Chien CC, Chang YC: The susceptibility of rice plants at different growth stages and 21 commercial rice varieties to Pseudomonas glumae. J Agric Res China 1987, 36: 302–310.
Google Scholar
Cottyn B, Cerez MT, VanOutryve MF, Barroga J, Swings J, Mew TW: Bacterial diseases of rice.1. Pathogenic bacteria associated with sheath rot complex and grain discoloration of rice in the Philippines. Plant Dis 1996, 80: 429–437. 10.1094/PD-80-0429
Article
Google Scholar
Cottyn B, VanOutryve MF, Cerez MT, DeCleene M, Swings J, Mew TW: Bacterial diseases of rice.2. Characterization of pathogenic bacteria associated with sheath rot complex and grain discoloration of rice in the Philippines. Plant Dis 1996, 80: 438–445. 10.1094/PD-80-0438
Article
Google Scholar
Dupuis J, Siegmund D: Statistical methods for mapping quantitative trait loci from a dense set of markers. Genetics 1999, 151: 373–386.
PubMed Central
CAS
PubMed
Google Scholar
Ebana K, Yonemaru J, Fukuoka S, Iwata H, Kanamori H, Namiki N, Nagasaki H, Yano M: Genetic structure revealed by a whole-genome single-nucleotide polymorphism survey of diverse accessions of cultivated Asian rice (Oryza sativa L.). Breeding Sci 2010, 60: 390–397. 10.1270/jsbbs.60.390
Article
Google Scholar
Goto K, Ohata K: New bacterial diseases of rice (brown stripe and grain rot). Ann Phytophathol Soc Jpn 1956, 21: 46–47.
Google Scholar
Goto T, Nishiyama K, Ohata K: Bacteria causing grain rot of rice. Ann Phytopathol Soc Jpn 1987, 53: 141–149. 10.3186/jjphytopath.53.141
Article
Google Scholar
Goto T, Watanabe B: Varietal resistance to bacterial grain rot of rice, caused by Pseudomonas glumae (in Japanese). Proc Assoc Pl Prot Kyushu 1975, 21: 141–143.
Article
Google Scholar
Groth DE, Linscombe SD, Sha X: Registration of two disease-resistant germplasm lines of rice. J Plant Regist 2007, 1: 63–64. 10.3198/jpr2006.10.0677crg
Article
Google Scholar
Ham J, Karki HS, Shrestha B, Barphagha IK, Melanson RA, Chen R, Groth DE, Sha X, Utomo H, Subudhi P, Rush MC: Molecular genetic and genomic studies on bacterial panicle blight of rice and its causative agent Burkholderia glumae. Phytopathology 2011, 101: S266-S266.
Google Scholar
Ham JH, Melanson RA, Rush MC: Burkholderia glumae : next major pathogen of rice? Mol Plant Pathol 2011, 12: 329–339. 10.1111/j.1364-3703.2010.00676.x
Article
CAS
PubMed
Google Scholar
Hori K, Kobayashi T, Sato K, Takeda K: QTL analysis of Fusarium head blight resistance using a high-density linkage map in barley. Theor Appl Genet 2005, 111: 1661–1672. 10.1007/s00122-005-0102-4
Article
CAS
PubMed
Google Scholar
Imbe T, Tsushima S, Nishiyama H: Varietal resistance of rice to bacterial grain rot and screening method. Proc Assoc Pl Prot Kyushu 1986, 32: 17–19.
Article
Google Scholar
Jeong Y, Kim J, Kim S, Kang Y, Nagamatsu T, Hwang I: Toxoflavin produced by Burkholderia glumae causing rice grain rot is responsible for inducing bacterial wilt in many field crops. Plant Dis 2003, 87: 890–895. 10.1094/PDIS.2003.87.8.890
Article
CAS
Google Scholar
Kojima Y, Ebana K, Fukuoka S, Nagamine T, Kawase M: Development of an RFLP-based rice diversity research set of germplasm. Breeding Sci 2005, 55: 431–440. 10.1270/jsbbs.55.431
Article
CAS
Google Scholar
Kurita T, Tabei H: On the pathogenic bacterium of bacterial grain rot of rice. Ann Phytopathol Soc Jpn 1967, 33: 111.
Google Scholar
Kurita T, Tabei H, Sato T: A few studies on factors associated with infection of bacterial grain rot of rice. Ann Phytopathol Soc Jpn 1964, 29: 60.
Google Scholar
Lander E, Abrahamson J, Barlow A, Daly M, Lincoln S, Newburg L, Green P: Mapmaker a computer package for constructing genetic-linkage maps. Cytogenet Cell Genet 1987, 46: 642–642.
Google Scholar
Luo J, Xie G, Li B, Lihui X: First report of Burkholderia glumae isolated from symptomless rice seeds in china. Plant Dis 2007, 91: 1363–1363.
Article
Google Scholar
Matsuo T, Hoshikawa K (Eds): Science of the rice plant Volume 1. Tokyo: Morphology. Food and Agriculture Policy Research Center; 1993.
Google Scholar
Miyagawa H, Kimura T: A test of rice varietal resistance to bacterial grain rot by inoculation on cut-spikes at anthesis. Chugoku Natl Agric Exp Stn 1989, 78: 17–21.
Google Scholar
Mogi S, Tsushima S: Varietal resistance to bacterial grain rot in rice, caused by Pseudomonas glumae. Kyushu Agricultural Research 1985, 47: 103.
Google Scholar
Murray MG, Thompson WF: Rapid isolation of high molecular-weight plant DNA. Nucleic Acids Res 1980, 8: 4321–4325. 10.1093/nar/8.19.4321
Article
PubMed Central
CAS
PubMed
Google Scholar
Nandakumar R, Bollich P, Groth D, Rush MC: Confirmation of the partial resistance of Jupiter rice to bacterial panicle blight caused by Burkholderia glumae through reduced disease and yield loss in inoculated field tests. Phytopathology 2007, 97: S82-S83.
Google Scholar
Nandakumar R, Rush M, Shahjahan A, O'Reilly K, Groth D: Bacterial panicle blight of rice in the southern United States caused by Burkholderia glumae and B. gladioli. Phytopathology 2005, 95: S73.
Google Scholar
Nandakumar R, Rush MC: Analysis of gene expression in Jupiter rice showing partial resistance to rice panicle blight caused by Burkholderia glumae. Phytopathology 2008, 98: S112.
Google Scholar
Nandakumar R, Rush MC, Correa F: Association of Burkholderia glumae and B. gladioli with panicle blight symptoms on rice in Panama. Plant Dis 2007, 91: 767.
Article
Google Scholar
Nandakumar R, Shahjahan AKM, Yuan XL, Dickstein ER, Groth DE, Clark CA, Cartwright RD, Rush MC: Burkholderia glumae and B. gladioli cause bacterial panicle blight in rice in the southern United States. Plant Dis 2009, 93: 896–905. 10.1094/PDIS-93-9-0896
Article
CAS
Google Scholar
Pinson SRM, Shahjahan AKM, Rush MC, Groth DE: Bacterial panicle blight resistance QTLs in rice and their association with other disease resistance loci and heading date. Crop Sci 2010, 50: 1287–1297. 10.2135/cropsci2008.07.0447
Article
CAS
Google Scholar
Prabhu AS, Bedendo IP: Glume blight of rice in Brazil: etiology, varietal reaction and loss estimates. Tropical Pest Management 1988, 34: 85–88. 10.1080/09670878809371215
Article
Google Scholar
Sayler RJ, Cartwright RD, Yang YN: Genetic characterization and real-time PCR detection of Burkholderia glumae, a newly emerging bacterial pathogen of rice in the United States. Plant Dis 2006, 90: 603–610. 10.1094/PD-90-0603
Article
CAS
Google Scholar
Sha X, Linscombe SD, Groth DE, Bond JA, White LM, Chu QR, Utomo HS, Dunand RT: Registration of ‘Jupiter’ rice. Crop Sci 2006, 46: 1811–1812. 10.2135/cropsci2005.08-0265
Article
Google Scholar
Shahjahan AKM, Rush MC, Groth D, Clark CA: Panicle blight. Rice J 2000, 15: 26–29.
Google Scholar
Takeda K, Heta H: Establishing the testing method and a search for the resistant varieties to Fusarium head blight in barley. Jpn J Breed 1989, 39: 203–216.
Article
Google Scholar
Takita T, Imbe T, Nishiyama H, Tsushima S: Resistance to rice bacterial grain rot in indica and upland rice. Kyushu Agricultural Research 1988, 50: 28.
Google Scholar
Tanabata T, Shibaya T, Hori K, Ebana K, Yano M: SmartGrain: High-throughput phenotyping software for measuring seed shape through image analysis. Plant Physiol 2012. in press in press
Google Scholar
Trung HM, Van NV, Vien NV, Lam DT, Lien M: Occurrence of rice grain rot disease in Vietnam. Int Rice Res Notes 1993, 18: 30.
Google Scholar
Tsushima S: Epidemiology of bacterial grain rot of rice caused by Pseudomonas glumae. JARQ 1996, 30: 85–89.
Google Scholar
Tsushima S, Mogi S, Naito H, Saito H: Populations of Pseudomonas glumae on rice plants. Ann Phytopathol Soc Jpn 1991, 57: 145–152. 10.3186/jjphytopath.57.145
Article
Google Scholar
Tsushima S, Mogi S, Saito H: Effects of inoculum density, incubation temperature and incubation period on the development of rice bacterial grain rot. Proc Assoc Pl Prot Kyushu 1985, 31: 11–12.
Article
Google Scholar
Tsushima S, Mogi S, Saito H: Effect of temperature on the growth of Pseudomonas glumae and the development of rice bacterial grain rot. Proc Assoc Pl Prot Kyushu 1986, 32: 14–16.
Article
Google Scholar
Tsushima S, Naito H, Koitabashi M: Change in panicle susceptibility associated with flowering rate of spikelets in bacterial grain rot of rice caused by Pseudomonas glumae. Ann Phytopathol Soc Jpn 1995, 61: 109–113. 10.3186/jjphytopath.61.109
Article
Google Scholar
Tsushima S, Naito H, Koitabashi M: Population dynamics of Pseudomonas glumae, the causal agent of bacterial grain rot of rice, on leaf sheaths of rice plants in relation to disease development in the field. Ann Phytopathol Soc Jpn 1996, 62: 108–113. 10.3186/jjphytopath.62.108
Article
Google Scholar
Uematsu T, Yoshimura D, Nishiyama K, Ibaraki T, Fujii H: Occurrence of bacterial seedling rot in nursery flat, caused by grain rot bacterium Pseudomonas glumae. Ann Phytopathol Soc Jpn 1976, 42: 310–312. 10.3186/jjphytopath.42.310
Article
Google Scholar
Wang S, Basten CJ, Zeng ZB: Windows QTL Cartigrapher 2.5. Raleigh, NC: Department of Statistics, North Carolina State University; 2005. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm
Google Scholar
Wasano K, Okuda S: Evaluation of resistance of rice cultivars to bacterial grain Rot by the syringe inoculation method. Breeding Sci 1994, 44: 1–6.
Google Scholar
Yasunaga T, Wada T, Oosata KF, Hamachi Y: Varietal differences in occurrence of bacterial grain rot in rice cultivars with high palatability. The Crop Science Society of Japan 2002, 68: 12–14.
Google Scholar
Zeigler RS, Alvarez E: Grain discoloration of rice caused by Pseudomonas glumae in Latin America. Plant Dis 1989, 73: 368.
Article
Google Scholar
Zhou XG, McClung AM, Way MO, Jo Y, Tabien RE, Wilson LT: Severe outbreak of bacterial panicle blight across Texas Rice Belt in 2010. Phytopathology 2011, 101: S205. 10.1094/PHYTO-05-10-0139
Article
Google Scholar