Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204. https://doi.org/10.1023/B:EUPH.0000014914.85465.4f
Article
Google Scholar
Ali A, Naz S, Alam S, Iqbal J (2007) In vitro induced mutation for screening of red rot (Colletotrichum falcatum) resistance in sugarcane (Saccharum officinarum). Pak J Bot 39:1979–1994
Google Scholar
Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, De Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40:W597–W603. https://doi.org/10.1093/nar/gks400
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashkani S, Ashkani S, Rafii MY, Shabanimofrad M, Ghasemzadeh A, Ravanfar SA, Latif MA et al (2016) Molecular progress on the mapping and cloning of functional genes for blast disease in rice (Oryza sativa L.): current status and future considerations. Crit Rev Biotechnol 36:353–367
Article
CAS
PubMed
Google Scholar
Asibi AE, Chai Q, Coulter JA (2019) Rice blast: a disease with implications for global food security. Agronomy 9:451. https://doi.org/10.3390/agronomy9080451
Article
CAS
Google Scholar
Bagnaresi P, Biselli C, Orrù L, Urso S, Crispino L, Abbruscato P, Piffanelli P, Lupotto E, Cattivelli L, Valè G (2012) Comparative transcriptome profiling of the early response to Magnaporthe oryzae in durable resistant vs susceptible rice (Oryza sativa L.) genotypes. PLoS ONE 7:e51609. https://doi.org/10.1371/journal.pone.0051609
Article
CAS
PubMed
PubMed Central
Google Scholar
Bai Z-Y (2016) Improving bacterial blight resistance in TK9 rice variety by using marker-assisted selection. Dissertation, National Chung Hsing University
Ballini E, Morel J-B, Droc G, Price A, Courtois B, Notteghem J-L, Tharreau D (2008) A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant-Microbe Interact 21:859–868. https://doi.org/10.1094/mpmi-21-7-0859
Article
CAS
PubMed
Google Scholar
Bhagwat B, Duncan EJ (1998) Mutation breeding of banana cv. Highgate (Musa spp., AAA Group) for tolerance to Fusarium oxysporum f. sp. cubense using chemical mutagens. Sci Hortic 73:11–22. https://doi.org/10.1016/s0304-4238(97)00141-6
Article
CAS
Google Scholar
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonman JM, Dios TIVD, Khin MM (1986) Physiologic specialization of Pyricularia oryzae in the Philippines. Plant Dis 70:767–769
Article
Google Scholar
Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890. https://doi.org/10.1093/bioinformatics/btg112
Article
CAS
PubMed
Google Scholar
Buu RH, Huang CS (1983) Studies on the improvement of blast disease resistance of Japonica rice, Tainung 67. J Agric Res China 32:201–208. https://doi.org/10.29951/jarc.198309.0001
Article
Google Scholar
Chaipanya C, Telebanco-Yanoria MJ, Quime B, Longya A, Korinsak S, Korinsak S, Toojinda T, Vanavichit A, Jantasuriyarat C, Zhou B (2017) Dissection of broad-spectrum resistance of the Thai rice variety Jao Hom Nin conferred by two resistance genes against rice blast. Rice 10:18. https://doi.org/10.1186/s12284-017-0159-0
Article
PubMed
PubMed Central
Google Scholar
Chen CW, Chen YN, Lin TC (2015) Pathotype profile of Xanthomonas oryzae pv. oryzae isolates from Taiwan by using the rice IRBB lines. In: Abstracts of the 2014 Annual Meeting of Taiwan Phytopathological Society, National Chung Hsing University, Taichung, 27–28 March 2015
Chen Y-N, Chen C-W, Lin T-C (2013) Studies on physiological races of Magnaporthe oryzae, causal agent of rice blast, in Taiwan. J Taiwan Agric Res 62:40–56
Google Scholar
Chen Y-N, Wu D-H, Chen M-C, Chen P-C (2021) A simple and economical method to induce sporulation of Pyricularia oryzae. J Taiwan Agric Res 70:1–10. https://doi.org/10.6156/jtar.202103_70(1).0001
Article
Google Scholar
Chen YN, Chen PC (2020) The neglected first inoculum of rice blast pathogen Pyricularia oryze on the mats of rice seedlings. J Plant Med 62:13–16. https://doi.org/10.6716/jpm.202006_62(2).0002
Article
CAS
Google Scholar
Chiu C-C (2020) Breeding for both blast and bacterial blight resistant lines by marker-assisted selection in rice. Dissertation, National Chung Hsing University
Cho S-W, Jeung J-U, Shin Y-S, Kang K-H, Lee S-B, Kim B-K (2014) Genetic analysis on short culm and the rice blast resistance of namil(sa)-bl5, a japonica rice mutant line. Korean J Breed Sci 46:238–249. https://doi.org/10.9787/kjbs.2014.46.3.238
Article
Google Scholar
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly (austin) 6:80–92. https://doi.org/10.4161/fly.19695
Article
CAS
Google Scholar
Deng Y, Zhai K, Xie Z, Yang D, Zhu X, Liu J, Wang X, Qin P, Yang Y, Zhang G, Li Q, Zhang J, Wu S, Milazzo J, Mao B, Wang E, Xie H, Tharreau D, He Z (2017) Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355:962–965. https://doi.org/10.1126/science.aai8898
Article
CAS
PubMed
Google Scholar
Devi SJSR, Singh K, Umakanth B, Vishalakshi B, Renuka P, Sudhakar KV, Prasad MS, Viraktamath BC, Babu VR, Madhav MS (2015) Development and identification of novel rice blast resistant sources and their characterization using molecular markers. Rice Sci 22:300–308. https://doi.org/10.1016/j.rsci.2015.11.002
Article
Google Scholar
Dong L, Liu S, Xu P, Deng W, Li X, Tharreau D, Li J, Zhou J, Wang Q, Tao D, Yang Q (2017) Fine mapping of Pi57(t) conferring broad spectrum resistance against Magnaporthe oryzae in introgression line IL-E1454 derived from Oryza longistaminata. PLoS ONE 12:e0186201. https://doi.org/10.1371/journal.pone.0186201
Article
CAS
PubMed
PubMed Central
Google Scholar
Droc G, Périn C, Fromentin S, Larmande P (2009) OryGenesDB 2008 update: database interoperability for functional genomics of rice. Nucleic Acids Res 37:D992–D995. https://doi.org/10.1093/nar/gkn821
Article
CAS
PubMed
Google Scholar
Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M (2009) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325:998–1001. https://doi.org/10.1126/science.1175550
Article
CAS
PubMed
Google Scholar
Gel B, Serra E (2017) karyoploteR: an R/Bioconductor package to plot customizable genomes displaying arbitrary data. Bioinformatics 33:3088–3090. https://doi.org/10.1093/bioinformatics/btx346
Article
CAS
PubMed
PubMed Central
Google Scholar
Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98
CAS
Google Scholar
Hsieh K-T, Chen Y-T, Hu T-J, Lin S-M, Hsieh C-H, Liu S-H, Shiue S-Y, Lo S-F, Wang IW, Tseng C-S, Chen L-J (2021) Comparisons within the rice GA 2-Oxidase gene family revealed three dominant paralogs and a functional attenuated gene that led to the identification of four amino acid variants associated with GA deactivation capability. Rice 14:70. https://doi.org/10.1186/s12284-021-00499-4
Article
PubMed
PubMed Central
Google Scholar
Huang J, Si W, Deng Q, Li P, Yang S (2014) Rapid evolution of avirulence genes in rice blast fungus Magnaporthe oryzae. BMC Genet 15:45. https://doi.org/10.1186/1471-2156-15-45
Article
CAS
PubMed
PubMed Central
Google Scholar
Joshi S, Dhatwalia S, Kaachra A, Sharma KD, Rathour R (2019) Genetic and physical mapping of a new rice blast resistance specificity Pi-67 from a broad spectrum resistant genotype Tetep. Euphytica 215:9. https://doi.org/10.1007/s10681-018-2332-y
Article
CAS
Google Scholar
Jung Y-H, Lee J-H, Agrawal GK, Rakwal R, Kim J-A, Shim J-K, Lee S-K, Jeon J-S, Koh H-J, Lee Y-H, Iwahashi H, Jwa N-S (2005) The rice (Oryza sativa) Blast Lesion Mimic Mutant, blm, may confer resistance to blast pathogens by triggering multiple defense-associated signaling pathways. Plant Physiol Biochem 43:397–406. https://doi.org/10.1016/j.plaphy.2005.03.002
Article
CAS
PubMed
Google Scholar
Jung Y-H, Rakwal R, Agrawal GK, Shibato J, Kim J-A, Lee MO, Choi P-K, Jung S-H, Kim SH, Koh H-J, Yonekura M, Iwahashi H, Jwa N-S (2006) Differential expression of defense/stress-related marker proteins in leaves of a unique rice blast lesion mimic mutant (blm). J Proteome Res 5:2586–2598. https://doi.org/10.1021/pr060092c
Article
CAS
PubMed
Google Scholar
Kalia S, Rathour R (2019) Current status on mapping of genes for resistance to leaf- and neck-blast disease in rice. 3 Biotech 9:209. https://doi.org/10.1007/s13205-019-1738-0
Article
CAS
PubMed
PubMed Central
Google Scholar
Kauffman HE, Reddy APK, Heish SPV, Marca SD (1973) An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Dis Rep 57:537–541
Google Scholar
Kawahara Y, De La Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S, Childs KL, Davidson RM, Lin H, Quesada-Ocampo L, Vaillancourt B, Sakai H, Lee SS, Kim J, Numa H, Itoh T, Buell CR, Matsumoto T (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:4. https://doi.org/10.1186/1939-8433-6-4
Article
PubMed
PubMed Central
Google Scholar
Khan S, Al-Qurainy F, Anwar F (2009) Sodium azide: a chemical mutagen for enhancement of agronomic traits of crop plants. Environ We Int J Sci Tech 4:1–29
CAS
Google Scholar
Kuo YC (1981) Studies on yield potential of Tainung 67 rice - I. The performance of yield components. J Agric Res China 30:215–218. https://doi.org/10.29951/JARC.198109.0002
Article
Google Scholar
Lei C, Hao K, Yang Y, Ma J, Wang S, Wang J, Cheng Z, Zhao S, Zhang X, Guo X, Wang C, Wan J (2013) Identification and fine mapping of two blast resistance genes in rice cultivar 93–11. Crop J 1:2–14. https://doi.org/10.1016/j.cj.2013.07.007
Article
Google Scholar
Letunic I, Khedkar S, Bork P (2021) SMART: recent updates, new developments and status in 2020. Nucleic Acids Res 49:D458–D460. https://doi.org/10.1093/nar/gkaa937
Article
CAS
PubMed
Google Scholar
Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993. https://doi.org/10.1093/bioinformatics/btr509
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760. https://doi.org/10.1093/bioinformatics/btp324
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Subgroup GPDP (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W, Chern M, Yin J, Wang J, Chen X (2019) Recent advances in broad-spectrum resistance to the rice blast disease. Curr Opin Plant Biol 50:114–120. https://doi.org/10.1016/j.pbi.2019.03.015
Article
CAS
PubMed
Google Scholar
Liu G, Lu G, Zeng L, Wang GL (2002) Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6. Mol Gen Genomics 267:472–480. https://doi.org/10.1007/s00438-002-0677-2
Article
CAS
Google Scholar
Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Marchler GH, Song JS, Thanki N, Yamashita RA, Yang M, Zhang D, Zheng C, Lanczycki CJ, Marchler-Bauer A (2020) CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 48:D265–D268. https://doi.org/10.1093/nar/gkz991
Article
CAS
PubMed
Google Scholar
Luo S, Zhang Y, Hu Q, Chen J, Li K, Lu C, Liu H, Wang W, Kuang H (2012) Dynamic nucleotide-binding site and leucine-rich repeat-encoding genes in the grass family. Plant Physiol 159:197–210. https://doi.org/10.1104/pp.111.192062
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo Y, Yin Z (2013) Marker-assisted breeding of Thai fragrance rice for semi-dwarf phenotype, submergence tolerance and disease resistance to rice blast and bacterial blight. Mol Breed 32:709–721. https://doi.org/10.1007/s11032-013-9904-2
Article
CAS
Google Scholar
McHale L, Tan X, Koehl P, Michelmore RW (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biol 7:212. https://doi.org/10.1186/gb-2006-7-4-212
Article
CAS
PubMed
PubMed Central
Google Scholar
Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Asfaliza R, Latif MA (2013) Blast resistance in rice: a review of conventional breeding to molecular approaches. Mol Biol Rep 40:2369–2388. https://doi.org/10.1007/s11033-012-2318-0
Article
CAS
PubMed
Google Scholar
Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci U S A 88:9828–9832. https://doi.org/10.1073/pnas.88.21.9828
Article
CAS
PubMed
PubMed Central
Google Scholar
Mishra A, Wickneswari R, Bhuiyan MAR, Jena KK, Abd Aziz Shamsudin N (2021) Broad spectrum blast resistance alleles in newly developed Malaysian rice (Oryza sativa L.) genotypes. Euphytica 217:8. https://doi.org/10.1007/s10681-020-02738-z
Article
CAS
Google Scholar
Mohamad O, Mohd Nazir B, Abdul Rahim H, Alias I, Azlan S, Othman O, Hadzim K, Saad A, Abdullah MZ, Habibuddin H, Golam F (2006) Development of improved rice varieties through the use of induced mutations in Malaysia. Plant Mutat Rep 1:27–34
Google Scholar
Molina-Cano JL, Simiand JP, Sopena A, Pérez-Vendrell AM, Dorsch S, Rubiales D, Swanston JS, Jahoor A (2003) Mildew-resistant mutants induced in North American two- and six-rowed malting barley cultivars. Theor Appl Genet 107:1278–1287. https://doi.org/10.1007/s00122-003-1362-5
Article
CAS
PubMed
Google Scholar
Ni D, Song F, Ni J, Zhang A, Wang C, Zhao K, Yang Y, Wei P, Yang J, Li L (2015) Marker-assisted selection of two-line hybrid rice for disease resistance to rice blast and bacterial blight. Field Crops Res 184:1–8. https://doi.org/10.1016/j.fcr.2015.07.018
Article
Google Scholar
Ning X, Yunyu W, Aihong L (2020) Strategy for use of rice blast resistance genes in rice molecular breeding. Rice Sci 27:263–277. https://doi.org/10.1016/j.rsci.2020.05.003
Article
Google Scholar
Okonechnikov K, Conesa A, García-Alcalde F (2015) Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 32:292–294. https://doi.org/10.1093/bioinformatics/btv566
Article
CAS
PubMed
PubMed Central
Google Scholar
Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655. https://doi.org/10.1104/pp.109.138990
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiao Y, Jiang W, Lee J, Park B, Choi M-S, Piao R, Woo M-O, Roh J-H, Han L, Paek N-C, Seo HS, Koh H-J (2010) SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit μ1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). New Phytol 185:258–274. https://doi.org/10.1111/j.1469-8137.2009.03047.x
Article
CAS
PubMed
Google Scholar
Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang GL (2006) The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site–leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172:1901–1914. https://doi.org/10.1534/genetics.105.044891
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosa GJM (2013) Progeny testing. In: Maloy S, Hughes K (eds) Brenner’s encyclopedia of genetics, 2nd edn. Academic Press, San Diego, pp 466–467. https://doi.org/10.1016/B978-0-12-374984-0.01217-1
Chapter
Google Scholar
Rose R, Golosova O, Sukhomlinov D, Tiunov A, Prosperi M (2019) Flexible design of multiple metagenomics classification pipelines with UGENE. Bioinformatics 35:1963–1965. https://doi.org/10.1093/bioinformatics/bty901
Article
CAS
PubMed
Google Scholar
Ryu H-S, Han M, Lee S-K, Cho J-I, Ryoo N, Heu S, Lee Y-H, Bhoo SH, Wang G-L, Hahn T-R, Jeon J-S (2006) A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response. Plant Cell Rep 25:836–847. https://doi.org/10.1007/s00299-006-0138-1
Article
CAS
PubMed
Google Scholar
Shu Q, Wu D, Xia Y (1997) The most widely cultivated rice variety “Zhefu 802” in China and its genealogy. Mutat Breed Newsl 43:3–5
Google Scholar
Singh PK, Nag A, Arya P, Kapoor R, Singh A, Jaswal R, Sharma TR (2018) Prospects of understanding the molecular biology of disease resistance in rice. Int J Mol Sci 19:1141. https://doi.org/10.3390/ijms19041141
Article
CAS
PubMed Central
Google Scholar
Singh PK, Singh RS (2018) Tackling climate change: a breeder’s perspective. In: Mahdi SS (ed) Climate change and agriculture in India: impact and adaptation. Springer, Kashmir, pp 147–162
Google Scholar
Singh R, Singh SP, Singh A, Singh PK, Dwivedi DK, Khan NA (2020) Protein profiling of resistant and susceptible mutant lines of rice variety swarna in response to Rhizoctonia solani AG1 IA infection. Int J Curr Microbiol Appl Sci 9:3971–3978
Article
CAS
Google Scholar
Srivastava D, Shamim M, Kumar M, Mishra A, Pandey P, Kumar D, Yadav P, Siddiqui MH, Singh KN (2017) Current status of conventional and molecular interventions for blast resistance in rice. Rice Sci 24:299–321. https://doi.org/10.1016/j.rsci.2017.08.001
Article
Google Scholar
Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183. https://doi.org/10.1111/tpj.12105
Article
CAS
PubMed
Google Scholar
Tribhuvan KU, Sandhya KK, Sevanthi AM, Gaikwad K (2018) MutMap: a versatile tool for identification of mutant loci and mapping of genes. Indian J Plant Physiol 23:612–621. https://doi.org/10.1007/s40502-018-0417-1
Article
CAS
Google Scholar
Tseng H-Y, Lin D-G, Hsieh H-Y, Tseng Y-J, Tseng W-B, Chen C-W, Wang C-S (2015) Genetic analysis and molecular mapping of QTLs associated with resistance to bacterial blight in a rice mutant, SA0423. Euphytica 205:231–241. https://doi.org/10.1007/s10681-015-1435-y
Article
CAS
Google Scholar
van Ooijen G, Mayr G, Kasiem MMA, Albrecht M, Cornelissen BJC, Takken FLW (2008) Structure–function analysis of the NB-ARC domain of plant disease resistance proteins. J Exp Bot 59:1383–1397. https://doi.org/10.1093/jxb/ern045
Article
CAS
PubMed
Google Scholar
Vengadessan V, Rai KN, Kannan Bapu JR, Hash CT, Bhattacharjee R, Senthilvel S, Vinayan MT, Nepolean T (2013) Construction of genetic linkage map and QTL analysis of sink-size traits in pearl millet (Pennisetum glaucum). ISRN Genet 2013:1–14. https://doi.org/10.5402/2013/471632
Article
CAS
Google Scholar
Vijayan J, Jain S, Jain N, Devanna BN, Rathour R, Variar M, Sk P, Singh A, Singh U, Sharma T (2013) Identification of differentially expressed genes in rice during its early phases of interaction with Magnaporthe oryzae. Indian J Genet Plant Breed 73:233–243
Article
CAS
Google Scholar
Wang B-H, Ebbole DJ, Wang Z-H (2017) The arms race between Magnaporthe oryzae and rice: diversity and interaction of Avr and R genes. J Integr Agric 16:2746–2760. https://doi.org/10.1016/s2095-3119(17)61746-5
Article
Google Scholar
Wang C-S, Tseng T-H, Lin C-Y (2002) Rice biotech research at the Taiwan Agricultural Research Institute. Asia Pac Biotech News 6:950–956
Article
Google Scholar
Wang J-C, Correll J-C, Jia Y (2015) Characterization of rice blast resistance genes in rice germplasm with monogenic lines and pathogenicity assays. Crop Prot 72:132–138. https://doi.org/10.1016/j.cropro.2015.03.014
Article
CAS
Google Scholar
Wang C-S, Lo K-L, Wang A-Z (2019a) Sodium azide mutagenesis generated diverse and broad spectrum blast resistance mutants in rice. Euphytica 215:145. https://doi.org/10.1007/s10681-019-2468-4
Article
CAS
Google Scholar
Wang L, Zhao L, Zhang X, Zhang Q, Jia Y, Wang G, Li S, Tian D, Li W-H, Yang S (2019b) Large-scale identification and functional analysis of NLR genes in blast resistance in the Tetep rice genome sequence. Proc Natl Acad Sci U S A 116:18479–18487. https://doi.org/10.1073/pnas.1910229116
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Lee S, Wang J, Ma J, Bianco T, Ji Y (2014) Current advances on genetic resistance to rice blast disease. In: Yan W, Bao J (eds) Rice - germplasm, genetics and improvement. IntechOpen, Rijeka. https://doi.org/10.5772/56824
Chapter
Google Scholar
Wu C-H, Derevnina L, Kamoun S (2018) Receptor networks underpin plant immunity. Science 360:1300–1301. https://doi.org/10.1126/science.aat2623
Article
CAS
PubMed
Google Scholar
Wu YY, Xiao N, Yu L, Pan CH, Li YH, Zhang XX, Liu GQ, Dai ZY, Pan XB, Li AH (2015) Combination patterns of major R genes determine the level of resistance to the M. oryzae in rice (Oryza sativa L.). PLoS ONE 10:e0126130. https://doi.org/10.1371/journal.pone.0126130
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu X, Hayashi N, Wang CT, Kato H, Fujimura T, Kawasaki S (2008) Efficient authentic fine mapping of the rice blast resistance gene Pik-h in the Pik cluster, using new Pik-h-differentiating isolates. Mol Breed 22:289–299. https://doi.org/10.1007/s11032-008-9175-5
Article
CAS
Google Scholar
Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K (2002) A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci U S A 99:7530–7535. https://doi.org/10.1073/pnas.112209199
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeng L-R, Qu S, Bordeos A, Yang C, Baraoidan M, Yan H, Xie Q, Nahm BH, Leung H, Wang G-L (2004) Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-Box/Armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell 16:2795–2808. https://doi.org/10.1105/tpc.104.025171
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang M, Xu J, Luo R, Shi D, Li Z (2003) Induction and use of japonica rice mutant R917 with broad-spectrum resistance to blast. In: Khush GS, Brar DS, Hardy B (eds) Advances in rice genetics. International Rice Research Institute, Los Baños, pp 33–35. https://doi.org/10.1142/9789812814319_0013
Chapter
Google Scholar
Zhang X, Yang S, Wang J, Jia Y, Huang J, Tan S, Zhong Y, Wang L, Gu L, Chen J-Q, Pan Q, Bergelson J, Tian D (2015) A genome-wide survey reveals abundant rice blast R genes in resistant cultivars. Plant J 84:20–28. https://doi.org/10.1111/tpj.12955
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao H, Wang X, Jia Y, Minkenberg B, Wheatley M, Fan J, Jia MH, Famoso A, Edwards JD, Wamishe Y, Valent B, Wang G-L, Yang Y (2018) The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance. Nat Commun 9:2039. https://doi.org/10.1038/s41467-018-04369-4
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao H, Yao W, Ouyang Y, Yang W, Wang G, Lian X, Xing Y, Chen L, Xie W (2015) RiceVarMap: a comprehensive database of rice genomic variations. Nucleic Acids Res 43:D1018–D1022. https://doi.org/10.1093/nar/gku894
Article
CAS
PubMed
Google Scholar
Zhou B, Dolan M, Sakai H, Wang G (2007) The genomic dynamics and evolutionary mechanism of the Pi2/9 locus in rice. Mol Plant-Microbe Interact 20:63–71. https://doi.org/10.1094/mpmi-20-0063
Article
CAS
PubMed
Google Scholar
Zhou Q, Zhang Z, Liu T, Gao B, Xiong X (2017) Identification and map-based cloning of the light-induced lesion mimic mutant 1 (LIL1) gene in rice. Front Plant Sci 8:2122. https://doi.org/10.3389/fpls.2017.02122
Article
PubMed
PubMed Central
Google Scholar
Zhu C, Huang J, Zhang YM (2007) Mapping binary trait loci in the F2:3 design. J Hered 98:337–344. https://doi.org/10.1093/jhered/esm041
Article
CAS
PubMed
Google Scholar
Zhu XY, Chen S, Yang JY, Zhou SC, Zeng LX, Han JL, Su J, Wang L, Pan QH (2012) The identification of Pi50(t), a new member of the rice blast resistance Pi2/Pi9 multigene family. Theor Appl Genet 124:1295–1304. https://doi.org/10.1007/s00122-012-1787-9
Article
CAS
PubMed
Google Scholar