Adhikari TB, Mew TW, Teng PS (1994) Progress of bacterial blight on rice cultivars carrying different Xa genes for resistance in the field. Plant Dis 78:73–77
Article
Google Scholar
Ahmadi N, Albar L, Pressoir G, Pinel A, Fargette D, Ghesquiere A (2001) Genetic basis and mapping of the resistance to Rice yellow mottle virus. III. Analysis of QTL efficiency in introgressed progenies confirmed the hypothesis of complementary epistasis between two resistance QTLs. Theor Appl Genet 103:1084–1092
Article
CAS
Google Scholar
Alam SN, Cohen MB (1998) Detection and analysis of QTLs for resistance to the brown planthopper, Nilaparvata lugens, in a doubled-haploid rice population. Theor Appl Genet 97:1370–1379
Article
CAS
Google Scholar
Anantha MS, Patel D, Quintana M, Swain P, Dwivedi JL, Torres RO, Verulkar SB, Variar M, Mandal NP, Kumar A, Henry A (2016) Trait combinations that improve rice yield under drought: Sahbhagi Dhan and new drought-tolerant varieties in South Asia. Crop Sci 56:408–421
Article
Google Scholar
Ballini E, Berruyer R, Morel JB, Lebrun MH, Notteghem JL, Tharreau D (2007) Modern elite rice varieties of the 'Green Revolution' have retained a large introgression from wild rice around the Pi33 rice blast resistance locus. New Phytol 175:340–350
Article
CAS
PubMed
Google Scholar
Bao JS, Wu YR, Hu B, Wu P, Cui HR, Shu QY (2002) QTL for rice grain quality based on a DH population derived from parents with similar apparent amylose content. Euphytica 128:317–324
Article
CAS
Google Scholar
Bastiaans L, Roumen EC (1993) Effect on leaf photosynthetic rate by leaf blast for rice cultivars with different types and levels of resistance. Euphytica 66:81–87
Article
Google Scholar
Berruyer R, Adreit H, Milazzo J, Gaillard S, Berger A, Dioh W, Lebrun MH, Tharreau D (2003) Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1. Theor Appl Genet 107:1139–1147
Bimpong IK, Serraj R, Chin JH, Ramos J, Mendoza EMT, Hernandez JE, Mendioro MS, Brar DS (2011) Identification of QTLs for drought-related traits in alien introgression lines derived from crosses of rice (Oryza sativa cv. IR64) x O. glaberrima under lowland moisture stress. J Plant Biol 54:237–250
Bligh HFJ, Larkin PD, Roach PS, Jones CA, Fu HY, Park WD (1998) Use of alternate splice sites in granule-bound starch synthase mRNA from low-amylose rice varieties. Plant Mol Biol 38:407–415
Article
CAS
PubMed
Google Scholar
Bligh HFJ, Till RI, Jones CA (1995) A microsatellite sequence closely linked to the waxy gene of Oryza sativa. Euphytica 86:83–85
Article
CAS
Google Scholar
Brennan JP, Malabayabas A (2011) International Rice Research Institute’s contribution to rice varietal yield improvement in South-East Asia. ACIAR impact assessment No. 74. Australian Centre for International Agricultural Research, Canberra
Cada EC, Escuro PB (1972) Rice varietal improvement in the Philippines. Rice breeding. International Rice Research Institute, Los Baños, pp 161–166
Google Scholar
Cairns JE, Acuna TLB, Simborio FA, Dimayuga G, Praba ML, Leung H, Torres R, Lafitte HR (2009) Identification of deletion mutants with improved performance under water-limited environments in rice (Oryza sativa L.) Field Crop Res 114:159–168
Article
Google Scholar
Calingacion M, Fang L, Quiatchon-Baeza L, Mumm R, Riedel A, Hall RD, Fitzgerald M (2015) Delving deeper into technological innovations to understand differences in rice quality. Rice 8:1–10
Article
Google Scholar
Calingacion M, Laborte A, Nelson A, Resurreccion A, Concepcion JC, Daygon VD, Mumm R, Reinke R, Dipti S, Bassinello PZ, Manful J, Sophany S, Lara KC, Bao JS, Xie LH, Loaiza K, El-hissewy A, Gayin J, Sharma N, Rajeswari S, Manonmani S, Rani NS, Kota S, Indrasari SD, Habibi F, Hosseini M, Tavasoli F, Suzuki K, Umemoto T, Boualaphanh C, Lee HH, Hung YP, Ramli A, Aung PP, Ahmad R, Wattoo JI, Bandonill E, Romero M, Brites CM, Hafeel R, Lur HS, Cheaupun K, Jongdee S, Blanco P, Bryant R, Lang NT, Hall RD, Fitzgerald M (2014) Diversity of global rice markets and the science required for consumer-targeted rice breeding. PLOS ONE 9(1): e85106. https://doi.org/10.1371/journal.pone.0085106
Champagne ET, Bett-Garber KL, Fitzgerald MA, Grimm CC, Lea J, Ohtsubo K, Jongdee S, Xie LH, Bassinello PZ, Resurreccion A, Ahmad R, Habibi F, Reinke R (2010) Important sensory properties differentiating premium rice varieties. Rice 3:270–281
Chawade A, Lindlof A, Olsson B, Olsson O (2013) Global expression profiling of low temperature induced genes in the chilling tolerant japonica rice Jumli Marshi. PLOS ONE 8(12): e81729. https://doi.org/10.1371/journal.pone.0081729
Cheema KK, Bains NS, Mangat GS, Das A, Vikal Y, Brar DS, Khush GS, Singh K (2008) Development of high yielding IR64 x Oryza rufipogon (Griff.) introgression lines and identification of introgressed alien chromosome segments using SSR markers. Euphytica 160:401–409
Chen MH, Fjellstrom RG, Christensen EF, Bergman CJ (2010) Development of three allele-specific codominant rice Waxy gene PCR markers suitable for marker-assisted selection of amylose content and paste viscosity. Mol Breed 26:513–523
Chhapekar S, Raghavendrarao S, Pavan G, Ramakrishna C, Singh VK, Phanindra MLV, Dhandapani G, Sreevathsa R, Kumar PA (2015) Transgenic rice expressing a codon-modified synthetic CP4-EPSPS confers tolerance to broad-spectrum herbicide, glyphosate. Plant Cell Rep 34:721–731
Article
CAS
PubMed
Google Scholar
Chin JH, Gamuyao R, Dalid C, Bustamam M, Prasetiyono J, Moeljopawiro S, Wissuwa M, Heuer S (2011) Developing rice with high yield under phosphorus deficiency: Pup1 sequence to application. Plant Physiol 156:1202–1216
Coast O, Murdoch AJ, Ellis RH, Hay FR, Jagadish KSV (2016) Resilience of rice (Oryza spp.) pollen germination and tube growth to temperature stress. Plant Cell Environ 39:26–37
Article
CAS
PubMed
Google Scholar
Cohen MB, Alam SN, Medina EB, Bernal CC (1997) Brown planthopper, Nilaparvata lugens, resistance in rice cultivar IR64: mechanism and role in successful N. lugens management in central Luzon, Philippines. Entomol Exp Appl 85:221–229
Article
Google Scholar
Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the 21st century. Phil Trans Royal Soc B Rev 363:557–572
Article
CAS
Google Scholar
Concepcion JCT, Ouk M, Zhao D, Fitzgerald MA (2015) The need for new tools and investment to improve the accuracy of selecting for grain quality in rice. Field Crop Res 182:60–67
Article
Google Scholar
Dalrymple DG (1978) Development and spread of high yielding varieties of wheat and rice in the less developed nations. USDA Foreign Agricultural Economic Report No. 95. U. S. Department of Agriculture, Washington DC.
Deshmukh V, Kamoshita A, Norisada M, Uga Y (2017) Near-isogenic lines of IR64 (Oryza sativa subsp indica cv.) introgressed with DEEPER ROOTING 1 and STELE TRANSVERSAL AREA 1 improve rice yield formation over the background parent across three water management regimes. Plant Prod Sci 20:249–261
Article
Google Scholar
Devries ME, Leffelaar PA, Sakane N, Bado BV, Giller KE (2011) Adaptability of irrigated rice to temperature change in Sahelian environments. Exp Agric 47:69–87
Djedatin G, Ndjiondjop MN, Sanni A, Lorieux M, Verdier V, Ghesquiere A (2016) Identification of novel major and minor QTLs associated with Xanthomonas oryzae pv. oryzae (African strains) resistance in rice (Oryza sativa L.) Rice 9:18
Article
PubMed
PubMed Central
Google Scholar
Farooq M, Tagle AG, Santos RE, Ebron LA, Fujita D, Kobayashi N (2010) Quantitative trait loci mapping for leaf length and leaf width in rice cv. IR64 derived lines. J Integr Plant Biol 52:578–584
Article
CAS
PubMed
Google Scholar
Fujita D, Santos RE, Ebron LA, Telebanco-Yanoria MJ, Kato H, Kobayashi S, Uga Y, Araki E, Takai T, Tsunematsu H, Imbe T, Khush GS, Brar DS, Fukuta Y, Kobayashi N (2009) Development of introgression lines of an Indica-type rice variety, IR64, for unique agronomic traits and detection of the responsible chromosomal regions. Field Crop Res 114:244–254
Article
Google Scholar
Fujita D, Trijatmiko KR, Tagle AG, Sapasap MV, Koide Y, Sasaki K, Tsakirpaloglou N, Gannaban RB, Nishimura T, Yanagihara S, Fukuta Y, Koshiba T, Slamet-Loedin IH, Ishimaru T, Kobayashi N (2013) NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars. Proc Natl Acad Sci U S A 110:20431-20436
Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488:535–539
Article
CAS
PubMed
Google Scholar
Gonzalez-Schain N, Dreni L, Lawas LMF, Galbiati M, Colombo L, Heuer S, Jagadish KSV, Kater MM (2016) Genome-wide transcriptome analysis during anthesis reveals new insights into the molecular basis of heat stress responses in tolerant and sensitive rice varieties. Plant Cell Physiol 57:57–68
Article
CAS
PubMed
Google Scholar
Gowda VRP, Henry A, Vadez V, Shashidhar HE, Serraj R (2012) Water uptake dynamics under progressive drought stress in diverse accessions of the OryzaSNP panel of rice (Oryza sativa). Funct Plant Biol 39:402–411
Grand X, Espinoza R, Michel C, Cros S, Chalvon V, Jacobs J, Morel JB (2012) Identification of positive and negative regulators of disease resistance to rice blast fungus using constitutive gene expression patterns. Plant Biotechnol J 10:840–850
Article
CAS
PubMed
Google Scholar
Guiderdoni E, Galinato E, Luistro J, Vergara G (1992) Anther culture of tropical japonica x indica hybrids of rice (Oryza sativa L.). Euphytica 62:219–224
Henry A, Gowda VRP, Torres RO, McNally KL, Serraj R (2011) Variation in root system architecture and drought response in rice (Oryza sativa): phenotyping of the OryzaSNP panel in rainfed lowland fields. Field Crop Res 120:205–214
Henry A, Swamy BPM, Dixit S, Torres RD, Batoto TC, Manalili M, Anantha MS, Mandal NP, Kumar A (2015) Physiological mechanisms contributing to the QTL-combination effects on improved performance of IR64 rice NILs under drought. J Exp Bot 66:1787–1799
Article
CAS
PubMed
PubMed Central
Google Scholar
Hirabayashi H, Sasaki K, Kambe T, Gannaban RB, Miras MA, Mendioro MS, Simon EV, Lumanglas PD, Fujita D, Takemoto-Kuno Y, Takeuchi Y, Kaji R, Kondo M, Kobayashi N, Ogawa T, Ando I, Jagadish KSV, Ishimaru T (2015) qEMF3, a novel QTL for the early-morning flowering trait from wild rice, Oryza officinalis, to mitigate heat stress damage at flowering in rice, O. sativa. J Exp Bot 66:1227–1236
Article
CAS
PubMed
Google Scholar
Hu K, Cao J, Zhang J, Xia F, Ke Y, Zhang H, Xie W, Liu H, Cui Y, Cao Y, Sun X, Xiao J, Li X, Zhang Q, Wang S (2017) Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. Nature Plants 3. https://doi.org/10.1038/nplants.2017.1039
Huang N, Parco A, Mew T, Magpantay G, Mccouch S, Guiderdoni E, Xu JC, Subudhi P, Angeles ER, Khush GS (1997) RFLP mapping of isozymes, RAPD and QTLs for grain shape, brown planthopper resistance in a doubled haploid rice population. Mol Breeding 3:105–113
Article
CAS
Google Scholar
Ignacimuthu S, Raveendar S (2011) Agrobacterium mediated transformation of indica rice (Oryza sativa L.) for insect resistance. Euphytica 179:277–286
Impa SM, Morete MJ, Ismail AM, Schulin R, Johnson-Beebout SE (2013) Zn uptake, translocation and grain Zn loading in rice (Oryza sativa L.) genotypes selected for Zn deficiency tolerance and high grain Zn. J Exp Bot 64:2739–2751
IRGSP (2005) The map-based sequence of the rice genome. Nature 436:793–800
Article
Google Scholar
IRRI (1986) Annual report for 1985. International Rice Research Institute, Los Baños
Google Scholar
IRRI (2015) Growing rice, cultivating partnerships: 40 years of Indonesia-IRRI collaboration. Int. Rice Res. Inst, Los Baños
Google Scholar
Jagadish SVK, Craufurd PQ, Wheeler TR (2008) Phenotyping parents of mapping populations of rice for heat tolerance during anthesis. Crop Sci 48:1140–1146
Article
Google Scholar
Jain M, Moharana KC, Shankar R, Kumari R, Garg R (2014) Genomewide discovery of DNA polymorphisms in rice cultivars with contrasting drought and salinity stress response and their functional relevance. Plant Biotechnol J 12:253–264
Article
CAS
PubMed
Google Scholar
Julia C, Dingkuhn M (2013) Predicting temperature induced sterility of rice spikelets requires simulation of crop-generated microclimate. Eur J Agron 49:50–60
Article
Google Scholar
Juliano BO, Perez CM, Maranan CL, Abansi CL, Duff B (1989) Grain quality characteristics of rice in Philippine retail markets. Philipp Agriculturalist 72:113–122
Google Scholar
Kato Y, Okami M, Tajima R, Fujita D, Kobayashi N (2010) Root response to aerobic conditions in rice, estimated by Comair root length scanner and scanner-based image analysis. Field Crop Res 118:194–198
Article
Google Scholar
Khush GS (1995) Modern varieties - their real contribution to food supply and equity. GeoJournal 35:275–284
Article
Google Scholar
Khush GS (1999) Green revolution: preparing for the 21st century. Genome 42:646–655
Article
CAS
PubMed
Google Scholar
Khush GS, Coffman WR (1977) Genetic evaluation and utilization (GEU) program: the rice improvement program of the international rice research institute. Theor Appl Genet 51:97–110
CAS
PubMed
Google Scholar
Khush GS, Virk PS (2005) IR varieties and their impact. Int. Rice Res. Inst, Los Baños
Google Scholar
Kongprakhon P, Cuesta-Marcos A, Hayes PM, Hongtrakul V, Sirithunya P, Toojinda T, Sangduen N (2010) Four QTL in rice associated with broad spectrum resistance to blast isolates from rice and barley. J Phytopathol 158:125–131
Laborte AG, Paguirigan NC, Moya PF, Nelson A, Sparks AH, Gregorio GB (2015) Farmers’ preference for rice traits: insights from farm surveys in central Luzon, Philippines, 1966-2012. PLOS ONE 10(8): e0136562. https://doi.org/10.1371/journal.pone.0136562
Laird SA, Kate K (1999) The commercial use of biodiversity : access to genetic resources and benefit-sharing. Earthscan, London.
Lang NT, Phuoc NT, Ha PTT, Toan TB, Buu BC, Reinke R, Ismail AM, Wassmann R (2015) Development of submergence tolerant breeding lines for Vietnam. SABRAO. J Genet Breed 47:448–459
Google Scholar
Larkin PD, Park WD (2003) Association of waxy gene single nucleotide polymorphisms with starch characteristics in rice (Oryza sativa L.) Mol Breed 12:335–339
Lee JH, Muhsin M, Atienza GA, Kwak DY, Kim SM, De Leon TB, Angeles ER, Coloquio E, Kondoh H, Satoh K, Cabunagan RC, Cabauatan PQ, Kikuchi S, Leung H, Choi IR (2010) Single nucleotide polymorphisms in a gene for translation initiation factor (eIF4G) of rice (Oryza sativa) associated with resistance to Rice tungro spherical virus. Mol Plant-Microbe Interact 23:29–38
Lee S, Jia YL, Jia M, Gealy DR, Olsen KM, Caicedo AL (2011) Molecular evolution of the rice blast resistance gene Pi-ta in invasive weedy rice in the USA. PLOS ONE 6(10): e26260. https://doi.org/10.1371/journal.pone.0026260
Li X, Zhu JD, Hu FY, Ge S, Ye MZ, Xiang H, Zhang GJ, Zheng XM, Zhang HY, Zhang SL, Li Q, Luo RB, Yu C, Yu J, Sun JF, Zou XY, Cao XF, Xie XF, Wang J, Wang W (2012) Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression. BMC Genomics 13:300. https://doi.org/10.1186/1471-2164-13-300
Madamba MRS, Sugiyama N, Bordeos A, Mauleon R, Satoh K, Baraoidan M, Kikuchi S, Shimamoto K, Leung H (2009) A recessive mutation in rice conferring non-race-specific resistance to bacterial blight and blast. Rice 2:104–114
McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K, Ulat VJ, Zeller G, Clark RM, Hoen DR, Bureau TE, Stokowski R, Ballinger DG, Frazer KA, Cox DR, Padhukasahasram B, Bustamante CD, Weigel D, Mackill DJ, Bruskiewich RM, Ratsch G, Buell CR, Leung H, Leach JE (2009) Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci U S A 106:12273–12278
Article
CAS
PubMed
PubMed Central
Google Scholar
Miro B, Ismail AM (2013) Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L.) Front Plant Sci 4:269. https://doi.org/10.3389/fpls.2013.00269.
Mori A, Fukuda T, Vejchasarn P, Nestler J, Pariasca-Tanaka J, Wissuwa M (2016) The role of root size versus root efficiency in phosphorus acquisition in rice. J Exp Bot 67:1179–1189
Article
CAS
PubMed
Google Scholar
Muhamad K, Ebana K, Fukuoka S, Okuno K (2017) Genetic relationships among improved varieties of rice (Oryza sativa L.) in Indonesia over the last 60 years as revealed by morphological traits and DNA markers. Genet Resour Crop Evol 64:701–715
Article
CAS
Google Scholar
Nagata K, Ando T, Nonoue Y, Mizubayashi T, Kitazawa N, Shomura A, Matsubara K, Ono N, Mizobuchi R, Shibaya T, Ogiso-Tanaka E, Hori K, Yano M, Fukuoka S (2015) Advanced backcross QTL analysis reveals complicated genetic control of rice grain shape in a japonica x indica cross. Breed Sci 65:308–318
Article
PubMed
PubMed Central
Google Scholar
Nakhoda B, Leung H, Mendioro MS, Mohammadi-nejad G, Ismail AM (2012) Isolation, characterization, and field evaluation of rice (Oryza sativa L., Var. IR64) mutants with altered responses to salt stress. Field Crop Res 127:191–202
Nguyen BD, Brar DS, Bui BC, Nguyen TV, Pham LN, Nguyen HT (2003) Identification and mapping of the QTL for aluminum tolerance introgressed from the new source, Oryza rufipogon Griff., into indica rice (Oryza sativa L.) Theor Appl Genet 106:583–593
Article
CAS
PubMed
Google Scholar
Okami M, Kato Y, Kobayashi N, Yamagishi J (2015) Morphological traits associated with vegetative growth of rice (Oryza sativa L.) during the recovery phase after early-season drought. Eur J Agron 64:58–66
Oliva N, Chadha-Mohanty P, Poletti S, Abrigo E, Atienza G, Torrizo L, Garcia R, Duenas C, Poncio MA, Balindong J, Manzanilla M, Montecillo F, Zaidem M, Barry G, Herve P, Shou HX, Slamet-Loedin IH (2014) Large-scale production and evaluation of marker-free indica rice IR64 expressing phytoferritin genes. Mol Breed 33:23–37
Article
CAS
PubMed
Google Scholar
Peng S, Laza RC, Visperas RM, Sanico AL, Cassman KG, Khush GS (2000) Grain yield of rice cultivars and lines developed in the Philippines since 1966. Crop Sci 40:307–314
Article
Google Scholar
Ray S, Dansana PK, Giri J, Deveshwar P, Arora R, Agarwal P, Khurana JP, Kapoor S, Tyagi AK (2011) Modulation of transcription factor and metabolic pathway genes in response to water-deficit stress in rice. Funct Integr Genomics 11:157–178
Article
CAS
PubMed
Google Scholar
Roferos LT, Butardo VM, Fitzgerald MA, Juliano BO (2008) Association between alleles of the waxy gene and traits of grain quality in Philippine Seed Board rice varieties. Philipp Agric Sci 91:334–337.
Roumen EC (1992) Effect of leaf age on components of partial resistance in rice to leaf blast. Euphytica 63:271–279
Google Scholar
Sallaud C, Lorieux M, Roumen E, Tharreau D, Berruyer R, Svestasrani P, Garsmeur O, Ghesquiere A, Notteghem JL (2003) Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy. Theor Appl Genet 106:794–803
Article
CAS
PubMed
Google Scholar
Schatz MC, Maron LG, Stein JC, Wences AH, Gurtowski J, Biggers E, Lee H, Kramer M, Antoniou E, Ghiban E, Wright MH, Chia JM, Ware D, McCouch SR, McCombie WR (2014) Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica. Genome Biol 15:506. https://doi.org/10.1186/s13059-014-0506-z
Septiningsih EM, Hidayatun N, Sanchez DL, Nugraha Y, Carandang J, Pamplona AM, Collard BCY, Ismail AM, Mackill DJ (2014) Accelerating the development of new submergence tolerant rice varieties: the case of Ciherang-Sub1 and PSB Rc18-Sub1. Euphytica 202:259–268
Septiningsih EM, Pamplona AM, Sanchez DL, Neeraja CN, Vergara GV, Heuer S, Ismail AM, Mackill DJ (2009) Development of submergence tolerant rice cultivars: the Sub1 locus and beyond. Ann Bot 103:151–160
Article
CAS
PubMed
Google Scholar
Septiningsih EM, Prasetiyono J, Lubis E, Tai TH, Tjubaryat T, Moeljopawiro S, McCouch SR (2003) Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107:1419–1432
Article
CAS
PubMed
Google Scholar
Shanmugavadivel PS, Mithra SVA, Prakash C, Ramkumar MK, Tiwari R, Mohapatra T, Singh NK (2017) High resolution mapping of QTLs for heat tolerance in rice using a 5K SNP array. Rice 10:28
Article
Google Scholar
Sharma R, Agarwal P, Ray S, Deveshwar P, Sharma P, Sharma N, Nijhawan A, Jain M, Singh AK, Singh VP, Khurana JP, Tyagi AK, Kapoor S (2012) Expression dynamics of metabolic and regulatory components across stages of panicle and seed development in indica rice. Funct Integr Genomics 12:229–248
Shrestha R, Al-Shugeairy Z, Al-Ogaidi F, Munasinghe M, Radermacher M, Vandenhirtz J, Price AH (2014) Comparing simple root phenotyping methods on a core set of rice genotypes. Plant Biol 16:632–642
Article
CAS
PubMed
Google Scholar
Singh N, Dang TTM, Vergara GV, Pandey DM, Sanchez D, Neeraja CN, Septiningsih EM, Mendioro M, Tecson-Mendoza EM, Ismail AM, Mackill DJ, Heuer S (2010) Molecular marker survey and expression analyses of the rice submergence-tolerance gene SUB1A. Theor Appl Genet 121:1441–1453
Article
CAS
PubMed
Google Scholar
Singh R, Singh Y, Xalaxo S, Verulkar S, Yadav N, Singh S, Singh N, Prasad KSN, Kondayya K, Rao PVR, Rani MG, Anuradha T, Suraynarayana Y, Sharma PC, Krishnamurthy SL, Sharma SK, Dwivedi JL, Singh AK, Singh PK, Nilanjay, Singh NK, Kumar R, Chetia SK, Ahmad T, Rai M, Perraju P, Pande A, Singh DN, Mandal NP, Reddy JN, Singh ON, Katara JL, Marandi B, Swain P, Sarkar RK, Singh DP, Mohapatra T, Padmawathi G, Ram T, Kathiresan RM, Paramsivam K, Nadarajan S, Thirumeni S, Nagarajan M, Singh AK, Vikram P, Kumar A, Septiningshih E, Singh US, Ismail AM, Mackill D, Singh NK (2016) From QTL to variety-harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network. Plant Sci 242:278–287
Article
CAS
PubMed
Google Scholar
Singh US, Dar MH, Singh S, Zaidi NW, Bari MA, Mackill DJ, Collard BCY, Singh VN, Singh JP, Reddy JN, Singh RK, Ismail AM (2013) Field performance, dissemination, impact and tracking of submergence tolerant (Sub1) rice varieties in South Aisa. SABRAO J Breed Genet 45:112–131
Google Scholar
Sreewongchai T, Toojinda T, Thanintorn N, Kosawang C, Vanavichit A, Tharreau D, Sirithunya P (2010) Development of elite indica rice lines with wide spectrum of resistance to Thai blast isolates by pyramiding multiple resistance QTLs. Plant Breed 129:176–180
Article
CAS
Google Scholar
Swamy BPM, Ahmed HU, Henry A, Mauleon R, Dixit S, Vikram P, Tilatto R, Verulkar SB, Perraju P, Mandal NP, Variar M, Robin S, Chandrababu R, Singh ON, Dwivedi JL, Das SP, Mishra KK, Yadaw RB, Aditya TL, Karmakar B, Satoh K, Moumeni A, Kikuchi S, Leung H, Kumar A (2013) Genetic, physiological, and gene expression analyses reveal that multiple QTL enhance yield of rice mega-variety IR64 under drought. PLOS ONE 8(5): e62795. https://doi.org/10.1371/journal.pone.0062795
Tagle AG, Fujita D, Ebron LA, Telebanco-Yanoria MJ, Sasaki K, Ishimaru T, Fukuta Y, Kobayashi N (2016) Characterization of QTL for unique agronomic traits of new-plant-type rice varieties using introgression lines of IR64. Crop J 4:12–20
Article
Google Scholar
Teng B, Zeng RZ, Wang YC, Liu ZQ, Zhang ZM, Zhu HT, Ding XH, Li WT, Zhang GQ (2012) Detection of allelic variation at the Wx locus with single-segment substitution lines in rice (Oryza sativa L.) Mol Breed 30:583–595
Thakur S, Singh PK, Rathour R, Variar M, Prashanthi SK, Singh AK, Singh UD, Chand D, Singh NK, Sharma TR (2013) Positive selection pressure on rice blast resistance allele Piz-t makes it divergent in Indian land races. J Plant Interact 8:34–44
Toledo AMU, Ignacio JCI, Casal Jr C, Gonzaga ZJ, Mendioro MS, Septiningsih EM (2015) Development of improved Ciherang-Sub1 having tolerance to anaerobic germination conditions. Plant Breed Biotech 3:77–87
Article
Google Scholar
Toriyama K, Kazama T (2016) Development of cytoplasmic male sterile IR24 and IR64 using CW-CMS/Rf17 system. Rice 9:22
Article
PubMed
PubMed Central
Google Scholar
Trijatmiko KR, Dueñas C, Tsakirpaloglou N, Torrizo L, Arines FM, Adeva C, Balindong J, Oliva N, Sapasap MV, Borrero J, Rey J, Francisco P, Nelson A, Nakanishi H, Lombi E, Tako E, Glahn RP, Stangoulis J, Chadha-Mohanty P, Johnson AAT, Tohme J, Barry G, Slamet-Loedin IH (2016) Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Sci Rep 6:19792
Article
CAS
PubMed
PubMed Central
Google Scholar
Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J, Matsumoto T, Takai T, Okuno K, Yano M (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45:1097–1102
Ujiie K, Yamamoto T, Yano M, Ishimaru K (2016) Genetic factors determining varietal differences in characters affecting yield between two rice (Oryza sativa L.) varieties, Koshihikari and IR64. Genet Resour Crop Evol 63:97–123
Article
Google Scholar
Vejchasarn P, Lynch JP, Brown KM (2016) Genetic variability in phosphorus responses of rice root phenotypes. Rice 9:29
Article
PubMed
PubMed Central
Google Scholar
Venuprasad R, Impa SM, Gowda RPV, Atlin GN, Serraj R (2011) Rice near-isogenic-lines (NILs) contrasting for grain yield under lowland drought stress. Field Crop Res 123:38–46
Article
Google Scholar
Verdier V, Cruz CV, Leach JE (2012) Controlling rice bacterial blight in Africa: needs and prospects. J Biotechnol 159:320–328
Article
CAS
PubMed
Google Scholar
Vikram P, Swamy BP, Dixit S, Singh R, Singh BP, Miro B, Kohli A, Henry A, Singh NK, Kumar A (2015) Drought susceptibility of modern rice varieties: an effect of linkage of drought tolerance with undesirable traits. Sci Rep 5:14799
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang W-S, Zhao X-Q, Li M, Huang L-Y, Xu J-L, Zhang F, Cui Y-R, Fu B-Y, Li Z-K (2016) Complex molecular mechanisms underlying seedling salt tolerance in rice revealed by comparative transcriptome and metabolomic profiling. J Exp Bot 67:405–419
Article
CAS
PubMed
Google Scholar
Wei FJ, Tsai YC, Wu HP, Huang LT, Chen YC, Chen YF, Wu CC, Tseng YT, Hsing YIC (2016) Both Hd1 and Ehd1 are important for artificial selection of flowering time in cultivated rice. Plant Sci 242:187–194
Article
CAS
PubMed
Google Scholar
Wissuwa M, Kretzschmar T, Rose TJ (2016) From promise to application: root traits for enhanced nutrient capture in rice breeding. J Exp Bot 67:3605–3615
Article
CAS
PubMed
Google Scholar
Wu JL, Wu C, Lei C, Baraoidan M, Bordeos A, Madamba MR, Ramos-Pamplona M, Mauleon R, Portugal A, Ulat VJ, Bruskiewich R, Wang G, Leach J, Khush G, Leung H (2005) Chemical- and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol Biol 59:85–97
Article
CAS
PubMed
Google Scholar
Wu P, Luo A, Zhu J, Yang J, Huang N, Senadhira D (1997) Molecular markers linked to genes underlying seedling tolerance for ferrous iron toxicity. Plant Soil 196:317–320
Article
CAS
Google Scholar
Xie F, He Z, Esguerra M, Qiu F, Ramanathan V (2014) Determination of heterotic groups for tropical Indica hybrid rice germplasm. Theor Appl Genet 127:407–417
Ye C, Tenorio F, Redoña E, Morales-Cortezano P, Cabrega G, Jagadish KV, Gregorio G (2015) Fine-mapping and validating qHTSF4.1 to increase spikelet fertility under heat stress at flowering in rice. Theor Appl Genet 128:1507–1517
Article
CAS
PubMed
Google Scholar
Yoshida S (1981) Rice crop science. Int. Rice Res. Inst, Los Baños, Philippines
Google Scholar
Zenna NS, Cabauatan PQ, Baraoidan M, Leung H, Choi IR (2008) Characterization of a putative rice mutant for reaction to rice tungro disease. Crop Sci 48:480–486
Article
Google Scholar
Zenna NS, Cruz FCS, Javier EL, Duka IA, Barrion AA, Azzam O (2006) Genetic analysis of tolerance to rice tungro bacilliform virus in rice (Oryza sativa L.) through agroinoculation. J Phytopathol 154:197–203
Zhang ZJ, Li M, Fang YW, Liu FC, Lu Y, Meng QC, Jun CC, Yi XH, Gu MH, Yan CJ (2012) Diversification of the waxy gene is closely related to variations in rice eating and cooking quality. Plant Mol Biol Rep 30:462–469
Zhao DL, Atlin GN, Amante M, Cruz MTS, Kumar A (2010) Developing aerobic rice cultivars for water-short irrigated and drought-prone rainfed areas in the tropics. Crop Sci 50:2268–2276