Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA, Meinshausen M, Meinshausen N (2009) Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458(7242):1163–1166. https://doi.org/10.1038/nature08019
Article
CAS
PubMed
Google Scholar
Auclair JL, Baldos E, Heinrichs EA (1982) Biochemical evidence for the feeding sites of the leafhopper Nephotettix virescens within susceptible and resistant rice plants. Int J of Trop Insect Sci 3(01):29–34. https://doi.org/10.1017/S1742758400001855
Article
Google Scholar
Cheng C, Chang W (1979) Studies on varietal resistance to the brown planthopper in Taiwan. In: Brown planthopper: threat to rice production in Asia, pp 251–271
Google Scholar
Deutsch CA, Tewksbury JJ, Tigchelaar M, Battisti DS, Merrill SC, Huey RB, Naylor RL (2018) Increase in crop losses to insect pests in a warming climate. Science 361(6405):916–919. https://doi.org/10.1126/science.aat3466
Article
CAS
PubMed
Google Scholar
Du B, Chen R, Guo J, He G (2020) Current understanding of the genomic, genetic, and molecular control of insect resistance in rice. Mol Breed 40(2):24. https://doi.org/10.1007/s11032-020-1103-3
Article
CAS
Google Scholar
Du B, Zhang W, Liu B, Hu J, Wei Z, Shi Z, He R, Zhu L, Chen R, Han B (2009) Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proc Natl Acad Sci U S A 106(52):22163–22168. https://doi.org/10.1073/pnas.0912139106
Article
PubMed
PubMed Central
Google Scholar
Edwards OR (2001) Interspecific and intraspecific variation in the performance of three pest aphid species on five grain legume hosts. Entomol Exp Appl 100(1):21–30. https://doi.org/10.1046/j.1570-7458.2001.00844.x
Article
Google Scholar
Fahim M, Larkin PJ, Haber S, Shorter S, Lonergan PF, Rosewarne GM (2012) Effectiveness of three potential sources of resistance in wheat against wheat streak mosaic virus under field conditions. Australas Plant Pathol 41(3):301–309. https://doi.org/10.1007/s13313-012-0125-7
Article
CAS
Google Scholar
FAOSTAT (2020) Online statistical service. FAO, Rome. http://faostat.fao.org
Herdt RW (1991) Research priorities for rice biotechnology. Rice Biotechnol 6:19–54
Google Scholar
Horgan FG, Almazan M-LP VQ, Ramal AF, Bernal CC, Yasui H, Fujita D (2019) Unanticipated benefits and potential ecological costs associated with pyramiding leafhopper resistance loci in rice. Crop Prot 115:47–58. https://doi.org/10.1016/j.cropro.2018.09.013
Article
PubMed
PubMed Central
Google Scholar
Horgan FG, Arida A, Ardestani G, Almazan MLP (2020) Temperature-dependent oviposition and nymph performance reveal distinct thermal niches of coexisting planthoppers with similar thresholds for development. PLoS One 15(6):e0235506. https://doi.org/10.1371/journal.pone.0235506
Article
CAS
PubMed
PubMed Central
Google Scholar
Horgan FG, Arida A, Ardestani G, Almazan MLP (2021a) Elevated temperatures diminish the effects of a highly resistant rice variety on the brown planthopper. Sci Rep 11:1–13
Article
Google Scholar
Horgan FG, Arida A, Ardestani G, Almazan MLP (2021b) Positive and negative interspecific interactions between coexisting rice planthoppers neutralise the effects of elevated temperatures. Funct Ecol 35(1):181–192. https://doi.org/10.1111/1365-2435.13683
Article
PubMed
Google Scholar
Huang S, Cheng C, Chen C (2009) Wu W the trend of occurrence and prospective control measures of rice insect pests in Taiwan. In: Symposium on Achievements and Perspectives of Rice Protection in Taiwan, In, pp 131–147
IRRI (2013) Standard evaluation system for rice. International Rice Research Institute, Manila
Google Scholar
Ishii T, Brar DS, Multani DS, Khush GS (1994) Molecular tagging of genes for brown planthopper resistance and earliness introgressed from Oryza australiensis into cultivated rice, O sativa. Genome 37(2):217–221. https://doi.org/10.1139/g94-030
Article
CAS
PubMed
Google Scholar
Jairin J, Phengrat K, Teangdeerith S, Vanavichit A, Toojinda T (2006) Mapping of a broad-spectrum brown planthopper resistance gene, Bph3, on rice chromosome 6. Mol Breed 19(1):35–44. https://doi.org/10.1007/s11032-006-9040-3
Article
CAS
Google Scholar
Jairin J, Sansen K, Wongboon W, Kothcharerk J (2010) Detection of a brown planthopper resistance gene bph4 at the same chromosomal position of Bph3 using two different genetic backgrounds of rice. Breed Sci 60(1):71–75. https://doi.org/10.1270/jsbbs.60.71
Article
CAS
Google Scholar
Jena KK, Hechanova SL, Verdeprado H, Prahalada GD, Kim S-R (2017) Development of 25 near-isogenic lines (NILs) with ten BPH resistance genes in rice (Oryza sativa L.): production, resistance spectrum, and molecular analysis. Theor Appl Genet 130(11):2345–2360. https://doi.org/10.1007/s00122-017-2963-8
Article
CAS
PubMed
Google Scholar
Jena KK, Jeung JU, Lee JH, Choi HC, Brar DS (2006) High-resolution mapping of a new brown planthopper (BPH) resistance gene, Bph18 (t), and marker-assisted selection for BPH resistance in rice (Oryza sativa L.). Theor Appl Genet 112(2):288–297. https://doi.org/10.1007/s00122-005-0127-8
Article
CAS
PubMed
Google Scholar
Jena KK, Kim S-R (2020) Genomics, biotechnology and plant breeding for the improvement of rice production. In: Accelerated Plant Breeding, vol 1. Springer, Cham. pp 217–232
Ji H, Kim S-R, Kim Y-H, Suh J-P, Park H-M, Sreenivasulu N, Misra G, Kim S-M, Hechanova SL, Kim H, Lee G-S, Yoon U-H, Kim T-H, Lim H, Suh S-C, Yang J, An G, Jena KK (2016) Map-based cloning and characterization of the BPH18 gene from wild rice conferring resistance to brown planthopper (BPH) insect pest. Sci Rep 6(1):34376. https://doi.org/10.1038/srep34376
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang H, Hu J, Li Z, Liu J, Gao G, Zhang Q, Xiao J, He Y (2018) Evaluation and breeding application of six brown planthopper resistance genes in rice maintainer line Jin 23B. Rice 11(1):22. https://doi.org/10.1186/s12284-018-0215-4
Article
PubMed
PubMed Central
Google Scholar
Kimmins FM (1989) Electrical penetration graphs from Nilaparvata lugens on resistant and susceptible rice varieties. Entomol Exp Appl 50(1):69–79. https://doi.org/10.1111/j.1570-7458.1989.tb02317.x
Article
Google Scholar
Klingler J, Creasy R, Gao L, Nair RM, Calix AS, Jacob HS, Edwards OR, Singh KB (2005) Aphid resistance in Medicago truncatula involves antixenosis and phloem-specific, inducible antibiosis, and maps to a single locus flanked by NBS-LRR resistance gene analogs. Plant Physiol 137(4):1445–1455. https://doi.org/10.1104/pp.104.051243
Article
CAS
PubMed
PubMed Central
Google Scholar
Lamichhane JR, Dachbrodt-Saaydeh S, Kudsk P, Messéan A (2016) Toward a reduced reliance on conventional pesticides in European agriculture. Plant Dis 100(1):10–24. https://doi.org/10.1094/PDIS-05-15-0574-FE
Article
PubMed
Google Scholar
Liu Y, Wu H, Chen H, Liu Y, He J, Kang H, Sun Z, Pan G, Wang Q, Hu J, Hu J, Zhou F, Zhou K, Zheng X, Ren Y, Chen L, Wang Y, Zhao Z, Lin Q, Wu F, Zhang X, Guo X, Cheng X, Jiang L, Wu C, Wang H, Wan J (2015) A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice. Nat Biotechnol 33(3):301–305. https://doi.org/10.1038/nbt.3069
Article
CAS
PubMed
Google Scholar
Murata K, Fujiwara M, Kaneda C, Takumi S, Mori N, Nakamura C (1998) RFLP mapping of a brown planthopper (Nilaparvata lugens Stål) resistance gene bph2 of indica rice introgressed into a japonica breeding line 'Norin-PL4'. Genes Genet Syst 73(6):359–364. https://doi.org/10.1266/ggs.73.359
Article
CAS
Google Scholar
Murata K, Fujiwara M, Murai H, Takumi S, Mori N, Nakamura C (2001) Mapping of a brown planthopper (Nilaparvata lugens Stål) resistance gene Bph9 on the long arm of rice chromosome 12. Cereal Res Commun 29(3-4):245–250. https://doi.org/10.1007/BF03543667
Article
CAS
Google Scholar
Myint KKM, Fujita D, Matsumura M, Sonoda T, Yoshimura A, Yasui H (2012) Mapping and pyramiding of two major genes for resistance to the brown planthopper (Nilaparvata lugens [Stål]) in the rice cultivar ADR52. Theor Appl Genet 124(3):495–504. https://doi.org/10.1007/s00122-011-1723-4
Article
CAS
PubMed
Google Scholar
Nguyen CD, Verdeprado H, Zita D, Sanada-Morimura S, Matsumura M, Virk PS, Brar DS, Horgan FG, Yasui H, Fujita D (2019) The development and characterization of near-isogenic and pyramided lines carrying resistance genes to brown planthopper with the genetic background of japonica rice (Oryza sativa L.). Plants 8:498
Article
CAS
PubMed Central
Google Scholar
Oerke E-C (2006) Crop losses to pests. J Agric Sci 144(1):31–43. https://doi.org/10.1017/S0021859605005708
Article
Google Scholar
Pathak P, Heinrichs E (1982) Bromocresol green indicator for measuring feeding activity of Nilaparvata lugens on rice varieties. Philipp Entomol 5:197–198
Google Scholar
Qiu Y, Guo J, Jing S, Zhu L, He G (2012) Development and characterization of japonica rice lines carrying the brown planthopper-resistance genes BPH12 and BPH6. Theo Appl Genet 124(3):485–494. https://doi.org/10.1007/s00122-011-1722-5
Article
CAS
Google Scholar
Rahman ML, Jiang W, Chu SH, Qiao Y, Ham T-H, Woo M-O, Lee J, Khanam MS, Chin J-H, Jeung J-U, Brar DS, Jena KK, Koh H-J (2009) High-resolution mapping of two rice brown planthopper resistance genes, Bph20(t) and Bph21(t), originating from Oryza minuta. Theo Appl Genet 119(7):1237–1246. https://doi.org/10.1007/s00122-009-1125-z
Article
Google Scholar
Rasband WS (1997) ImageJ. National Institutes of Health, Bethesda
Google Scholar
Ren J, Gao F, Wu X, Lu X, Zeng L, Lv J, Su X, Luo H, Ren G (2016) Bph32, a novel gene encoding an unknown SCR domain-containing protein, confers resistance against the brown planthopper in rice. Sci Rep 6(1):37645. https://doi.org/10.1038/srep37645
Article
CAS
PubMed
PubMed Central
Google Scholar
Sidhu GS, Khush GS (1979) Linkage relationships of some genes for disease and insect resistance and semidwarf stature in rice. Euphytica 28(2):233–237. https://doi.org/10.1007/BF00056580
Article
Google Scholar
Smith CM (2005) Plant resistance to arthropods: molecular and conventional approaches. Springer Science & Business Media, Dordrecht. https://doi.org/10.1007/1-4020-3702-3
Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) Climate change 2013: the physical science basis, Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, vol 1535
Google Scholar
Stout M, Davis J (2009) Keys to the increased use of host plant resistance in integrated Pest management. In: Integrated Pest Management: innovation-development process. Springer, Dordrecht. pp 163–181
Su C-C, Zhai H-Q, Wang C-M, Sun L-H, Wan J-M (2006) SSR mapping of brown planthopper resistance gene Bph9 in Kaharamana, an indica rice (Oryza sativa L.). Chin J Genet 33:262–268
CAS
Google Scholar
Sun L, Su C, Wang C, Zhai H, Wan J (2005) Mapping of a major resistance gene to the brown planthopper in the rice cultivar Rathu Heenati. Breed Sci 55(4):391–396. https://doi.org/10.1270/jsbbs.55.391
Article
CAS
Google Scholar
Tamura Y, Hattori M, Yoshioka H, Yoshioka M, Takahashi A, Wu J, Sentoku N, Yasui H (2014) Map-based cloning and characterization of a brown planthopper resistance gene BPH26 from Oryza sativa L. ssp. indica cultivar ADR52. Sci Rep 4:5872
Article
PubMed
PubMed Central
Google Scholar
R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
Wang B-J, Xu H-X, Zheng X-S, Fu Q, Lu Z-X (2010) High temperature modifies resistance performances of rice varieties to brown planthopper, Nilaparvata lugens (Stål). Rice Sci 17(4):334–338. https://doi.org/10.1016/S1672-6308(09)60036-6
Article
CAS
Google Scholar
Wang Y, Cao L, Zhang Y, Cao C, Liu F, Huang F, Qiu Y, Li R, Lou X (2015) Map-based cloning and characterization of BPH29, a B3 domain-containing recessive gene conferring brown planthopper resistance in rice. J Exp Bot 66(19):6035–6045. https://doi.org/10.1093/jxb/erv318
Article
CAS
PubMed
PubMed Central
Google Scholar
Yara A, Phi CN, Matsumura M, Yoshimura A, Yasui H (2010) Development of near-isogenic lines for BPH25(t) and BPH26(t), which confer resistance to the brown planthopper, Nilaparvata lugens (Stål.) in indica rice ‘ADR52’. Breed Sci 60(5):639–647. https://doi.org/10.1270/jsbbs.60.639
Article
Google Scholar
Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y, Huang M, Yao Y, Bassu S, Ciais P, Durand J-L, Elliott J, Ewert F, Janssens IA, Li T, Lin E, Liu Q, Martre P, Müller C, Peng S, Peñuelas J, Ruane AC, Wallach D, Wang T, Wu D, Liu Z, Zhu Y, Zhu Z, Asseng S (2017) Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci U S A 114(35):9326–9331. https://doi.org/10.1073/pnas.1701762114
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao Y, Huang J, Wang Z, Jing S, Wang Y, Ouyang Y, Cai B, Xin XF, Liu X, Zhang C, Pan Y, Ma R, Li Q, Jiang W, Zeng Y, Shangguan X, Wang H, BoDu ZL, Xu X, Feng Y-Q, He SY, Chen R, Zhang Q, He G (2016) Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation. Proc Natl Acad Sci U S A 113(45):12850–12855. https://doi.org/10.1073/pnas.1614862113
Article
CAS
PubMed
PubMed Central
Google Scholar