Purugganan MD (2018) Multiple origin but single domestication led to Oryza sativa. G3 (Bethesda) 8(3):797–803. https://doi.org/10.1534/g3.117.300334
Article
CAS
Google Scholar
Chou SL (1948) China is the place of origin of rice. J Rice Soc China 7:53–54 (in Chinese)
Google Scholar
Courtois B, Audebert A, Dardou A, Roques S, Ghneim-Herrera T, Droc G, Frouin J, Rouan L, Gozé E, Kilian A, Ahmadi N, Dingkuhn M (2013) Genome-wide association mapping of root traits in a japonica rice panel. PLoS One 8(11):e78037. https://doi.org/10.1371/journal.pone.0078037
Article
PubMed
PubMed Central
CAS
Google Scholar
Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 18(8):926–936. https://doi.org/10.1101/gad.1189604
Article
PubMed
PubMed Central
CAS
Google Scholar
Dwivedi SL, Ceccarelli S, Blair MW, Upadhyaya HD, Are AK, Ortiz R (2016) Landrace germplasm for improving yield and abiotic stress adaptation. Trends Plant Sci 21(1):31–42. https://doi.org/10.1016/j.tplants.2015.10.012
Article
PubMed
CAS
Google Scholar
Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
Article
PubMed
CAS
Google Scholar
Evenson RE, Gollin D (2003) Assessing the impact of the green revolution, 1960 to 2000. Science 300(5620):758–762. https://doi.org/10.1126/science.1078710
Article
PubMed
CAS
Google Scholar
Fuentes RR, Chebotarov D, Duitama J, Smith S, De la Hoz JF, Mohiyuddin M, Wing RA, McNally KL, Tatarinova T, Grigoriev A, Mauleon R, Alexandrov N (2019) Structural variants in 3000 rice genomes. Genome Res 29(5):870–880. https://doi.org/10.1101/gr.241240.118
Article
PubMed
PubMed Central
CAS
Google Scholar
Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169(3):1631–1638. https://doi.org/10.1534/genetics.104.035642
Article
PubMed
PubMed Central
CAS
Google Scholar
Goodman MM, Stuber CW (1983) Races of maize: VI. Isozyme variation among races of maize in Bolivia Maydica 28:169–187
Google Scholar
Gutaker RM, Groen SC, Bellis ES, Choi JY, Pires IS, Bocinsky RK, Slayton ER, Wilkins O, Castillo CC, Negrao S, Oliveira MM, Fuller DQ, Guedes JAD, Lasky JR, Purugganan MD (2020) Genomic history and ecology of the geographic spread of rice. Nat Plants 6(5):492–502. https://doi.org/10.1038/s41477-020-0659-6
Article
PubMed
Google Scholar
Hsieh JS, Hsing YI, Hsu TF, Li JK, Li KT, Tsang CH (2011) Studies on ancient rice—where botanists, agronomists, archeologists, linguists, and ethnologists meet. Rice 4(3–4):178–183. https://doi.org/10.1007/s12284-011-9075-x
Article
Google Scholar
Hu CW (1993) Historical review of semidwarf Rices and breeding of a new plant type for sustainable agriculture. Res Bull Taichung Dist Agric Improv Stn 38:45–63
Google Scholar
Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler ES, Qian Q, Zhang QF, Li J, Han B (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42(11):961–967. https://doi.org/10.1038/ng.695
Article
PubMed
CAS
Google Scholar
Ikehashi H (2009) Why are there indica type and japonica type in rice? — history of the studies and a view for origin of two types. Rice Sci 16:1–13. https://doi.org/10.1016/S1672-6308(08)60050-5
Article
Google Scholar
Ishikawa R, Yamanaka S, Fukuta Y, Chitrakon S, Bounphanousay C, Kanyavong K, Tang LH, Nakamura I, Sato T, Sato YI (2006) Genetic erosion from modern varieties into traditional upland rice cultivars (Oryza sativa L.) in northern Thailand. Genet Resour Crop Evol 53:245–252. https://doi.org/10.1007/s10722-004-6132-y
Article
Google Scholar
Iso E (1964) Talks on Horai rice. Amayomikai, Yamakuchi, p 89 in Japanese
Google Scholar
Jin L, Lu Y, Xiao P, Sun M, Corke H, Bao J (2010) Genetic diversity and population structure of a diverse set of rice germplasm for association mapping. Theor Appl Genet 121(3):475–487. https://doi.org/10.1007/s00122-010-1324-7
Article
PubMed
Google Scholar
Khush GS (1997) Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35(1–2):25–34
Article
CAS
Google Scholar
Kovach MJ, McCouch SR (2008) Leveraging natural diversity: back through the bottleneck. Curr Opin Plant Biol 11(2):193–200. https://doi.org/10.1016/j.pbi.2007.12.006
Article
PubMed
CAS
Google Scholar
Li JY, Wang J, Zeigler RS (2014) The 3,000 rice genomes project: new opportunities and challenges for future rice research. Gigascience 3:8. https://doi.org/10.1186/2047-217X-3-8
Article
PubMed
PubMed Central
CAS
Google Scholar
Lin HY, Wu YP, Hour AL, Ho SW, Wei FJ, Hsing YC, Lin YR (2012) Genetic diversity of rice germplasm used in Taiwan breeding programs. Bot Stud 53:363–376
Google Scholar
Lin MS (1991) Field uniformity of the japonica rice region of Taiwan as estimated by relative genetic contribution. Theor Appl Genet 83:115–118
Article
CAS
Google Scholar
Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21(9):2128–2129. https://doi.org/10.1093/bioinformatics/bti282
Article
PubMed
CAS
Google Scholar
Londo JP, Chiang YC, Hung KH, Chiang TY, Schaal BA (2006) Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc Natl Acad Sci U.S.A 103(25):9578–9583. https://doi.org/10.1073/pnas.0603152103
Article
PubMed
PubMed Central
CAS
Google Scholar
Lu CT, Lu HY (2010) Establishment and application of Taiwan rice information system. J Taiwan Agric Res 59:61–69 (Chinese with English abstract)
Google Scholar
McCouch SR, Teytelman L, Xu YB, Lobos KB, Clare K, Walton M, Fu BY, Maghirang R, Li ZK, Xing YZ, Zhang QF, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9(6):199–207. https://doi.org/10.1093/dnares/9.6.199
Article
PubMed
CAS
Google Scholar
McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K, Ulat VJ, Zeller G, Clark RM, Hoen DR, Bureau TE, Stokowski R, Ballinger DG, Frazer KA, Cox DR, Padhukasahasram B, Bustamante CD, Weigel D, Mackill DJ, Bruskiewich RM, Ratsch G, Buell CR, Leung H, Leach JE (2009) Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci U.S.A 106(30):12273–12278. https://doi.org/10.1073/pnas.0900992106
Article
PubMed
PubMed Central
Google Scholar
Nachimuthu VV, Muthurajan R, Duraialaguraja S, Sivakami R, Pandian BA, Ponniah G, Gunasekaran K, Swaminathan M, Suji KK, Sabariappan R (2015) Analysis of population structure and genetic diversity in rice germplasm using SSR markers: an initiative towards association mapping of agronomic traits in Oryza sativa. Rice 8(1):30. https://doi.org/10.1186/s12284-015-0062-5
Article
PubMed
PubMed Central
Google Scholar
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959
PubMed
PubMed Central
CAS
Google Scholar
Pusadee T, Jamjod S, Chiang YC, Rerkasem B, Schaal BA (2009) Genetic structure and isolation by distance in a landrace of Thai rice. Proc Natl Acad Sci U.S.A 106(33):13880–13885. https://doi.org/10.1073/pnas.0906720106
Article
PubMed
PubMed Central
Google Scholar
Rohlf F (1987) NTSYS-pc: microcomputer programs for numerical taxonomy and multivariate analysis. Am Stat 41:330. https://doi.org/10.2307/2684761
Article
Google Scholar
Sang T, Ge S (2013) Understanding rice domestication and implications for cultivar improvement. Curr Opin Plant Biol 16(2):139–146. https://doi.org/10.1016/j.pbi.2013.03.003
Article
PubMed
Google Scholar
Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416(6882):701–702. https://doi.org/10.1038/416701a
Article
PubMed
CAS
Google Scholar
Thomson MJ, Polato NR, Prasetiyono J, Trijatmiko KR, Silitonga TS, McCouch SR (2009) Genetic diversity of isolated populations of indonesian landraces of rice (Oryza sativa L.) collected in East Kalimantan on the island of Borneo. Rice 2(1):80–92. https://doi.org/10.1007/s12284-009-9023-1
Article
Google Scholar
Thomson MJ, Septiningsih EM, Suwardjo F, Santoso TJ, Silitonga TS, McCouch SR (2007) Genetic diversity analysis of traditional and improved Indonesian rice (Oryza sativa L.) germplasm using microsatellite markers. Theor Appl Genet 114(3):559–568. https://doi.org/10.1007/s00122-006-0457-1
Article
PubMed
CAS
Google Scholar
Tsang CH (2012) Issues relating to the ancient rice and millet grains unearthed from the archaeological sites in Tainan Science Park. J Chin Dietary Culture 8:1–14 (Chinese with English abtract)
Google Scholar
Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, Wu Z, Li M, Zheng T, Fuentes RR, Zhang F, Mansueto L, Copetti D, Sanciangco M, Palis KC, Xu J, Sun C, Fu B, Zhang H, Gao Y, Zhao X, Shen F, Cui X, Yu H, Li Z, Chen M, Detras J, Zhou Y, Zhang X, Zhao Y, Kudrna D, Wang C, Li R, Jia B, Lu J, He X, Dong Z, Xu J, Li Y, Wang M, Shi J, Li J, Zhang D, Lee S, Hu W, Poliakov A, Dubchak I, Ulat VJ, Borja FN, Mendoza JR, Ali J, Li J, Gao Q, Niu Y, Yue Z, Naredo MEB, Talag J, Wang X, Li J, Fang X, Yin Y, Glaszmann JC, Zhang J, Li J, Hamilton RS, Wing RA, Ruan J, Zhang G, Wei C, Alexandrov N, McNally KL, Li Z, Leung H (2018) Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557(7703):43–49. https://doi.org/10.1038/s41586-018-0063-9
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang YH (2007) The preliminary notes on the ancient rice grains excavated in Taiwan. Master thesis. Department of Agronomy, National Taiwan University, Taipei, Taiwan. (Chinese with English abstract)
Google Scholar
Wei FJ, Tsai YC, Wu HP, Huang LT, Chen YC, Chen YF, Wu CC, Tseng YT, Hsing YC (2016) Both Hd1 and Ehd1 are important for artificial selection of flowering time in cultivated rice. Plant Sci 242:187–194. https://doi.org/10.1016/j.plantsci.2015.09.005
Article
PubMed
CAS
Google Scholar
Wu YP, Ko PY, Lee WC, Wei FJ, Kuo SC, Ho SW, Hour AL, Hsing YI, Lin YR (2010) Comparative analyses of linkage maps and segregation distortion of two F2 populations derived from japonica crossed with indica rice. Hereditas 147(5):225–236. https://doi.org/10.1111/j.1601-5223.2010.02120.x
Article
PubMed
Google Scholar
Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the arabidopsis flowering time gene CONSTANS. Plant Cell 12(12):2473–2483. https://doi.org/10.1105/tpc.12.12.2473
Article
PubMed
PubMed Central
CAS
Google Scholar
Yap R, Hsu YC, Wu YP, Lin YR, Kuo CW (2016) Multiplex PCR genotyping for five bacterial blight resistance genes applied to marker-assisted selection in rice (Oryza sativa). Plant Breed 135:309–317
Article
CAS
Google Scholar
Zhang D, Zhang H, Wang M, Sun J, Qi Y, Wang F, Wei X, Han L, Wang X, Li Z (2009) Genetic structure and differentiation of Oryza sativa L. in China revealed by microsatellites. Theor Appl Genet 119(6):1105–1117. https://doi.org/10.1007/s00122-009-1112-4
Article
PubMed
CAS
Google Scholar
Zhang H, Sun J, Wang M, Liao D, Zeng Y, Shen S, Yu P, Mu P, Wang X, Li Z (2007) Genetic structure and phylogeography of rice landraces in Yunnan, China, revealed by SSR. Genome 50(1):72–83. https://doi.org/10.1139/g06-130
Article
PubMed
CAS
Google Scholar
Zhao KY, Wright M, Kimball J, Eizenga G, McClung A, Kovach M, Tyagi W, Ali ML, Tung CW, Reynolds A, Bustamante CD, McCouch SR (2010) Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. PLoS One 5(5):e10780
Article
CAS
Google Scholar
Zhao Q, Feng Q, Lu H, Li Y, Wang A, Tian Q, Zhan Q, Lu Y, Zhang L, Huang T, Wang Y, Fan D, Zhao Y, Wang Z, Zhou C, Chen J, Zhu C, Li W, Weng Q, Xu Q, Wang ZX, Wei X, Han B, Huang X (2018) Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat Genet 50(2):278–284. https://doi.org/10.1038/s41588-018-0041-z
Article
PubMed
CAS
Google Scholar
Zhu Q, Zheng X, Luo J, Gaut BS, Ge S (2007) Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice. Mol Biol Evol 24(3):875–888. https://doi.org/10.1093/molbev/msm005
Article
PubMed
CAS
Google Scholar