Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106. https://doi.org/10.1038/npre.2010.4282.2
Article
CAS
PubMed
PubMed Central
Google Scholar
Anders S, Pyl PT, Huber W (2015) HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169. https://doi.org/10.1093/bioinformatics/btu638
Article
CAS
PubMed
Google Scholar
Ashkani S, Rafii M, Shabanimofrad M, GhaSEPzadeh A, Ravanfar SA, Latif MA (2016) Molecular progress on the mapping and cloning of functional genes for blast disease in rice (Oryza sativa L.): current status and future considerations. Crit Rev Biotechnol 36:353–367. https://doi.org/10.3109/07388551.2014.961403
Article
CAS
PubMed
Google Scholar
Baggs E, Dagdas G, Krasileva KV (2017) NLR diversity, helpers and integrated domains: making sense of the NLR IDentity. Curr Opin Plant Biol 38:59–67. https://doi.org/10.1016/j.pbi.2017.04.012
Article
CAS
PubMed
Google Scholar
Bagnaresi P, Biselli C, Orrù L, Urso S, Crispino L, Abbruscato P, Piffanelli P, Lupotto E, Cattivelli L, Vale G (2012) Comparative transcriptome profiling of the early response to Magnaporthe oryzae in durable resistant vs susceptible rice (Oryza sativa L.) genotypes. PLoS One 7:e51609. https://doi.org/10.1371/journal.pone.0051609
Article
CAS
PubMed
PubMed Central
Google Scholar
Bai P, Park CH, Shirsekar G, Songkumarn P, Bellizzi M, Wang GL (2019) Role of lysine residues of the Magnaporthe oryzae effector AvrPiz-t in effector- and PAMP- triggered immunity. Mol Plant Pathol 20:599–608. https://doi.org/10.1111/mpp.12779
Article
CAS
PubMed
PubMed Central
Google Scholar
Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406. https://doi.org/10.1146/annurev.arplant.57.032905.105346
Article
CAS
PubMed
Google Scholar
Cao JD, Yang C, Li LJ, Jiang L, Wu Y, Wu CW, Bu QY, Xia GX, Liu XY, Luo YM, Liu J (2016) Rice plasma membrane proteomics reveals Magnaporthe oryzae promotes susceptibility by sequential activation of host hormone signaling pathways. Mol Plant Microbe Interact 29:902–913. https://doi.org/10.1094/MPMI-08-16-0165-R
Article
CAS
PubMed
Google Scholar
Césari S, Guillen KD, Cesari S, Chalvon V, Michel C, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama Y, Morel JB, Fournier E, Tharreau D, Terauchi R, Kroj T (2013) The rice resistance protein pair RGA4/RGA5 recognizes the M. oryzae effectors AVR-Pia and AVR1- CO39 by direct binding. Plant Cell 25:1463–1481. https://doi.org/10.1105/tpc.112.107201
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng H, Liu H, Deng Y, Xiao J, Li X, Wang S (2015) The WRKY45-2 WRKY13 WRKY42 transcriptional regulatory cascade is required for rice resistance to fungal pathogen. Plant Physiol 167:1087–1099. https://doi.org/10.1104/pp.114.256016
Article
CAS
PubMed
PubMed Central
Google Scholar
Fondong VN, Reddy RC, Lu C, Hankoua B, Felton C, Czymmek K, Achenjang F (2007) The consensus N-myristoylation motif of a geminivirus AC4 protein is required for membrane binding and pathogenicity. Mol Plant-Microbe Interact 20:380–391. https://doi.org/10.1094/MPMI-20-4-0380
Article
CAS
PubMed
Google Scholar
Gao CY, Xu HW, Huang J, Sun BY, Zhang F, Savage Z, Duggan C, Yan TX, Wu CH, Wang YC, Vleeshouwers V, Kamoun S, Bozkurt TO, Dong SM (2020) Pathogen manipulation of chloroplast function triggers a light-dependent immune recognition. Proc Natl Acad Sci USA 117:9613–9620. https://doi.org/10.1073/pnas.2002759117
Article
CAS
PubMed
PubMed Central
Google Scholar
Hou YX, Wang YF, Tang LQ, Tong XH, Wang L, Liu LM, Huang SW, Zhang J (2019) SAPK10-mediated phosphorylation on WRKY72 releases its suppression on jasmonic acid biosynthesis and bacterial blight resistance. IScience 28:499–510. https://doi.org/10.1016/j.isci.2019.06.009
Article
CAS
Google Scholar
Jain P, Singh PK, Kapoor R, Khanna A, Solanke AU, Krishnan SG, Singh AK, Sharma V, Sharma TR (2017) Understanding host-pathogen interactions with expression profiling of NILs carrying rice-blast resistance Pi9 gene. Front Plant Sci 8:93. https://doi.org/10.3389/fpls.2017.00093
Article
PubMed
PubMed Central
Google Scholar
Jelenska J, Yao N, Vinatzer BA, Wright CM, Brodsky JL, Greenberg JT (2007) AJ domain virulence effector of Pseudomonas syringae remodels host chloroplasts and suppresses defenses. Curr Biol 17:499–508. https://doi.org/10.1016/j.cub.2007.02.028
Article
CAS
PubMed
PubMed Central
Google Scholar
Jung KH, Gho HJ, Giong HK et al (2013) Genome-wide identification and analysis of japonica and Indica cultivar-preferred transcripts in rice using 983 Affymetrix array data. Rice (N Y) 6(1):19. https://doi.org/10.1186/1939-8433-6-19
Article
Google Scholar
Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S, Childs KL, Davidson RM, Lin H, Quesada-Ocampo L, Vaillancourt B, Sakai H, Lee SS, Kim J, Numa H, Itoh T, Buell CR, Matsumoto T (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:4. https://doi.org/10.1186/1939-8433-6-4
Article
PubMed
PubMed Central
Google Scholar
Li B, Dewey CN (2011) RSEP: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323. https://doi.org/10.1186/1471-2105-12-323
Article
CAS
Google Scholar
Li G, Froehlich JE, Elowsky C, Msanne J, Ostosh AC, Zhang CH, Awada T, Alfano JR (2014a) Distinct Pseudomonas type-III effectors use a cleavable transit peptide to target chloroplasts. Plant J 77:310–321. https://doi.org/10.1111/tpj.12396
Article
CAS
PubMed
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009a) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352
Article
CAS
PubMed
PubMed Central
Google Scholar
Li M, Ma XQ, Chiang YH, Yadeta KA, Ding PF, Dong LS, Zhao Y, Li XM, Yu YF, Zhang L, Shen QH, Xia B, Coaker G, Liu D, Zhou JM (2014b) Proline isomerization of the immune receptor-interacting protein RIN4 by a cyclophilin inhibits effector-triggered immunity in Arabidopsis. Cell Host Microbe 16:473–483. https://doi.org/10.1016/j.chom.2014.09.007
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W, Wang BH, Wu J, Lu GD, Hu Y, Zhang X, Zhang ZG, Zhao Q, Feng Q, Zhang HY, Wang ZY, Wang GL, Han B, Wang ZH, Zhou B (2009b) The Magnaorthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol Plant Microbe Interact 22:411–420. https://doi.org/10.1094/MPMI-22-4-0411
Article
CAS
PubMed
Google Scholar
Licausi F, Ohme-Takagi M, Perata P (2013) APETALA2/ethylene responsive factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199:639–649. https://doi.org/10.1111/nph.12291
Article
CAS
PubMed
Google Scholar
Liu Y, Lan X, Song S, Yin L, Dry IB, Qu J, Xiang J, Lu J (2018) In planta functional analysis and subcellular localization of the oomycete pathogen Plasmopara viticola candidate RXLR effector repertoire. Front. Plant Sci 9:286. https://doi.org/10.3389/fpls.2018.00286
Article
Google Scholar
Mackill DJ, Bonman JM (1992) Inheritance of blast resistance in near-isogenic lines of rice. Phytopathology 82:746–749. https://doi.org/10.1094/phyto-82-746
Article
Google Scholar
Monné M, Minier DV, Obata T, Daddabbo L, Palmieri L, Vozza A, Nicolardi C, Fernie AR, Palmieri F (2015) Functional characterization and organ distribution of three mitochondrial ATP-mg/pi carriers in Arabidopsis thaliana. Biochim. Biophys. Acta 1847:1220–1230. https://doi.org/10.1016/j.bbabio.2015.06.015
Article
CAS
PubMed
Google Scholar
Nomura H, Komori T, Uemura S, Kanda Y, Shimotani K, Nakai K, Furuichi T, Takebayashi K, Sugimoto T, Sano S, Suwastika IN, Fukusaki E, Yoshioka H, Nakahira Y, Shiina T (2012) Chloroplast-mediated activation of plant immune signalling in Arabidopsis. Nat Commun 3:926. https://doi.org/10.1038/ncomms1926
Article
CAS
PubMed
Google Scholar
Okuyama Y, Kanzaki H, Abe A, Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsumura H, Shenton M, Galam DC, Undan J, Ito A, Sone T, Terauchi R (2011) A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J 66:467–479. https://doi.org/10.1111/j.1365-313X.2011.04502.x
Article
CAS
PubMed
Google Scholar
Onaga G, Wydra K, Koopmann B, Chebotarov D, Séré Y, Von TieDEPann A (2017) High temperature effects on Pi54 conferred resistance to Magnaporthe oryzae in two genetic backgrounds of Oryza sativa. J Plant Physiol 212:80–93. https://doi.org/10.1016/j.jplph.2017.02.004
Article
CAS
PubMed
Google Scholar
Park CH, Chen S, Shirsekar G, Zhou B, Khang CH, Songkumarn P, Afzal AJ, Ning YS, Wang RY, Bellizzi M, Valent B, Wang GL (2012) The M. oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice. Plant Cell 24:4748–4762. https://doi.org/10.1105/tpc.112.105429
Article
CAS
PubMed
PubMed Central
Google Scholar
Park CH, Shirsekar G, Bellizzi M, Chen SB, Songkumarn P, Xie X, Shi XT, Ning YS, Zhou B, Suttiviriya P, Wang M, Umemura K, Wang GL (2016) The E3 ligase APIP10 connects the effector AvrPiz-t to the NLR receptor Piz-t in rice. PLoS Pathog 12:e1005529. https://doi.org/10.1371/journal.ppat.1005529
Article
CAS
PubMed
PubMed Central
Google Scholar
Petre B, Lorrain C, Saunders DG, Win J, Sklenar J, Duplessis S, Kamoun S (2016) Rust fungal effectors mimic host transit peptides to translocate into chloroplasts. Cell Microbiol 18:453–465. https://doi.org/10.1111/cmi.12530
Article
CAS
PubMed
Google Scholar
Ponciano G, Yoshikawa M, Lee JL, Ronald PC, Whalen MC (2006) Pathogenesis-related gene expression in rice is correlated with developmentally controlled Xa21-mediated resistance against Xanthomonas oryzae pv Oryzae. Physiol Mol Plant Pathol 69:131–139. https://doi.org/10.1016/j.pmpp.2007.03.002
Article
CAS
Google Scholar
Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang GL (2006) The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172:1901–1914. https://doi.org/10.1534/genetics.105.044891
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramamoorthy R, Jiang SY, Kumar N, Venkatesh PN, Ramachandran S (2008) A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol 49:865–879. https://doi.org/10.1093/pcp/pcn061
Article
CAS
PubMed
Google Scholar
Rodriguez-Herva JJ, Gonzalez-Melendi P, Cuartas-Lanza R, Antunez-Lamas M, Rio-Alvarez I, Li ZD, López-Torrejón G, Díaz I, del Pozo JC, Chakravarthy S, Collmer A, Rodríguez-Palenzuela P, López-Solanilla E (2012) A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses. Cell. Microbiol 14:669–681. https://doi.org/10.1111/j.1462-5822.2012.01749.x
Article
CAS
PubMed
Google Scholar
Rosas-Diaz T, Zhang D, Fan PF, Wang LP, Ding X, Jiang YL, Jimenez-Gongora T, Medina-Puche L, Zhao XY, Feng ZY, Zhang GP, Liu XK, Bejarano ER, Tan L, Zhang H, Zhu JK, Xing WM, Faulkner C, Nagawa S, Lozano-Duran R (2018) A virus-targeted plant receptor-like kinase promotes cell-to-cell spread of RNAi. Proc Natl Acad Sci USA 115:1388–1393. https://doi.org/10.1073/pnas.1715556115
Article
CAS
PubMed
PubMed Central
Google Scholar
Seol YJ, Won SY, Shin Y et al (2016) A multilayered screening method for the identification of regulatory genes in Rice by agronomic traits. Evol Bioinforma 12:253–262. https://doi.org/10.4137/EBO.S40622
Article
CAS
Google Scholar
Sowden RG, Watson SJ, Jarvis P (2018) The role of chloroplasts in plant pathology. Essays Biochem 62:21–39. https://doi.org/10.1042/EBC20170020
Article
PubMed
Google Scholar
Tang MZ, Ning YS, Shu XL, Dong B, Zhang HY, Wu DX, Wang H, Wang GL, Zhou B (2017) The Nup98 homolog APIP12 targeted by the effector AvrPiz-t is involved in rice basal resistance against Magnaporthe oryzae. Rice 10:5. https://doi.org/10.1186/s12284-017-0144-7
Article
PubMed
PubMed Central
Google Scholar
Tian DG, Lin Y, Chen ZQ, Chen ZJ, Yang F, Wang F, Wang ZH, Wang M (2020) Exploring the distribution of blast resistance alleles at the Pi2/9 locus in major rice-producing areas of China by a novel indel marker. Plant Dis. https://doi.org/10.1094/PDIS-10-19-2187-RE
Tian DG, Yang LM, Chen ZJ, Chen ZQ, Wang F, Zhou YC, Chen SB (2018) Proteomic analysis of the defense response to Magnaporthe oryzae in rice harboring the blast resistance gene Piz-t. Rice 1:47. https://doi.org/10.1186/s12284-018-0240-3
Article
Google Scholar
Wang L, Zhao L, Zhang X, Zhang QJ, Jia YX, Wang G, Li SM, Tian DC, Li WH, Yang SH (2019) Large-scale identification and functional analysis of NLR genes in blast resistance in the Tetep rice genome sequence. Proc. Nat Acad Sci USA 116:18479–18487. https://doi.org/10.1073/pnas.1910229116
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang R, Ning Y, Shi X, He F, Zhang C, Fan J, Jiang N, Zhang Y, Zhang T, Hu Y, Bellizzi M, Wang GL (2016) Immunity to Rice Blast Disease by Suppression of Effector-Triggered Necrosis. Curr Biol 26(18):2399–2411. https://doi.org/10.1016/j.cub.2016.06.072
Wang XY, Jia MH, Ghai P, Lee FN, Jia YL (2015) Genome-wide association of rice blast disease resistance and yield-related components of rice. MPMI 28:1383–1392. https://doi.org/10.1094/MPMI-06-15-0131-R
Article
CAS
PubMed
Google Scholar
Wang Y, Kwon SJ, Wu J, Choi J, Lee YH, Agrawal GK, Tamogami S, Rakwal R, Park SR, Kim BG, Jung KH, Kang KY, Kim SG, Kim ST (2014) Transcriptome analysis of early responsive genes in rice during Magnaporthe oryzae infection. Plant Pathol J 30:343–354. https://doi.org/10.5423/PPJ.OA.06.2014.0055
Article
PubMed
PubMed Central
Google Scholar
Wei T, Ou B, Li JB, Zhao Y, Guo DS, Zhu YY, Chen ZL, Gu HY, Li CY, Qin GJ, Qu LJ (2013) Transcriptional profiling of rice early response to Magnaporthe oryzae identified OsWRKYs as important regulators in rice blast resistance. PLoS One 8:e59720. https://doi.org/10.1371/journal.pone.0059720
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilson RA, Talbot NJ (2009) Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat Rev Microbiol 7:185–195. https://doi.org/10.1038/nrmicro2032
Article
CAS
PubMed
Google Scholar
Wu CH, Abd-El-Haliem A, Bozkurt TO, Belhaj K, Terauchi R, Vossen JK, Kamoun S (2017) NLR network mediates immunity to diverse plant pathogens. Proc Natl AcaDEPy Sci 114(30):8113–8118. https://doi.org/10.1073/pnas.1702041114
Article
CAS
Google Scholar
Wu KJ, Xu T, Guo CJ, Zhang XH, Yang SH (2012) Heterogeneous evolutionary rates of Pi2/9 homologs in rice. BMC Genet 13:73. https://doi.org/10.1186/1471-2156-13-73
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao N, Wu YY, Li AH (2020) Strategy for use of rice blast resistance genes in rice molecular breeding. Rice Sci 27:263–277. https://doi.org/10.1016/j.rsci.2020.05.003
Article
Google Scholar
Yeung KY, Ruzzo WL (2001) Principal component analysis for clustering gene expression data. Bioinformatics 17:763–774. https://doi.org/10.1093/bioinformatics/17.9.763
Article
CAS
PubMed
Google Scholar
Yokotani N, Tsuchida-Mayama T, Ichikawa H, Mitsuda N, Ohme-Takagi M, Kaku H et al (2014) OsNAC111, a blast disease-responsive transcription factor in rice, positively regulates the expression of defense-related genes. Mol Plant-Microbe Interact 27:1027–1034. https://doi.org/10.1094/MPMI-03-14-0065-R
Article
CAS
PubMed
Google Scholar
Yoo YH, Kumar NA, Park JC, Lee SW, Jung KH (2017) Global analysis of differentially expressed genes between japonica and indica rice roots reveals the molecular basis for enhanced cold tolerance in japonic a rice. Plant Biotechnol Rep 11:461–473. https://doi.org/10.1007/s11816-017-0466-3
Article
Google Scholar
Zhang CY, Fang H, Shi XT, He F, Wang R, Fan JB, Bai PF, Wang JY, Park CH, Bellizzi M, Zhou XP, Wang GL, Ning YS (2020) A fungal effector and a rice NLR protein have antagonistic effects on a bowman-birk trypsin inhibitor. Plant Biotechnol J. https://doi.org/10.1111/pbi.13400
Zhang XR, Garreton V, Chua NH (2005) The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes Dev 19:1532–1543. https://doi.org/10.1101/gad.1318705
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Zhao JH, Li YL, Yuan ZJ, He HY, Yang HH, Qu HY, Ma CY, Qu SH (2016) Transcriptome analysis highlights defense and signaling pathways mediated by rice pi21 gene with partial resistance to M. oryzae. Front Plant Sci 7:1834. https://doi.org/10.3389/fpls.2016.01834
Article
PubMed
PubMed Central
Google Scholar
Zhao H, Wang X, Jia Y, Minkenberg B, Wheatley M, Fan J, Jia M, Famoso A, Edwards J, Wamishe Y, Valent B, Wang G, Yang Y (2018) The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance. Nat Commun 9:2039. https://doi.org/10.1038/s41467-018-04369-4
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng XG, Chen L, Lou QJ, Xia H, Li MS, Luo LJ (2014) Changes in DNA methylation pattern at two seedling stages in water saving and drought-resistant rice variety after drought stress domestication. Rice Sci 21:262–270. https://doi.org/10.1016/S1672-6308(13)60194-8
Article
Google Scholar
Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G et al (2006) The eight amino-acid differences within three leucine rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant-Microbe Interact 19:1216–1228. https://doi.org/10.1094/MPMI-19-1216
Article
CAS
PubMed
Google Scholar