- Short communication
- Open access
- Published:
OsProDH Negatively Regulates Thermotolerance in Rice by Modulating Proline Metabolism and Reactive Oxygen Species Scavenging
Rice volume 13, Article number: 61 (2020)
Abstract
Background
Global warming threatens rice growth and reduces yields. Proline plays important roles in plant abiotic stress tolerance. Previous research demonstrated that engineering proline metabolism-related genes can enhance tolerance to freezing and salinity in Arabidopsis. OsProDH encodes a putative proline dehydrogenase and is a single copy gene in rice. However, whether OsProDH plays roles in abiotic stress in rice remains unknown.
Findings
Quantitative RT-PCR analysis revealed that OsProDH transcript contents were relatively higher in leaf blade and root tissues and the high temperature treatment repressed expression of OsProDH. The predicted OsProDH protein localized in mitochondria. Using the Oryza sativa ssp. japonica cultivar KY131, we generated OsProDH overexpression (OE) lines and knockout mutant lines using the CRISPR/Cas9 (CRI) system. Overexpression of OsProDH decreased proline content, while mutation of OsProDH increased proline content compared with that of KY131. The CRI and OE lines were respectively more resistant and sensitive to heat stress than KY131. Heat stress induced proline accumulation and mutation of OsProDH led to proline overproduction which reduced H2O2 accumulation in the seedlings.
Conclusions
OsProDH negatively regulates thermotolerance in rice. Our study provides a strategy to improve heat tolerance in rice via manipulating proline metabolism.
Findings
High temperature stress reduces plant growth and crop productivity, potentially resulting in widespread risk of food insecurity (Battisti and Naylor 2009; Lobell et al. 2011). Declines in yield of crops, such as wheat, maize, and barley, have likely resulted from increases in global temperatures (Lobell and Field 2007). In particular, rice yield has declined by 10% per 1 °C increase during the dry season of crop growth (Peng et al. 2004). Therefore to reduce risks of food insecurity due to rising global temperatures, we must improve modern plant breeding strategies to increase crop tolerance to heat stress by expanding our understanding of the molecular mechanisms underlying plant responses to heat stress and genetic modifications of plants.
Proline is an essential proteinogenic amino acid and plays important roles in plant abiotic-stress tolerance (Nanjo et al. 1999; Székely et al. 2008; Zhang et al. 2017; Liu et al. 2018). To date, much is known about proline synthesis and metabolism in higher plants. Proline is synthesized mainly from glutamate being converted into glutamate-semialdehyde (GSA) by pyrroline-5-carboxylate synthetase (P5CS). Then GSA is spontaneously converted into pyrroline-5-carboxylate (P5C), which is reduced to proline by P5C reductase (P5CR). Proline is degraded into glutamate by two key mitochondrial enzymes: proline dehydrogenase (ProDH) and pyrroline-5-carboxylate dehydrogenase (P5CDH). First, ProDH oxidizes proline into delta1-pyrroline-5-carboxylate (P5C) which is subsequently converted into glutamate by P5CDH (Szabados and Savouré 2010). In Arabidopsis, the p5cs1 mutant exhibited a salt-hypersensitive phenotype that led to hyperaccumulation of H2O2, increased chlorophyll damage and lipid peroxidation (Székely et al. 2008). There are two genes (AtProDH1 and AtProDH2) encoding proline dehydrogenase in Arabidopsis. The predicted pre-proteins AtProDH1 and AtProDH2 share 75% identical amino acids (Funck et al. 2010). Antisense suppression of AtProDH1 led to greater tolerance to freezing and salinity stress in A. thaliana (Nanjo et al. 1999). AtProDH2 was specifically induced during salt stress and promoted proline accumulation under the stress (Funck et al. 2010). So far, much is known about the biological functions of core enzymes involved in proline synthesis and metabolism in Arabidopsis. However, little is known about the biological functions of these key enzymes in rice.
In this study, we focused on OsProDH (Os10g0550900), a single copy gene encoding the putative proline dehydrogenase in rice. We cloned the coding sequence (CDS) and genomic DNA sequence of OsProDH by PCR method using the japonica variety Kongyu131 (KY131). We compared the CDS with genomic DNA and found four exons in OsProDH genomic DNA. The predicted pre-proteins of OsProDH has 454 amino acids and with the proline dehydrogenase domain located at residues 133–436 by searching the NCBI Conserved Domain Database (Additional file 2: Figure S1). Furthermore, alignment of the predicted protein sequences of OsProDH with AtProDH1, AtProDH2, ZmProDH1, ZmProDH2 and SbProDH, showed that these proteins all had proline dehydrogenase domain and high similarity (Additional file 2: Figure S2).
Quantitative RT-PCR (qPCR) analysis revealed that OsProDH transcripts can be detected in various tissues: root, stem, leaf blade, leaf sheath, and young panicle. Expression levels were relatively higher in leaf blade and root than other tissues (Fig. 1a). To examine the transcriptional response of OsProDH to heat stress, two-leaf stage seedlings of KY131 were subjected to 45 °C treatment and the shoots were sampled at 0, 0.5, 1, 2, 6, 12 h after treatment. The results showed that heat stress clearly repressed the expression level of OsProDH (Fig. 1b).
To determine the subcellular localization of OsProDH, a 35S::OsProDH-GFP vector was introduced into rice protoplasts. As AtProDH1 and AtProDH2 were all localized in mitochondria (Funck et al. 2010), we inferred that the OsProDH might also be located in mitochondria. Using a mitochondrial tracker, we observed that OsProDH-GFP localized in mitochondria, whereas GFP alone localized in the cytoplasm (Fig. 2). Thus results show that OsProDH is a mitochondria-localized protein.
To investigate the biological function of OsProDH in abiotic stress, we generated OsProDH overexpression (OE) lines and knockout mutant lines using CRISPR/Cas9 (CRI) system under KY131 background. Two OE and CRI lines were chosen and characterized in detail for this study (Fig. 3a, b). In CRI-1 and CRI-2 mutants, there was a G and T insertion in the second exon, respectively, resulting in frameshift, which led to a truncated protein (453 aa) and mutant protein that is disrupted at Leu202 and lacks the proline dehydrogenase domain (Fig. 3b and Additional file 2: Figure S3).
Based on gene annotation and domain analyses, we conclude that OsProDH encodes proline dehydrogenase. To validate this conclusion, we determined the proline contents of OE and CRI lines and KY131. Results revealed that proline contents of the two CRI lines were highest, followed by that of KY131, and then those of the two OE lines (Fig. 3c). These results were consistent with the annotation results.
We then investigated the biological function of OsProDH in seedlings exposed to drought, salt and heat stresses. Under drought and salt conditions, no obvious phenotypic difference was detected between transgenic lines and KY131 (data not shown). However, under high temperature stress conditions, CRI and OE lines were respectively more resistant and sensitive to heat stress than KY131 (Fig. 3d). Specifically, the survival rates were higher in CRI lines and much lower in OE lines than compared with that in KY131 (Fig. 3e). These results indicate that OsProDH negatively regulate thermotolerance in rice seedlings.
Previous studies have reported that environmental stresses such as drought (Choudhary et al. 2005), salinity (Yoshiba et al. 1995), high light and UV irradiation (Saradhi et al. 1995), heavy metals (Schat et al. 1997), and oxidative stress (Yang et al. 2009) can induce proline accumulation in higher plants. Moreover, proline accumulation in plants has a protective function under stress conditions (Kishor et al. 2005; Verbruggen and Hermans 2008). Therefore, we compared the proline contents of wild type KY131 and transgenic seedlings (OE and CRI lines) under 45 °C treatment for 48 h. The results show that proline contents of all seedlings under heat stress were greater than those of the seedlings under the normal condition (Fig. 3c, f). Further, similar to normal conditions, proline contents of CRI and OE lines were significantly higher and lower than proline content of KY131, respectively (Fig. 3f).
Abiotic stress induces ROS accumulation and excessive ROS leads to programmed cell death (Gill and Tuteja 2010). Several studies have revealed that proline exhibits scavenging activity for reactive oxygen species (ROS) and acts as a singlet oxygen quencher (Smirnoff and Cumbes 1989; Matysik et al. 2002). These previous discoveries led us to compare the H2O2 levels of KY131 and transgenic seedlings under heat stress. We used 3, 3′-diaminobenzidine (DAB) staining to visually evaluate H2O2 accumulation in leaves. The brown precipitate indicative of H2O2 accumulation was generally not distributed in the leaves of both KY131 and transgenic lines prior to the heat treatment (Fig. 3g). However, after treatment, we observed more precipitate present in OE leaves than in those of KY131, and more precipitate present in KY131 leaves than those in CRI (Fig. 3g). Taken together, these data suggest that mutation of OsProDH led to greater proline accumulation which reduced H2O2 accumulation and oxidative stress, ultimately conferring higher survival rates despite the heat treatment. Our study provides robust evidence supporting potential genetic approaches to improve crop thermotolerance by engineering proline metabolism.
Availability of Data and Materials
The datasets supporting the conclusions of this article are included within the article and its additional files.
Abbreviations
- KY131:
-
Kongyu131
- CDS:
-
Coding sequence
- OE:
-
Overexpression
- CRI:
-
CRISPR/Cas
- GSA:
-
Glutamate-semialdehyde
- P5CS:
-
Pyrroline-5-carboxylate synthetase
- P5CR:
-
Pyrroline-5-carboxylate reductase
- ProDH:
-
Proline dehydrogenase
- P5CDH:
-
Pyrroline-5-carboxylate dehydrogenase
References
Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323:240–244
Choudhary NL, Sairam RK, Tyagi A (2005) Expression of delta1-pyrroline-5-carboxylate synthetase gene during drought in rice (Oryza sativa L.). Ind J Biochem Biophys 42:366–370
Funck D, Eckard S, Muller G (2010) Non-redundant functions of two proline dehydrogenase isoforms in Arabidopsis. BMC Plant Biol 10:70
Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930
Kishor PBK, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438
Liu Y, Xu C, Zhu Y, Zhang L, Chen T, Zhou F, Chen H, Lin Y (2018) The calcium-dependent kinase OsCPK24 functions in cold stress responses in rice. J Integr Plant Biol 60:173–188
Lobell DB, Field CB (2007) Global scale climate-crop yield relationships and the impacts of recent warming. Environ Res Lett 2:014002
Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620
Matysik J, Alia BB, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532
Nanjo T, Kobayashia M, Yoshibab Y, Kakubaric Y, Yamaguchi-Shinozakid K, Shinozaki K (1999) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461:205–210
Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci U S A 101:9971–9975
Saradhi PP, Alia AS, Prasad KV (1995) Proline accumulates in plants exposed to UV radiation and protects them against UV induced peroxidation. Biochem Biophys Res Commun 209:1–5
Schat H, Sharma SS, Vooijs R (1997) Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris. Physiol Plant 101:477–482
Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060
Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97
Székely G, Abrahám E, Cséplo A, Rigó G, Zsigmond L, Csiszár J, Ayaydin F, Strizhov N, Jásik J, Schmelzer E, Koncz C, Szabados L (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53:11–28
Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acid 35:753–759
Yang SL, Lan SS, Gong M (2009) Hydrogen peroxide-induced proline and metabolic pathway of its accumulation in maize seedlings. J Plant Physiol 166:1694–1699
Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchi-Shinozaki K, Wada K, Harada Y, Shinozaki K (1995) Correlation between the induction of a gene for delta 1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J 7:751–760
Zhang S, Zhuang K, Wang S, Lv J, Ma N, Meng Q (2017) A novel tomato SUMO E3 ligase, SlSIZ1, confers drought tolerance in transgenic tobacco. J Integr Plant Biol 59:102–117
Acknowledgements
Not applicable.
Funding
This work was supported by the Key Science and Technology Program of Henan Province (192102110058).
Author information
Authors and Affiliations
Contributions
MXG and XSZ conceived and designed the experiments. MXG, XTZ, JJL, LLH, HXL performed the experiments. MXG analyzed the data. MXG wrote the manuscript. All authors read and approved the final manuscript.
Corresponding authors
Ethics declarations
Ethics Approval and Consent to Participate
Not applicable.
Consent for Publication
Not applicable.
Competing Interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Additional file 1.
Materials and Methods.
Additional file 2: Figure S1.
Gene structure and domain annotation of OsProDH. Figure S2. Multiple sequence alignment of OsProDH, AtProDH1, AtProDH2, ZmProDH1, ZmProDH2 and SbProDH. The blue lines indicated the conserved proline dehydrogenase domain. Figure S3. Characterization of mutation in OsProDH. Protein sequences of OsProDH in KY131 and mutants (CRI-1 and CRI-2) derived from the CRISPR-Cas9 system.
Additional file 3: Table S1.
Primers used in this study were listed.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Guo, M., Zhang, X., Liu, J. et al. OsProDH Negatively Regulates Thermotolerance in Rice by Modulating Proline Metabolism and Reactive Oxygen Species Scavenging. Rice 13, 61 (2020). https://doi.org/10.1186/s12284-020-00422-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s12284-020-00422-3