Agrawal GK, Agrawal SK, Shibato J, Iwahashi H, Rakwal R (2003) Novel rice MAP kinases OsMSRMK3 and OsWJUMK1 involved in encountering diverse environmental stresses and developmental regulation. Biochem Biophys Res Commun 300:775–783
Article
CAS
PubMed
Google Scholar
Anandan A, Anumalla M, Pradhan SK, Ali J (2016) Population structure, diversity and trait association analysis in Rice (Oryza sativa L.) Germplasm for early seedling vigor (ESV) using trait linked SSR markers. PLoS ONE 11:e0152406
Article
PubMed
PubMed Central
CAS
Google Scholar
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635
Article
CAS
PubMed
Google Scholar
Chen G, Feng H, Hu Q, Qu H, Chen A, Yu L, Xu G (2015) Improving rice tolerance to potassium deficiency by enhancing OsHAK16p:WOX11-controlled root development. Plant Biotechnol J 13:833–848
Article
CAS
PubMed
Google Scholar
Dai G, Hua Z, Chen W, Xu Z, Wang Y (2008) Comparison in root characteristics among japonica hybrid rice,japonica conventional rice,upland rice and India rice varieties. J Shenyang Agric Univ 39:515–519
Google Scholar
Dai Q, Huo Z, Zhang H, Su B, Xu K, Qiu F (2001) The eco-physiological mechanism of growth,development and yield formation of broadcasted rice seedlings II. The characteristics of spatial distribution od plant on perpendicular and its eco-physiological effect. Acta Agron Sin 27:600–611
Google Scholar
Duan P, Xu J, Zeng D, Zhang B, Geng M, Zhang G, Huang K, Huang L, Xu R, Ge S, Qian Q, Li Y (2017) Natural variation in the promoter of GSE5 contributes to grain size diversity in Rice. Mol Plant 10:685–694
Article
CAS
PubMed
Google Scholar
He Q, Deng H, Shu F, Yang Y, Liu G, Liu J, Chen L (2006) Correlation of rooting traits in seedlin stage to activity of root system in late growth stage and panicle traits in hybrid rice. Hybrid Rice 21:75–77
Google Scholar
Ho S-L, Huang L-F, Lu C-A, He S-L, Wang C-C, Yu S-P, Chen J, Yu S-M (2013) Sugar starvation- and GA-inducible calcium-dependent protein kinase 1 feedback regulates GA biosynthesis and activates a 14-3-3 protein to confer drought tolerance in rice seedlings. Plant Mol Biol 81:347–361
Article
CAS
PubMed
Google Scholar
Hoang GT, van Dinh L, Nguyen TT, Ta NK, Gathignol F, Mai CD, Jouannic S, Tran KD, Khuat TH, Do VN, Lebrun M, Courtois B, Gantet P (2019) Genome-wide association study of a panel of Vietnamese Rice landraces reveals new QTLs for tolerance to water deficit during the vegetative phase. Rice (N Y) 12:4
Article
Google Scholar
Hu X, Guo L, Zeng D, Gao Z, Teng S, Li H, Zhu L, Qian Q (2004) QTL mapping and epistasis analysis of rice root growth ability at seedling stage. Chinese J Rice Sci 18:396–400
CAS
Google Scholar
Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler ES, Qian Q, Zhang Q-F, Li J, Han B (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967
Article
CAS
PubMed
Google Scholar
Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Shibata Y, Gomi K, Umemura I, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M (2005) Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling. Plant Cell 17:1387–1396
Article
CAS
PubMed
PubMed Central
Google Scholar
Islam MA, Du H, Ning J, Ye H, Xiong L (2009) Characterization of Glossy1-homologous genes in rice involved in leaf wax accumulation and drought resistance. Plant Mol Biol 70:443–456
Article
CAS
PubMed
Google Scholar
Itoh J-i, K-i H, Kojima M, Sakakibara H, Nagato Y (2012) Rice DECUSSATE controls phyllotaxy by affecting the cytokinin signaling pathway. Plant J 72:869–881
Article
CAS
PubMed
Google Scholar
Jia L, Zhang B, Mao C, Li J, Wu Y, Wu P, Wu Z (2008) OsCYT-INV1 for alkaline/neutral invertase is involved in root cell development and reproductivity in rice (Oryza sativa L.). Planta 228:51–59
Article
CAS
PubMed
Google Scholar
Jiang H, Wang S, Dang L, Wang S, Chen H, Wu Y, Jiang X, Wu P (2005) A novel short-root gene encodes a glucosamine-6-phosphate acetyltransferase required for maintaining normal root cell shape in rice. Plant Physiol 138:232–242
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang S, Wang D, Yan S, Liu S, Liu B, Kang H, Wang G-L (2019) Dissection of the genetic architecture of Rice Tillering using a genome-wide association study. Rice (N Y) 12:1–11
Article
Google Scholar
Kim H, Lee K, Hwang H, Bhatnagar N, Kim D-Y, Yoon IS, Byun M-O, Kim ST, Jung K-H, Kim B-G (2014) Overexpression of PYL5 in rice enhances drought tolerance, inhibits growth, and modulates gene expression. J Exp Bot 65:453–464
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W, Zhu Z, Chern M, Yin J, Yang C, Ran L, Cheng M, He M, Wang K, Wang J, Zhou X, Zhu X, Chen Z, Wang J, Zhao W, Ma B, Qin P, Chen W, Wang Y, Liu J, Wang W, Wu X, Li P, Wang J, Zhu L, Li S, Chen X (2017) A natural allele of a transcription factor in Rice confers broad-Spectrum blast resistance. Cell 170:114–126 e15
Article
CAS
PubMed
Google Scholar
Liang Y, Gao Z, Zhan X, Chen Y, Chen D, Shen X, Cao L, Cheng S (2011) Phenotypic correlation among root and shoot traits in an elite Chinese hybrid Rice combination and its three derived populations. Acta Agron Sin 37:1711–1723
Google Scholar
Lilley JM, Ludlow MM, McCouch SR, O'Toole JC (1996) Locating QTL for osmotic adjustment and dehydration tolerance in rice, vol 47, pp 1427–1436
Google Scholar
Liu H, Wang S, Yu X, Yu J, He X, Zhang S, Shou H, Wu P (2005) ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J 43:47–56
Article
PubMed
CAS
Google Scholar
Lo S-F, Yang S-Y, Chen K-T, Hsing Y-I, Zeevaart JAD, Chen L-J, Yu S-M (2008) A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell 20:2603–2618
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu Q, Zhang M, Niu X, Wang C, Xu Q, Feng Y, Wang S, Yuan X, Yu H, Wang Y, Wei X (2016) Uncovering novel loci for mesocotyl elongation and shoot length in indica rice through genome-wide association mapping. Planta 243:645–657
Article
CAS
PubMed
Google Scholar
Mahender A, Anandan A, Pradhan SK (2015) Early seedling vigour, an imperative trait for direct-seeded rice: An overview on physio-morphological parameters and molecular markers. Planta 241:1027–1050
Article
CAS
PubMed
Google Scholar
Manavalan LP, Chen X, Clarke J, Salmeron J, Nguyen HT (2012) RNAi-mediated disruption of squalene synthase improves drought tolerance and yield in rice. J Exp Bot 63:163–175
Article
CAS
PubMed
Google Scholar
Otomo K, Kenmoku H, Oikawa H, König WA, Toshima H, Mitsuhashi W, Yamane H, Sassa T, Toyomasu T (2004) Biological functions of ent- and syn-copalyl diphosphate synthases in rice: key enzymes for the branch point of gibberellin and phytoalexin biosynthesis. Plant J 39:886–893
Article
CAS
PubMed
Google Scholar
Redillas MCFR, Jeong JS, Kim YS, Jung H, Bang SW, Choi YD, Ha S-H, Reuzeau C, Kim J-K (2012) The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol J 10:792–805
Article
CAS
PubMed
Google Scholar
Ren W, Wang L, Lu T, Zhao Z, Yao X, Yang W (2009) Characteristics of endogenious hormones in different rice seedling raising methods and its relationship with rooting ability. J Nuclear Agric Sci 23:1070–1074
Google Scholar
Ren W, Yang W, Fan G, Wu J, Wang L (2007) Effects of different tillage and transplanting methods on rice rooting ability. J Nuclear Agric Sci 21:287–290
Google Scholar
Rohila JS, Edwards JD, Tran GD, Jackson AK, McClung AM (2019) Identification of superior alleles for seedling stage salt tolerance in the USDA Rice mini-Core collection. Plants (Basel) 8:472
Article
CAS
Google Scholar
Shelley IJ, Nishiuchi S, Shibata K, Inukai Y (2013) SLL1, which encodes a member of the stearoyl-acyl carrier protein fatty acid desaturase family, is involved in cell elongation in lateral roots via regulation of fatty acid content in rice. Plant Sci 207:12–17
Article
CAS
PubMed
Google Scholar
Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J, Shangguan Y, Chen E, Gong C, Zhao Q, Jing Y, Zhao Y, Li Y, Cui L, Fan D, Lu Y, Weng Q, Wang Y, Zhan Q, Liu K, Wei X, An K, An G, Han B (2016) OsSPL13 controls grain size in cultivated rice. Nat Genet 48:447–456
Article
CAS
PubMed
Google Scholar
Wang F, Longkumer T, Catausan SC, Calumpang CLF, Tarun JA, Cattin-Ortola J, Ishizaki T, Pariasca Tanaka J, Rose T, Wissuwa M, Kretzschmar T (2018) Genome-wide association and gene validation studies for early root vigour to improve direct seeding of rice. Plant Cell Environ 41:2731–2743
Article
CAS
PubMed
Google Scholar
Wang R, Wang T, Li Y (2007) Linkage disequilibrium in plant genomes. Hereditas 29:1317–1323
CAS
PubMed
Google Scholar
Wang X, Wang Y, Piñeros MA, Wang Z, Wang W, Li C, Wu Z, Kochian LV, Wu P (2014) Phosphate transporters OsPHT1;9 and OsPHT1;10 are involved in phosphate uptake in rice. Plant Cell Environ 37:1159–1170
Article
CAS
PubMed
Google Scholar
Wilderman PR, Xu M, Jin Y, Coates RM, Peters RJ (2004) Identification of syn-pimara-7,15-diene synthase reveals functional clustering of terpene synthases involved in rice phytoalexin/allelochemical biosynthesis. Plant Physiol 135:2098–2105
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao N, Gao Y, Qian H, Gao Q, Wu Y, Zhang D, Zhang X, Yu L, Li Y, Pan C, Liu G, Zhou C, Jiang M, Huang N, Dai Z, Liang C, Chen Z, Chen J, Li A (2018) Identification of genes related to cold tolerance and a functional allele that confers cold tolerance. Plant Physiol 177:1108–1123
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu H, Tao S, Tang L, Zhang W, Zhao M, Xu F (2012) Research progress of differentiation and hybrid breeding between India and japonica Rices. J Shenyang Agricultural University 43:704–710
Google Scholar
Yano K, Morinaka Y, Wang F, Huang P, Takehara S, Hirai T, Ito A, Koketsu E, Kawamura M, Kotake K, Yoshida S, Endo M, Tamiya G, Kitano H, Ueguchi-Tanaka M, Hirano K, Matsuoka M (2019) GWAS with principal component analysis identifies a gene comprehensively controlling rice architecture. Proc Natl Acad Sci U S A 116:21262–21267
Article
CAS
PubMed
PubMed Central
Google Scholar
Yao S, Kodama R, Wang H, Ichii M, Taketa S, Yoshida H (2009) Analysis of the rice SHORT-ROOT5 gene revealed functional diversification of plant neutral/alkaline invertase family. Plant Sci 176:627–634
Article
CAS
Google Scholar
Yoshida S, Forno AD, Cock HJ, Gomez AK (1971) Laboratory Manual For Physiological Studies Of Rice
Google Scholar
Zhang M, Ye J, Xu Q, Feng Y, Yuan X, Yu H, Wang Y, Wei X, Yang Y (2018) Genome-wide association study of cold tolerance of Chinese indica rice varieties at the bud burst stage. Plant Cell Rep 37:529–539
Article
CAS
PubMed
Google Scholar
Zhao Y, Cheng S, Song Y, Huang Y, Zhou S, Liu X, Zhou D-X (2015) The interaction between Rice ERF3 and WOX11 promotes crown root development by regulating gene expression involved in Cytokinin signaling. Plant Cell 27:2469–2483
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao Y, Hu Y, Dai M, Huang L, Zhou D-X (2009) The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice. Plant Cell 21:736–748
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao Y, Jiang C-H, Rehman RMA, Zhang H-L, Li J, Li Z-C (2019) Genetic analysis of roots and shoots in rice seedling by association mapping. Genes Genomics 41:95–105
Article
CAS
PubMed
Google Scholar
Zheng J, Yuan Z, Yin G, He G, Yang Z, Jiang K (1996) Genetic studies on root growth ability in seedling stage of rice. Chinese J Rice Sci 10:51–53
Google Scholar
Zhu B, Su J, Chang M, DPS V, Fan Y, Wu R (1998) Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water- and salt-stress in transgenic rice, vol 139, pp 41–48
Google Scholar