Adams KL, Wendel JF. Polyploidy and genome evolution in plants. Curr Opin Plant Biol 2005;8:135–41.
Article
PubMed
CAS
Google Scholar
Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, et al. The genome sequence of Drosophila melanogaster. Science 2000;287:2185–95.
Article
PubMed
Google Scholar
Ahn S, Anderson JA, Sorrells ME, Tanksley SD. Homoeologous relationships of rice, wheat and maize chromosomes. Mol Gen Genet 1993;241:483–90.
Article
PubMed
CAS
Google Scholar
Ahn S, Tanksley SD. Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci USA 1993;90:7980–4.
Article
PubMed
CAS
Google Scholar
Ammiraju JS, Luo M, Goicoechea JL, Wang W, Kudrna D, et al. The Oryza bacterial artificial chromosome library resource: construction and analysis of 12 deep-coverage large-insert BAC libraries that represent the 10 genome types of the genus Oryza. Genome Res 2006;16:140–7.
Article
PubMed
Google Scholar
Ammiraju JS, Zuccolo A, Yu Y, Song X, Piegu B, et al. Evolutionary dynamics of an ancient retrotransposon family provides insights into evolution of genome size in the genus Oryza. Plant J 2007;52:342–51.
Article
PubMed
CAS
Google Scholar
Bennetzen JL, Coleman C, Liu R, Ma J, Ramakrishna W. Consistent over-estimation of gene number in complex plant genomes. Curr Opin Plant Biol 2004;7:732–6.
Article
PubMed
CAS
Google Scholar
Bennetzen JL, Freeling M. Grasses as a single genetic system: genome composition, collinearity and compatibility. Trends Genet 1993;9:259–61.
Article
PubMed
CAS
Google Scholar
Bennetzen JL, Ma J. The genetic colinearity of rice and other cereals on the basis of genomic sequence analysis. Curr Opin Plant Biol 2003;6:128–33.
Article
PubMed
CAS
Google Scholar
Bennetzen JL, Ma J, Devos KM. Mechanisms of recent genome size variation in flowering plants. Ann Bot (Lond) 2005;95:127–32.
Article
CAS
Google Scholar
Bonierbale MW, Plaisted RL, Tanksley SD. RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 1988;120:1095–103.
PubMed
CAS
Google Scholar
Bowers JE, Arias MA, Asher R, Avise JA, Ball RT, et al. Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses. Proc Natl Acad Sci USA 2005;102:13206–11.
Article
PubMed
CAS
Google Scholar
Bremer K. Gondwanan evolution of the grass alliance of families (Poales). Evolution 2002;56:1374–87.
Article
PubMed
CAS
Google Scholar
Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, et al. The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci USA 2002;99:9328–33.
Article
PubMed
CAS
Google Scholar
Chantret N, Salse J, Sabot F, Bellec A, Laubin B, et al. Contrasted microcolinearity and gene evolution within a homoeologous region of wheat and barley species. J Mol Evol 2008;66:138–50.
Article
PubMed
CAS
Google Scholar
Chantret N, Salse J, Sabot F, Rahman S, Bellec A, et al. Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). Plant Cell 2005;17:1033–45.
Article
PubMed
CAS
Google Scholar
Chen M, SanMiguel P, Bennetzen JL. Sequence organization and conservation in sh2/a1-homologous regions of sorghum and rice. Genetics 1998;148:435–43.
PubMed
CAS
Google Scholar
Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, et al. Evolution of genes and genomes on the Drosophila phylogeny. Nature 2007;450:203–18.
Article
PubMed
Google Scholar
Cunff LL, Garsmeur O, Raboin LM, Pauquet J, Telismart H, et al. Diploid/polyploid syntenic shuttle mapping and haplotype-specific chromosome walking toward a rust resistance gene (bru1) in highly polyploid sugarcane (2n ~ 12× ~ 115). Genetics 2008;180:649–60.
Article
PubMed
Google Scholar
Devos KM, Atkinson MD, Chinoy CN, Harcourt RL, Koebner RMD, Liu CJ, et al. Chromosomal rearrangements in the rye genome relative to that of wheat. Theor Appl Genet 1993;85:673–80.
Article
PubMed
CAS
Google Scholar
Devos KM, Brown JK, Bennetzen JL. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 2002;12:1075–9.
Article
PubMed
CAS
Google Scholar
Devos KM, Dubcovsky J, Dvorak J, Chinoy CN, Gale MD. Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor Appl Genet 1995;91:282–8.
Article
PubMed
CAS
Google Scholar
Devos KM, Pittaway TS, Reynolds A, Gale MD. Comparative mapping reveals a complex relationship between the pearl millet genome and those of foxtail millet and rice. Theor Appl Genet 2000;100:190–8.
Article
CAS
Google Scholar
Doebley JF, Gaut BS, Smith BD. The molecular genetics of crop domestication. Cell 2006;127:1309–21.
Article
PubMed
CAS
Google Scholar
Dubcovsky J, Dvorak J. Ribosomal RNA multigene loci: nomads of the Triticeae genomes. Genetics 1995;140:1367–77.
PubMed
CAS
Google Scholar
Dubcovsky J, Ramakrishna W, SanMiguel PJ, Busso CS, Yan L, Shiloff BA, et al. Comparative sequence analysis of colinear barley and rice bacterial artificial chromosomes. Plant Physiol 2001;125:1342–53.
Article
PubMed
CAS
Google Scholar
Feldman M, Liu B, Segal G, Abbo S, Levy AA, Vega JM. Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics 1997;147:1381–7.
PubMed
CAS
Google Scholar
Feuillet C, Keller B. High gene density is conserved at syntenic loci of small and large grass genomes. Proc Natl Acad Sci USA 1999;96:8265–70.
Article
PubMed
CAS
Google Scholar
Fu H, Dooner HK. Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci USA 2002;99:9573–8.
Article
PubMed
CAS
Google Scholar
Gale MD, Devos KM. Plant comparative genetics after 10 years. Science 1998;282:656–9.
Article
PubMed
CAS
Google Scholar
Ge S, Sang T, Lu BR, Hong DY. Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc Natl Acad Sci USA 1999;96:14400–5.
Article
PubMed
CAS
Google Scholar
Gilbert W. Why genes in pieces? Nature 1978;271:501.
Article
PubMed
CAS
Google Scholar
Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, et al. Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 2006;439:749–52.
Article
PubMed
CAS
Google Scholar
Gu YQ, Coleman-Derr D, Kong X, Anderson OD. Rapid genome evolution revealed by comparative sequence analysis of orthologous regions from four Triticeae genomes. Plant Physiol 2004;135:459–70.
Article
PubMed
CAS
Google Scholar
Guimaraes CT, Sills GR, Sobral BW. Comparative mapping of Andropogoneae: Saccharum L. (sugarcane) and its relation to sorghum and maize. Proc Natl Acad Sci USA 1997;94:14261–6.
Article
PubMed
CAS
Google Scholar
Guo H, Moose SP. Conserved noncoding sequences among cultivated cereal genomes identify candidate regulatory sequence elements and patterns of promoter evolution. Plant Cell 2003;15:1143–58.
Article
PubMed
CAS
Google Scholar
Han F, Kilian A, Chen JP, Kudrna D, Steffenson B, Yamamoto K, et al. Sequence analysis of a rice BAC covering the syntenous barley Rpg1 region. Genome 1999;42:1071–6.
Article
PubMed
CAS
Google Scholar
Hulbert SH, Richter TE, Axtell JD, Bennetzen JL. Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc Natl Acad Sci USA 1990;87:4251–5.
Article
PubMed
CAS
Google Scholar
Hurles M. Gene duplication: the genomic trade in spare parts. PLoS Biol 2004;2:E206.
Article
PubMed
Google Scholar
Ilic K, SanMiguel PJ, Bennetzen JL. A complex history of rearrangement in an orthologous region of the maize, sorghum, and rice genomes. Proc Natl Acad Sci USA 2003;100:12265–70.
Article
PubMed
CAS
Google Scholar
IRGSP. The map-based sequence of the rice genome. Nature 2005;436:793–800.
Article
Google Scholar
Jannoo N, Grivet L, Chantret N, Garsmeur O, Glaszmann JC, Arruda P, et al. Orthologous comparison in a gene-rich region among grasses reveals stability in the sugarcane polyploid genome. Plant J 2007;50:574–85.
Article
PubMed
CAS
Google Scholar
Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR. Pack-MULE transposable elements mediate gene evolution in plants. Nature 2004;431:569–73.
Article
PubMed
CAS
Google Scholar
Kapitonov VV, Jurka J. Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci USA 2001;98:8714–9.
Article
PubMed
CAS
Google Scholar
Kaplinsky NJ, Braun DM, Penterman J, Goff SA, Freeling M. Utility and distribution of conserved noncoding sequences in the grasses. Proc Natl Acad Sci USA 2002;99:6147–51.
Article
PubMed
CAS
Google Scholar
Kashkush K, Feldman M, Levy AA. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 2002;160:1651–9.
PubMed
CAS
Google Scholar
Kellis M, Birren BW, Lander ES. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 2004;428:617–24.
Article
PubMed
CAS
Google Scholar
Kellogg EA. Evolutionary history of the grasses. Plant Physiol 2001;125:1198–205.
Article
PubMed
CAS
Google Scholar
Kim H, Hurwitz B, Yu Y, Collura K, Gill N, SanMiguel P, et al. Construction, alignment and analysis of 12 framework physical maps that represent the 10 genome types of the genus Oryza. Genome Biol 2008;9:R45.
Article
PubMed
Google Scholar
Kim H, SanMiguel P, Nelson W, Collura K, Wissotski M, Walling JG, et al. Comparative physical mapping between Oryza sativa (AA genome type) and O. punctata (BB genome type). Genetics 2007;176:379–90.
Article
PubMed
CAS
Google Scholar
Kim JS, Islam-Faridi MN, Klein PE, Stelly DM, Price HJ, Klein RR, et al. Comprehensive molecular cytogenetic analysis of sorghum genome architecture: distribution of euchromatin, heterochromatin, genes and recombination in comparison to rice. Genetics 2005;171:1963–76.
Article
PubMed
CAS
Google Scholar
Lai J, Li Y, Messing J, Dooner HK. Gene movement by Helitron transposons contributes to the haplotype variability of maize. Proc Natl Acad Sci USA 2005;102:9068–73.
Article
PubMed
CAS
Google Scholar
Lai J, Ma J, Swigonova Z, Ramakrishna W, Linton E, Llaca V, et al. Gene loss and movement in the maize genome. Genome Res 2004;14:1924–31.
Article
PubMed
CAS
Google Scholar
Lal SK, Giroux MJ, Brendel V, Vallejos CE, Hannah LC. The maize genome contains a helitron insertion. Plant Cell 2003;15:381–91.
Article
PubMed
CAS
Google Scholar
Leister D, Kurth J, Laurie DA, Yano M, Sasaki T, Devos K, et al. Rapid reorganization of resistance gene homologues in cereal genomes. Proc Natl Acad Sci USA 1998;95:370–5.
Article
PubMed
CAS
Google Scholar
Lescot M, Piffanelli P, Ciampi AY, Ruiz M, Blanc G, et al. Insights into the Musa genome: syntenic relationships to rice and between Musa species. BMC Genomics 2008;9:58.
Article
PubMed
Google Scholar
Lin R, Ding L, Casola C, Ripoll DR, Feschotte C, Wang H. Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 2007;318:1302–5.
Article
PubMed
CAS
Google Scholar
Liu H, Sachidanandam R, Stein L. Comparative genomics between rice and Arabidopsis shows scant collinearity in gene order. Genome Res 2001;11:2020–6.
Article
PubMed
CAS
Google Scholar
Lukens LN, Pires JC, Leon E, Vogelzang R, Oslach L, Osborn T. Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids. Plant Physiol 2006;140:336–48.
Article
PubMed
CAS
Google Scholar
Ma J, Bennetzen JL. Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci USA 2004;101:12404–10.
Article
PubMed
CAS
Google Scholar
Ma J, Bennetzen JL. Recombination, rearrangement, reshuffling, and divergence in a centromeric region of rice. Proc Natl Acad Sci USA 2006;103:383–8.
Article
PubMed
CAS
Google Scholar
Ma J, Devos KM, Bennetzen JL. Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 2004;14:860–9.
Article
PubMed
CAS
Google Scholar
Ma J, Jackson SA. Retrotransposon accumulation and satellite amplification mediated by segmental duplication facilitate centromere expansion in rice. Genome Res 2006;16:251–9.
Article
PubMed
CAS
Google Scholar
Ma J, SanMiguel P, Lai J, Messing J, Bennetzen JL. DNA rearrangement in orthologous orp regions of the maize, rice and sorghum genomes. Genetics 2005;170:1209–20.
Article
PubMed
CAS
Google Scholar
Ma J, Wing RA, Bennetzen JL, Jackson SA. Plant centromere organization: a dynamic structure with conserved functions. Trends Genet 2007;23:134–9.
Article
PubMed
CAS
Google Scholar
Malik HS, Henikoff S. Conflict begets complexity: the evolution of centromeres. Curr Opin Genet Dev 2002;12:711–8.
Article
PubMed
CAS
Google Scholar
Moore G, Devos KM, Wang Z, Gale MD. Cereal genome evolution, Grasses, line up and form a circle. Curr Biol 1995;5:737–9.
Article
PubMed
CAS
Google Scholar
Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A. Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 2005;37:997–1002.
Article
PubMed
CAS
Google Scholar
Nagamura Y. Conservation of duplicated segments between rice chromosome 11 and chromosome 12. Breeding Science 1995;45:373–6.
CAS
Google Scholar
Nagy ED, Bennetzen JL. Pathogen corruption and site-directed recombination at a plant disease resistance gene cluster. Genome Res. 2008; doi:10.1101/gr.078766.108.
Paterson AH, Bowers JE, Chapman BA. Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 2004;101:9903–8.
Article
PubMed
CAS
Google Scholar
Paterson AH, Lin YR, Li Z, Schertz KF, Doebley JF, Pinson SR, et al. Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 1995;269:1714–8.
Article
PubMed
CAS
Google Scholar
Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, et al. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 1999;400:256–61.
Article
PubMed
CAS
Google Scholar
Piegu B, Guyot R, Picault N, Roulin A, Saniyal A, Kim H, et al. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 2006;16:1262–9.
Article
PubMed
CAS
Google Scholar
Ramakrishna W, Dubcovsky J, Park YJ, Busso C, Emberton J, SanMiguel P, et al. Different types and rates of genome evolution detected by comparative sequence analysis of orthologous segments from four cereal genomes. Genetics 2002;162:1389–400.
PubMed
CAS
Google Scholar
Richter TE, Pryor TJ, Bennetzen JL, Hulbert SH. New rust resistance specificities associated with recombination in the Rp1 complex in maize. Genetics 1995;141:373–81.
PubMed
CAS
Google Scholar
Salse J, Bolot S, Throude M, Jouffe V, Piegu B, Quraishi UM, et al. Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 2008;20:11–24.
Article
PubMed
CAS
Google Scholar
SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, et al. Nested retrotransposons in the intergenic regions of the maize genome. Science 1996;274:765–8.
Article
PubMed
CAS
Google Scholar
Stark A, Lin MF, Kheradpour P, Pedersen JS, Parts L, et al. Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature 2007;450:219–32.
Article
PubMed
CAS
Google Scholar
Swigonova Z, Lai J, Ma J, Ramakrishna W, Llaca V, Bennetzen JL, et al. Close split of sorghum and maize genome progenitors. Genome Res 2004;14:1916–23.
Article
PubMed
CAS
Google Scholar
The Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 2005;437:69–87.
Article
Google Scholar
Thomas CA Jr. The genetic organization of chromosomes. Annu Rev Genet 1971;5:237–56.
Article
PubMed
CAS
Google Scholar
Tian C, Xiong Y, Liu T, Sun S, Chen L, Chen M. Evidence for an ancient whole-genome duplication event in rice and other cereals. Acta Genetica Sinica 2005;32:519–27.
PubMed
CAS
Google Scholar
Tikhonov AP, SanMiguel PJ, Nakajima Y, Gorenstein NM, Bennetzen JL, Avramova Z. Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc Natl Acad Sci USA 1999;96:7409–14.
Article
PubMed
CAS
Google Scholar
Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, et al. The sequence of the human genome. Science 2001;291:1304–51.
Article
PubMed
CAS
Google Scholar
Vicient CM, Suoniemi A, Anamthawat-Jonsson K, Tanskanen J, Beharav A, Nevo E, et al. Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 1999;11:1769–84.
Article
PubMed
CAS
Google Scholar
Vitte C, Bennetzen JL. Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc Natl Acad Sci USA 2006;103:17638–43.
Article
PubMed
CAS
Google Scholar
Wei F, Coe E, Nelson W, Bharti AK, Engler F, et al. Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet 2007;3:e123.
Article
PubMed
Google Scholar
Wicker T, Stein N, Albar L, Feuillet C, Schlagenhauf E, Keller B. Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J 2001;26:307–16.
Article
PubMed
CAS
Google Scholar
Wicker T, Yahiaoui N, Guyot R, Schlagenhauf E, Liu ZD, Dubcovsky J, et al. Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and Am genomes of wheat. Plant Cell 2003;15:1186–97.
Article
PubMed
CAS
Google Scholar
Wicker T, Yahiaoui N, Keller B. Illegitimate recombination is a major evolutionary mechanism for initiating size variation in plant resistance genes. Plant J 2007;51:631–41.
Article
PubMed
CAS
Google Scholar
Wilson WA, Harrington SE, Woodman WL, Lee M, Sorrells ME, McCouch SR. Inferences on the genome structure of progenitor maize through comparative analysis of rice, maize and the domesticated panicoids. Genetics 1999;153:453–73.
PubMed
CAS
Google Scholar
Wing RA, Ammiraju JS, Luo M, Kim H, Yu Y, et al. The Oryza map alignment project: the golden path to unlocking the genetic potential of wild rice species. Plant Mol Biol 2005;59:53–62.
Article
PubMed
CAS
Google Scholar
Wu Y, Zhu Z, Ma L, Chen M. The preferential retention of starch synthesis genes reveals the impact of whole-genome duplication on grass evolution. Mol Biol Evol 2008;25:1003–6.
Article
PubMed
CAS
Google Scholar
Yu J, Wang J, Lin W, Li S, Li H, et al. The genomes of Oryza sativa: a history of duplications. PLoS Biol 2005;3:e38.
Article
PubMed
Google Scholar
Zhang S, Gu YQ, Singh J, Coleman-Derr D, Brar DS, Jiang N, et al. New insights into Oryza genome evolution: high gene colinearity and differential retrotransposon amplification. Plant Mol Biol 2007;64:589–600.
Article
PubMed
CAS
Google Scholar
Zou XH, Zhang FM, Zhang JG, Zang LL, Tang L, Wang J, et al. Analysis of 142 genes resolves the rapid diversification of the rice genus. Genome Biol 2008;9:R49.
Article
PubMed
Google Scholar