Barman A, Banerjee J (2015) Versatility of germin-like proteins in their sequences, expressions, and functions. Funct Integr Genomics 15(5):533–548. https://doi.org/10.1007/s10142-015-0454-z
Article
CAS
PubMed
Google Scholar
Beltenev V, Ivanov V, Rozhdestvenskaya I, Cherkashov G, Stepanova T, Shilov V, Pertsev A, Davydov M, Egorov I, Melekestseva I, Narkevsky E, Ignatov V (2007) Protocols on rice blast of IRRI. Internal Rice Research Institute, Manila.
Carrillo M, Goodwin P, Leach J, Leung H, Cruz C (2009) Phylogenomic relationships of rice oxalate oxidases to the cupin superfamily and their association with disease resistance qtl. Rice 2(1):67–79. https://doi.org/10.1007/s12284-009-9024-0
Article
Google Scholar
Carter C, Graham R, Thornburg R (1998) Arabidopsis thaliana contains a large family of germin-like proteins: characterization of cDNA and genomic sequences encoding 12 unique family members. Plant Mol Biol 38(6):929–943. https://doi.org/10.1023/A:1006038117130
Article
CAS
PubMed
Google Scholar
Chen T, Li W, Hu X, Guo J, Liu A, Zhang B (2015) A cotton MYB transcription factor, GbMYB5, is positively involved in plant adaptive response to drought stress. Plant Cell Physiol 56(5):917–929. https://doi.org/10.1093/pcp/pcv019
Article
CAS
PubMed
Google Scholar
Deng H, Liu H, Li X, Xiao J, Wang S (2012) A CCCH-type zinc finger nucleic acid-binding protein quantitatively confers resistance against rice bacterial blight disease. Plant Physiol 158(2):876–889. https://doi.org/10.1104/pp.111.191379
Article
CAS
PubMed
Google Scholar
Ding B, Bellizzi Mdel R, Ning Y, Meyers B, Wang G (2012) HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense related genes in rice. Plant Cell 24(9):3783–3794. https://doi.org/10.1105/tpc.112.101972
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong X, Ji R, Guo X, Foster SJ, Chen H, Dong C, Liu Y, Hu Q, Liu S (2008) Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Planta 228(2):331–340. https://doi.org/10.1007/s00425-008-0740-2
Article
CAS
PubMed
Google Scholar
Fang N, Wei X, Shen L, Yu Y, Li M, Yin C, He W, Guan C, Chen H, Zhang H, Bao Y (2019) Fine mapping of a panicle blast resistance gene Pb-bd1 in japonica landrace Bodao and its application in rice breeding. Rice 12(1):18. https://doi.org/10.1186/s12284-019-0275-0
Article
PubMed
PubMed Central
Google Scholar
Hammond-Kosack K, Harrison K, Jones J (1994) Developmentally regulated cell death on expression of the fungal avirulence gene Avr9 in tomato seedlings carrying the disease-resistance gene Cf-9. Proc Natl Acad Sci U S 91(22):10445–10449. https://doi.org/10.1073/pnas.91.22.10445
Article
CAS
Google Scholar
Hu K, Qiu D, Shen X, Li X, Wang S (2008) Isolation and manipulation of quantitative trait loci for disease resistance in rice using a candidate gene approach. Mol Plant 1(5):786–793. https://doi.org/10.1093/mp/ssn039
Article
CAS
PubMed
Google Scholar
Hu X, Bidney DL, Yalpani N, Duvick JP, Crasta O, Folkerts O, Lu G (2003) Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiol 133(1):170–181. https://doi.org/10.1104/pp.103.024026
Article
CAS
PubMed
PubMed Central
Google Scholar
Huot B, Yao J, Montgomery B, He S (2014) Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol Plant 7(8):1267–1287. https://doi.org/10.1093/mp/ssu049
Article
CAS
PubMed
PubMed Central
Google Scholar
Inoue H, Nakamura M, Mizubayashi T, Takahashi A, Sugano S, Fukuoka S, Hayashi N (2017) Panicle blast 1 (Pb1) resistance is dependent on at least four QTLs in the rice genome. Rice 10(1):36. https://doi.org/10.1186/s12284-017-0175-0
Article
PubMed
PubMed Central
Google Scholar
Jiang C, Shimono M, Sugano S, Kojima M, Liu X, Inoue H, Sakakibara H, Takatsuji H (2013) Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice. Mol Plant-Microbe Interact 26(3):287–296. https://doi.org/10.1094/MPMI-06-12-0152-R
Article
CAS
PubMed
Google Scholar
Jiang C, Shimono M, Sugano S, Kojima M, Yazawa K, Yoshida R, Inoue H, Hayashi N, Sakakibara H, Takatsuji H (2010) Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice-Magnaporthe grisea interaction. Mol Plant- Microbe Interact 23(6):791–798. https://doi.org/10.1094/MPMI-23-6-0791
Article
CAS
PubMed
Google Scholar
Karmakar S, Molla K, Chanda P, Sarkar S, Datta S, Datta K (2016) Green tissue-specific co-expression of chitinase and oxalate oxidase 4 genes in rice for enhanced resistance against sheath blight. Planta 243(1):115–130. https://doi.org/10.1007/s00425-015-2398-x
Article
CAS
PubMed
Google Scholar
Kaur A, Pati P, Pati A, Nagpal A (2017) In-silico analysis of cis-acting regulatory elements of pathogenesis-related proteins of Arabidopsis thaliana and Oryza sativa. PLoS One 12(9):e0184523. https://doi.org/10.1371/journal.pone.0184523
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Hwang B (2014) An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signaling of the defense response to microbial pathogens. J Exp Bot 65(9):2295–2306. https://doi.org/10.1093/jxb/eru109
Article
CAS
PubMed
PubMed Central
Google Scholar
Lamb C, Dixon R (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48(1):251–275. https://doi.org/10.1146/annurev.arplant.48.1.251
Article
CAS
PubMed
Google Scholar
Li Y, Cao X, Zhu Y, Yang X, Zhang K, Xiao Z, Wang H, Zhao J, Zhang L, Li G, Zheng Y, Fan J, Wang J, Chen X, Wu X, Zhao J, Dong O, Chen X, Chen M, Wang W (2019) Osa-miR398b boosts H2O2 production and rice blast disease-resistance via multiple superoxide dismutases. New Phytol 222(3):1507–1522. https://doi.org/10.1111/nph.15678
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu B, Zhang S, Zhu X, Yang Q, Wu S, Mei M, Mauleon R, Leach J, Mew T, Leung H (2004) Candidate defense genes as predictors of quantitative blast resistance in rice. Mol Plant-Microbe Interact 17(10):1146–1152. https://doi.org/10.1094/MPMI.2004.17.10.1146
Article
CAS
PubMed
Google Scholar
Liu H, Zhang Y, Yin H, Wang W, Zhao X, Du Y (2013) Alginate oligosaccharides enhanced Triticum aestivum L. tolerance to drought stress. Plant Physiol Biochem 62:33–40. https://doi.org/10.1016/j.plaphy.2012.10.012
Article
CAS
PubMed
Google Scholar
Liu Q, Yan S, Huang W, Yang J, Dong J, Zhang S, Zhao J, Yang T, Mao X, Zhu X, Liu B (2018) NAC transcription factor ONAC066 positively regulates disease resistance by suppressing the ABA signaling pathway in rice. Plant Mol Biol 98(4–5):289–302. https://doi.org/10.1007/s11103-018-0768-z
Article
CAS
PubMed
Google Scholar
Liu Q, Yang J, Yan S, Zhang S, Zhao J, Wang W, Yang T, Wang X, Mao X, Dong J, Zhu X, Liu B (2016) The germin-like protein OsGLP2-1 enhances resistance to fungal blast and bacterial blight in rice. Plant Mol Biol 92(4–5):411–423. https://doi.org/10.1007/s11103-016-0521-4
Article
CAS
PubMed
Google Scholar
Liu Q, Yang J, Zhang S, Zhao J, Feng A, Yang T, Wang X, Mao X, Dong J, Zhu X, Leung H, Leach JE, Liu B (2016a) OsGF14e positively regulates panicle blast resistance in rice. Biochem Biophys Res Commun 471(1):247–252. https://doi.org/10.1016/j.bbrc.2016.02.005
Article
CAS
PubMed
Google Scholar
Liu Q, Yang J, Zhang S, Zhao J, Feng A, Yang T, Wang X, Mao X, Dong J, Zhu X, Leung H, Leach JE, Liu B (2016b) OsGF14b positively regulates panicle blast resistance but negatively regulates leaf blast resistance in rice. Mol Plant-Microbe Interact 29(1):46–56. https://doi.org/10.1094/MPMI-03-15-0047-R
Article
CAS
PubMed
Google Scholar
Livingstone D, Hampton J, Phipps P, Grabau E (2005) Enhancing resistance to Sclerotinia minor in peanut by expressing a barley oxalate oxidase gene. Plant Physiol 137(4):1354–1362. https://doi.org/10.1104/pp.104.057232
Article
CAS
PubMed
PubMed Central
Google Scholar
Molla K, Karmakar S, Chanda P, Ghosh S, Sarkar S, Datta S, Datta K (2013) Rice oxalate oxidase gene driven by green tissue-specific promoter increases tolerance to sheath blight pathogen (Rhizoctonia solani) in transgenic rice. Mol Plant Pathol 14(9):910–922. https://doi.org/10.1111/mpp.12055
Article
CAS
PubMed
PubMed Central
Google Scholar
Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56(1):165–185. https://doi.org/10.1146/annurev.arplant.56.032604.144046
Article
CAS
PubMed
Google Scholar
Olson P, Varner J (1993) Hydrogen peroxide and lignifications. Plant J 4(5):887–892. https://doi.org/10.1046/j.1365-313X.1993.04050887.x
Article
CAS
Google Scholar
Partridge-Telenko D, Hu J, Livingstone D, Shew B, Phipps P, Grabau E (2011) Sclerotinia blight resistance in Virginia-type peanut transformed with a barley oxalate oxidase gene. Phytopathology 101(7):786–793. https://doi.org/10.1094/PHYTO-10-10-0266
Article
CAS
PubMed
Google Scholar
Pei Y, Li X, Zhu Y, Ge X, Sun Y, Liu N, Jia Y, Li F, Hou Y (2019) GhABP19, a novel germin-like protein from gossypium hirsutum, plays an important role in the regulation of resistance to verticillium and fusarium wilt pathogens. Front Plant Sci 10:583. https://doi.org/10.3389/fpls.2019.00583
Article
PubMed
PubMed Central
Google Scholar
Ramalingam J, Vera Cruz C, Kukreja K, Chittoor J, Wu J, Lee S, Baraoidan M, George M, Cohen M, Hulbert S, Leach J, Leung H (2003) Candidate defense genes from rice, barley, and maize and their association with qualitative and quantitative resistance in rice. Mol Plant-Microbe Interact 16(1):14–24. https://doi.org/10.1094/MPMI.2003.16.1.14
Article
CAS
PubMed
Google Scholar
Robert-Seilaniantz A, Grant M, Jones J (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49(1):317–343. https://doi.org/10.1146/annurev-phyto-073009-114447
Article
CAS
PubMed
Google Scholar
Sirithunya P, Tragoonrung S, Vanavichit A, Pa-In N, Vongsaprom C, Toojinda T (2002) Quantitative trait loci associated with leaf and neck blast resistance in recombinant inbred line population of rice (Oryza sativa). DNA Res 9(3):79–88. https://doi.org/10.1093/dnares/9.3.79
Article
CAS
PubMed
Google Scholar
Skamnioti P, Gurr S (2009) Against the grain: safeguarding rice from rice blast disease. Trends Biotechnol 27(3):141–150. https://doi.org/10.1016/j.tibtech.2008.12.002
Article
CAS
PubMed
Google Scholar
Takatsuji H, Jiang C (2014) Plant hormone Crosstalks under biotic stresses. In: Tran LS, Pal S (eds) Phytohormones: a window to metabolism, signaling and biotechnological applications, pp 323–350
Chapter
Google Scholar
Tezuka D, Kawamata A, Kato H, Saburi W, Mori H, Imai R (2019) The rice ethylene response factor OsERF83 positively regulates disease resistance to Magnaporthe oryzae. Plant Physiol Biochem 135:263–271. https://doi.org/10.1016/j.plaphy.2018.12.017
Article
CAS
PubMed
Google Scholar
Thordal-Christensen H, Zhang Z, Wei Y, Collinge D (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11(6):1187–1194. https://doi.org/10.1046/j.1365-313X.1997.11061187.x
Article
CAS
Google Scholar
Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14(6):310–317. https://doi.org/10.1016/j.tplants.2009.03.006
Article
CAS
PubMed
Google Scholar
Walz A, Zingen-Sell I, Loeffler M, Sauer M (2008) Expression of an oxalate oxidase gene in tomato and severity of disease caused by Botrytis cinerea and Sclerotinia sclerotiorum. Plant Pathol 57(3):453–458. https://doi.org/10.1111/j.1365-3059.2007.01815.x
Article
CAS
Google Scholar
Wan X, Tan J, Lu S, Lin C, Hu Y, Guo Z (2009) Increased tolerance to oxidative stress in transgenic tobacco expressing a wheat oxalate oxidase gene via induction of antioxidant enzymes is mediated by H2O2. Physiol Plant 136(1):30–44. https://doi.org/10.1111/j.1399-3054.2009.01210.x
Article
CAS
PubMed
Google Scholar
Wei Y, Zhang Z, Andersen C, Schmelzer E, Gregersen P, Collinge D, Smedegaard-Petersen V, Thordal-Christensen H (1998) An epidermis/papilla-specific oxalate oxidase-like protein in the defence response of barley attacked by the powdery mildew fungus. Plant Mol Biol 36(1):101–112. https://doi.org/10.1023/A:1005955119326
Article
CAS
PubMed
Google Scholar
Welch A, Stipanovic A, Maynard C, Powell W (2007) The effects of oxalic acid on transgenic Castanea dentata callus tissue expressing oxalate oxidase. Plant Sci 172(3):488–496. https://doi.org/10.1016/j.plantsci.2006.10.015
Article
CAS
Google Scholar
Wu J, Sinha P, Variar M, Zheng K, Leach J, Courtois B, Leung H (2004) Association between molecular markers and blast resistance in an advanced backcross population of rice. Theor Appl Genet 108(6):1024–1032. https://doi.org/10.1007/s00122-003-1528-1
Article
CAS
PubMed
Google Scholar
Xu Y, Yang J, Cai X (2018) Glycolate oxidase gene family in Nicotiana benthamiana: genome-wide identification and functional analyses in disease resistance. Sci Rep 8(1):8615. https://doi.org/10.1038/s41598-018-27000-4
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang D, Yang Y, He Z (2013) Roles of plant hormones and their interplay in rice immunity. Mol Plant 6(3):675–685. https://doi.org/10.1093/mp/sst056
Article
CAS
PubMed
Google Scholar
Yang X, Yang J, Wang Y, He H, Niu L, Guo D, Xing G, Zhao Q, Zhong X, Sui L, Li Q, Dong Y (2019) Enhanced resistance to sclerotinia stem rot in transgenic soybean that overexpresses a wheat oxalate oxidase. Transgenic Res 28(1):103–114. https://doi.org/10.1007/s11248-018-0106-x
Article
CAS
PubMed
Google Scholar
Zhang X, Nie Z, Wang W, Leung D, Xu D, Chen B, Chen Z, Zeng L, Liu E (2013) Relationship between disease resistance and rice oxalate oxidases in transgenic rice. PLoS One 8(10):e78348. https://doi.org/10.1371/journal.pone.0078348
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhuang J, Ma W, Wu J, Chai R, Lu J, Fan Y, Jin M, Leung H, Zheng K (2002) Mapping of leaf and neck blast resistance genes with resistance gene analog, rapd and rflp in rice. Euphytica 128(3):363–370. https://doi.org/10.1023/A:1021272710294
Article
CAS
Google Scholar