Aharoni A, Ric de Vos CH, Verhoeven HA, Maliepaard CA, Kruppa G, Bino R, et al. Nontargeted metabolome analysis by use of Fourier transform ion cyclotron mass spectrometry. OMICS 2002;6:217–34.
Google Scholar
An G, Lee S, Kim SH, Kim SR. Molecular genetics using T-DNA in rice. Plant Cell Physiol 2005;46:14–22.
Google Scholar
Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000;408:796–815.
Google Scholar
Arita M. Additional paper: computational resources for metabolomics. Brief Funct Genomic Proteomic 2004;3:84–93.
Google Scholar
Ashikari M, Matsuoka M. Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends Plant Sci 2006;11:344–50.
Google Scholar
Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, et al. Cytokinin oxidase regulates rice grain production. Science 2005;309:741–5.
Google Scholar
Baker JM, Hawkins ND, Ward JL, Lovegrove A, Napier JA, Shewry PR, et al. A metabolomic study of substantial equivalence of field-grown genetically modified wheat. Plant Biotechnol J 2006;4:381–92.
Google Scholar
Bartel B. Auxin biosynthesis. Ann Rev Plant Physiol Plant Mol Biol 1997;48:51–66.
Google Scholar
Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, et al. Potential of metabolomics as a functional genomics tool. Trends Plant Sci 2004;9:418–25.
Google Scholar
Bohlmann J, Lins T, Martin W, Eilert U. Anthranilate synthase from Ruta graveolens. Duplicated AS alpha genes encode tryptophan-sensitive and tryptophan-insensitive isoenzymes specific to amino acid and alkaloid biosynthesis. Plant Physiol 1996;111:507–14.
PubMed Central
Google Scholar
Borevitz JO, Chory J. Genomics tools for QTL analysis and gene discovery. Curr Opin Plant Biol 2004;7:132–6.
Google Scholar
Catchpole GS, Beckmann M, Enot DP, Mondhe M, Zywicki B, Taylor J, et al. Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. Proc Natl Acad Sci U S A 2005;102:14458–62.
PubMed Central
Google Scholar
Chen C, Gonzalez FJ, Idle JR. LC-MS-based metabolomics in drug metabolism. Drug Metab Rev 2007;39:581–97.
PubMed Central
Google Scholar
Cho HJ, Brotherton JE, Song HS, Widholm JM. Increasing tryptophan synthesis in a forage legume Astragalus sinicus by expressing the tobacco feedback-insensitive anthranilate synthase (ASA2) gene. Plant Physiol 2000;123:1069–76.
PubMed Central
Google Scholar
Codrea MC, Jimenez CR, Heringa J, Marchiori E. Tools for computational processing of LC–MS datasets: a user’s perspective. Comput Methods Programs Biomed 2007;86:281–90.
Google Scholar
DeCook R, Lall S, Nettleton D, Howell SH. Genetic regulation of gene expression during shoot development in Arabidopsis. Genetics 2006;172:1155–64.
PubMed Central
Google Scholar
DellaPenna D. Plant metabolic engineering. Plant Physiol 2001;125:160–3.
PubMed Central
Google Scholar
Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev 2007;26:51–78.
PubMed Central
Google Scholar
Dixon RA, Gang DR, Charlton AJ, Fiehn O, Kuiper HA, Reynolds TL, et al. Applications of metabolomics in agriculture. J Agric Food Chem 2006;54:8984–94.
Google Scholar
Dixon RA, Strack D. Phytochemistry meets genome analysis, and beyond. Phytochemistry 2003;62:815–6.
Google Scholar
Domingo JL. Health risks of GM foods: many opinions but few data. Science 2000;288:1748–9.
Google Scholar
Domingo JL. Toxicity studies of genetically modified plants: a review of the published literature. Crit Rev Food Sci Nutr 2007;47:721–33.
Google Scholar
Dubouzet JG, Ishihara A, Matsuda F, Miyagawa H, Iwata H, Wakasa K. Integrated metabolomic and transcriptomic analyses of high-tryptophan rice expressing a mutant anthranilate synthase alpha subunit. J Exp Bot 2007;58:3309–21.
Google Scholar
Dunn WB, Overy S, Quick WP. Evaluation of automated electrospray-TOF mass spectrometryfor metabolic fingerprinting of the plant metabolome. Metabolomics 2005;1:137–48.
Google Scholar
Dwivedi P, Wu P, Klopsch S, Puzon G, Xun L, Hill H. Metabolic profiling by ion mobility mass spectrometry (IMMS). Metabolomics 2008;4:63–80.
Google Scholar
Fan TW, Lane AN, Shenker M, Bartley JP, Crowley D, Higashi RM. Comprehensive chemical profiling of gramineous plant root exudates using high-resolution NMR and MS. Phytochemistry 2001;57:209–21.
Google Scholar
Fernie AR, Tadmor Y, Zamir D. Natural genetic variation for improving crop quality. Curr Opin Plant Biol 2006;9:196–202.
Google Scholar
Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L. Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol 2004;5:763–9.
Google Scholar
Fiehn O. Metabolomics–the link between genotypes and phenotypes. Plant Mol Biol 2002;48:155–71.
Google Scholar
Fiehn O. Metabolite profiling in Arabidopsis. Methods Mol Biol 2006;323:439–47.
Google Scholar
Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L. Metabolite profiling for plant functional genomics. Nat Biotechnol 2000;18:1157–61.
Google Scholar
Fiehn O, Wohlgemuth G, Scholz M, Kind T, Lee do Y, Lu Y, et al. Quality control for plant metabolomics: reporting MSI-compliant studies. Plant J 2008;53:691–704.
Google Scholar
Frank T, Meuleye BS, Miller A, Shu QY, Engel KH. Metabolite profiling of two low phytic acid (lpa) rice mutants. J Agric Food Chem 2007;55:11011–9.
Google Scholar
Fridman E, Carrari F, Liu YS, Fernie AR, Zamir D. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 2004;305:1786–9.
Google Scholar
Fukusaki E, Kobayashi A. Plant metabolomics: potential for practical operation. J Biosci Bioeng 2005;100:347–54.
Google Scholar
Ghiasvand AR, Setkova L, Pawliszyn J. Determination of flavour profile in Iranian fragrant rice samples using cold-fibre SPME-GC-TOF-MS. Flav Frag J 2007;22:377–91.
Google Scholar
Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 2002;296:92–100.
Google Scholar
Goodman RE, Vieths S, Sampson HA, Hill D, Ebisawa M, Taylor SL, et al. Allergenicity assessment of genetically modified crops—what makes sense? Nat Biotechnol 2008;26:73–81.
Google Scholar
Grata E, Boccard J, Glauser G, Carrupt PA, Farmer EE, Wolfender JL, et al. Development of a two-step screening ESI–TOF–MS method for rapid determination of significant stress-induced metabolome modifications in plant leaf extracts: the wound response in Arabidopsis thaliana as a case study. J Sep Sci 2007;30:2268–78.
Google Scholar
Guillaumie S, Charmet G, Linossier L, Torney V, Robert N, Ravel C. Colocation between a gene encoding the bZip factor SPA and an eQTL for a high-molecular-weight glutenin subunit in wheat (Triticum aestivum). Genome 2004;47:705–13.
Google Scholar
Hall RD. Plant metabolomics: from holistic hope, to hype, to hot topic. New Phytol 2006;169:453–68.
Google Scholar
Hall RD, Brouwer ID, Fitzgerald MA. Plant metabolomics and its potential application for human nutrition. Physiol Plant 2008;132:162–75.
Google Scholar
Hirai MY, Klein M, Fujikawa Y, Yano M, Goodenowe DB, Yamazaki Y, et al. Elucidation of gene-to-gene and metabolite-to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics. J Biol Chem 2005;280:25590–95.
Google Scholar
Hirai MY, Yano M, Goodenowe DB, Kanaya S, Kimura T, Awazuhara M, et al. Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2004;101:10205–10.
PubMed Central
Google Scholar
Hirochika H. Contribution of the Tos17 retrotransposon to rice functional genomics. Curr Opin Plant Biol 2001;4:118–22.
Google Scholar
Hollywood K, Brison DR, Goodacre R. Metabolomics: current technologies and future trends. Proteomics 2006;6:4716–23.
Google Scholar
Hsing YI, Chern CG, Fan MJ, Lu PC, Chen KT, Lo SF. A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol Biol 2007;63:351–64.
Google Scholar
Iijima Y, Nakamura Y, Ogata Y, Tanaka K, Sakurai N, Suda K. Metabolite annotations based on the integration of mass spectral information. Plant J 2008;54:949–62.
PubMed Central
Google Scholar
International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature 2005;436:793–800.
Google Scholar
Ishihara A, Matsuda F, Miyagawa H, Wakasa K. Metabolomics for metabolically manipulated plants: effects of tryptophan overproduction. Metabolomics 2007;3:319–34.
Google Scholar
Johnson HE, Broadhurst D, Kell DB, Theodorou MK, Merry RJ, Griffith GW. High-throughput metabolic fingerprinting of legume silage fermentations via Fourier transform infrared spectroscopy and chemometrics. Appl Environ Microbiol 2004;70:1583–92.
PubMed Central
Google Scholar
Jonsson P, Gullberg J, Nordstrom A, Kusano M, Kowalczyk M, Sjostrom M, et al. A strategy for identifying differences in large series of metabolomic samples analyzed by GC/MS. Anal Chem 2004;76:1738–45.
Google Scholar
Keurentjes JJ, Fu J, Terpstra IR, Garcia JM, Van Den Ackerveken G, Snoek LB, et al. Regulatory network construction in Arabidopsis by using genome-wide gene expression quantitative trait loci. Proc Natl Acad Sci U S A 2007;104:1708–13.
PubMed Central
Google Scholar
Kim JK, Bamba T, Harada K, Fukusaki E, Kobayashi A. Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment. J Exp Bot 2007;58:415–24.
Google Scholar
Kirst M, Basten CJ, Myburg AA, Zeng ZB, Sederoff RR. Genetic architecture of transcript-level variation in differentiating xylem of a eucalyptus hybrid. Genetics 2005;169:2295–303.
PubMed Central
Google Scholar
Kliebenstein DJ, West MA, Van Leeuwen H, Loudet O, Doerge RW, St Clair DA. Identification of QTLs controlling gene expression networks defined a priori. BMC Bioinformatics 2006;7:308.
PubMed Central
Google Scholar
Kojima Y, Ebana K, Fukuoka S, Nagamine T, Kawase M. Development of an RFLP-based Rice Diversity Research Set of Germplasm. Breeding Science 2005;55:431–40.
Google Scholar
Kok EJ, Kuiper HA. Comparative safety assessment for biotech crops. Trends Biotechnol 2003;21:439–44.
Google Scholar
Koornneef M, Alonso-Blanco C, Vreugdenhil D. Naturally occurring genetic variation in Arabidopsis thaliana. Annu Rev Plant Biol 2004;55:141–72.
Google Scholar
Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, et al. GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics 2005;21:1635–8.
Google Scholar
Krishnan P, Kruger NJ, Ratcliffe RG. Metabolite fingerprinting and profiling in plants using NMR. J Exp Bot 2005;56:255–65.
Google Scholar
Kristensen C, Morant M, Olsen CE, Ekstrom CT, Galbraith DW, Moller BL, et al. Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Proc Natl Acad Sci U S A 2005;102:1779–84.
PubMed Central
Google Scholar
Kuiper HA, Kleter GA, Noteborn HP, Kok EJ. Assessment of the food safety issues related to genetically modified foods. Plant J 2001;27:503–28.
Google Scholar
Kuiper HA, Kok EJ, Engel KH. Exploitation of molecular profiling techniques for GM food safety assessment. Curr Opin Biotechnol 2003;14:238–43.
Google Scholar
Kusano M, Fukushima A, Kobayashi M, Hayashi N, Jonsson P, Moritz T, et al. Application of a metabolomic method combining one-dimensional and two-dimensional gas chromatography-time-of-flight/mass spectrometry to metabolic phenotyping of natural variants in rice. J Chromatogr B Analyt Technol Biomed Life Sci 2007;855:71–9.
Google Scholar
Li J, Last RL. The Arabidopsis thaliana trp5 mutant has a feedback-resistant anthranilate synthase and elevated soluble tryptophan. Plant Physiol 1996;110:51–9.
PubMed Central
Google Scholar
Lindon JC, Holmes E, Nicholson JK. Metabonomics in pharmaceutical R&D. FEBS J 2007;274:1140–51.
Google Scholar
Lisec J, Meyer RC, Steinfath M, Redestig H, Becher M, Witucka-Wall H, et al. Identification of metabolic and biomass QTL in Arabidopsis thaliana in a parallel analysis of RIL and IL populations. Plant J 2008;53:960–72.
PubMed Central
Google Scholar
Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 2006;1:387–96.
Google Scholar
Moco S, Bino RJ, Vorst O, Verhoeven HA, de Groot J, van Beek TA, et al. A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol 2006;141:1205–18.
PubMed Central
Google Scholar
Moco S, Capanoglu E, Tikunov Y, Bino RJ, Boyacioglu D, Hall RD, et al. Tissue specialization at the metabolite level is perceived during the development of tomato fruit. J Exp Bot 2007;58:4131–46.
Google Scholar
Morino K, Matsuda F, Miyazawa H, Sukegawa A, Miyagawa H, Wakasa K. Metabolic profiling of tryptophan-overproducing rice calli that express a feedback-insensitive alpha subunit of anthranilate synthase. Plant Cell Physiol 2005;46:514–21.
Google Scholar
Nakamura Y, Kimura A, Saga H, Oikawa A, Shinbo Y, Kai K, et al. Differential metabolomics unraveling light/dark regulation of metabolic activities in Arabidopsis cell culture. Planta 2007;227:57–66.
Google Scholar
Obayashi T, Kinoshita K, Nakai K, Shibaoka M, Hayashi S, Saeki M, et al. ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Res 2007;35:D863–9.
PubMed Central
Google Scholar
Oikawa A, Nakamura Y, Ogura T, Kimura A, Suzuki H, Sakurai N, et al. Clarification of pathway-specific inhibition by Fourier transform ion cyclotron resonance/mass spectrometry-based metabolic phenotyping studies. Plant Physiol 2006;142:398–413.
PubMed Central
Google Scholar
Oksman-Caldentey KM, Saito K. Integrating genomics and metabolomics for engineering plant metabolic pathways. Curr Opin Biotechnol 2005;16:174–9.
Google Scholar
Overy SA, Walker HJ, Malone S, Howard TP, Baxter CJ, Sweetlove LJ, et al. Application of metabolite profiling to the identification of traits in a population of tomato introgression lines. J Exp Bot 2005;56:287–96.
Google Scholar
Parveen I, Moorby JM, Fraser MD, Allison GG, Kopka J. Application of gas chromatography-mass spectrometry metabolite profiling techniques to the analysis of heathland plant diets of sheep. J Agric Food Chem 2007;55:1129–38.
Google Scholar
Rischer H, Oksman-Caldentey KM. Unintended effects in genetically modified crops: revealed by metabolomics? Trends Biotechnol 2006;24:102–4.
Google Scholar
Saito K, Dixon R, Willmitzer L. Plant metabolomics. Heidelberg: Springer; 2006.
Google Scholar
Saito K, Hirai MY, Yonekura-Sakakibara K. Decoding genes with coexpression networks and metabolomics—‘majority report by precogs'. Trends Plant Sci 2008;13:36–43.
Google Scholar
Sasaki T, Matsumoto T, Yamamoto K, Sakata K, Baba T, Katayose Y, et al. The genome sequence and structure of rice chromosome 1. Nature 2002;420:312–6.
Google Scholar
Sato S, Soga T, Nishioka T, Tomita M. Simultaneous determination of the main metabolites in rice leaves using capillary electrophoresis mass spectrometry and capillary electrophoresis diode array detection. Plant J 2004;40:151–63.
Google Scholar
Schauer N, Fernie AR. Plant metabolomics: towards biological function and mechanism. Trends Plant Sci 2006;11:508–16.
Google Scholar
Sekiyama Y, Kikuchi J. Towards dynamic metabolic network measurements by multi-dimensional NMR-based fluxomics. Phytochemistry 2007;68:2320–9.
Google Scholar
Shi C, Uzarowska A, Ouzunova M, Landbeck M, Wenzel G, Lubberstedt T. Identification of candidate genes associated with cell wall digestibility and eQTL (expression quantitative trait loci) analysis in a Flint × Flint maize recombinant inbred line population. BMC Genomics 2007;8:22.
PubMed Central
Google Scholar
Shinbo Y, Nakamura Y, Altaf-Ul-Amin M, Asahi H, Kurokawa K, Arita M, et al. KNApSAcK: a comprehensive species-metabolite relationship database. Biotechnol Agric For 2006;57:166–81.
Google Scholar
Soga T, Ohashi Y, Ueno Y, Naraoka H, Tomita M, Nishioka T. Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res 2003;2:488–94.
Google Scholar
Steinfath M, Groth D, Lisec J, Selbig J. Metabolite profile analysis: from raw data to regression and classification. Physiol Plant 2008;132:150–61.
Google Scholar
Sumner LW, Mendes P, Dixon RA. Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 2003;62:817–36.
Google Scholar
Suzuki H, Sasaki R, Ogata Y, Nakamura Y, Sakurai N, Kitajima M, Takayama H, Kanaya S, Aoki K, Shibata D, Saito K. Metabolic profiling of flavonoids in Lotus japonicus using liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry. Phytochemistry 2008;69:99–111.
Google Scholar
Takahashi H, Hayashi M, Goto F, Sato S, Soga T, Nishioka T, et al. Evaluation of metabolic alteration in transgenic rice overexpressing dihydroflavonol-4-reductase. Ann Bot (Lond) 2006;98:819–25.
Google Scholar
Takahashi H, Hotta Y, Hayashi M, Kawai-Yamada M, Komatsu S, Uchimiya H. High throughput metabolome and proteome analysis of transgenic rice plants (Oryza sativa L.). Plant Biotechnol 2005;22:47–50.
Google Scholar
Tarpley L, Duran AL, Kebrom TH, Sumner LW. Biomarker metabolites capturing the metabolite variance present in a rice plant developmental period. BMC Plant Biol 2005;5:8.
PubMed Central
Google Scholar
Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima J, Awazuhara M, et al. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 2005;42:218–35.
Google Scholar
Tozawa Y, Hasegawa H, Terakawa T, Wakasa K. Characterization of rice anthranilate synthase alpha-subunit genes OASA1 and OASA2. Tryptophan accumulation in transgenic rice expressing a feedback-insensitive mutant of OASA1. Plant Physiol 2001;126:1493–506.
PubMed Central
Google Scholar
Trethewey RN. Metabolite profiling as an aid to metabolic engineering in plants. Curr Opin Plant Biol 2004;7:196–201.
Google Scholar
Van Der Heijden R, Jacobs DI, Snoeijer W, Hallard D, Verpoorte R. The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 2004;11:607–28.
Google Scholar
Villas-Boas SG, Mas S, Akesson M, Smedsgaard J, Nielsen J. Mass spectrometry in metabolome analysis. Mass Spectrom Rev 2005;24:613–46.
Google Scholar
Wakasa K, Hasegawa H, Nemoto H, Matsuda F, Miyazawa H, Tozawa Y, et al. High-level tryptophan accumulation in seeds of transgenic rice and its limited effects on agronomic traits and seed metabolite profile. J Exp Bot 2006;57:3069–78.
Google Scholar
Ward JL, Baker JM, Beale MH. Recent applications of NMR spectroscopy in plant metabolomics. FEBS J 2007;274:1126–31.
Google Scholar
Watanabe M, Kusano M, Oikawa A, Fukushima A, Noji M, Saito K. Physiological roles of the beta-substituted alanine synthase gene family in Arabidopsis. Plant Physiol 2008;146:310–20.
PubMed Central
Google Scholar
Yao K, De Luca V, Brisson N. Creation of a metabolic sink for tryptophan alters the phenylpropanoid pathway and the susceptibility of potato to Phytophthora infestans. Plant Cell 1995;7:1787–99.
PubMed Central
Google Scholar
Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I. Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 2000;287:303–5.
Google Scholar
Yonekura-Sakakibara K, Saito K. Review: genetically modified plants for the promotion of human health. Biotechnol Lett 2006;28:1983–91.
Google Scholar
Yonekura-Sakakibara K, Tohge T, Niida R, Saito K. Identification of a Flavonol 7-O-rhamnosyltransferase gene determining flavonoid pattern in Arabidopsis by transcriptome coexpression analysis and reverse genetics. J Biol Chem 2007;282:14932–41.
Google Scholar
Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 2002;296:79–92.
Google Scholar
Zhang XH, Brotherton JE, Widholm JM, Portis AR Jr. Targeting a nuclear anthranilate synthase alpha-subunit gene to the tobacco plastid genome results in enhanced tryptophan biosynthesis. Return of a gene to its pre-endosymbiotic origin. Plant Physiol 2001;127:131–41.
PubMed Central
Google Scholar