Nevertheless, it would be dishonest to paint a picture of utter doom and gloom. Despite the withdrawal of investment in research, the last 15 years have seen some impressive successes. This is true for our understanding of the rice plant and consequent genetic improvements, and it is also true for the less glamorous but equally important agronomic side of the equation: Improvements in crop management incorporating such practices as site-specific nutrient management and conservation agriculture have had demonstrable impact in farmers’ fields. Similarly, water-saving practices such as alternate wetting and drying, which allows farmers to grow rice with up to 25% less water, are becoming increasingly important as water becomes an ever scarcer agricultural resource [3].
Simultaneous revolutions in molecular biology and genetics, computational power and storage capacity, and communications have the potential to help scientists dramatically accelerate the pace of their research. Using the information revealed by the sequencing of the rice genome, techniques such as marker-assisted selection allow new varieties to be bred in a fraction of the time required as recently as 20 years ago. Advances in biotechnology are allowing the development of nutritionally enhanced strains of rice that have the potential to avert the hidden hunger of malnutrition that afflicts so many of the poor. The internet, along with exponentially increasing computing power, has permitted scientists the world over to share and analyze vast volumes of data and knowledge. Although it is difficult to know whether this has had significant impact in farmers’ fields, it has undoubtedly helped scientists in developed and developing countries improve their research capabilities.
More specifically, several key areas of research are bringing together scientists’ increasing knowledge of the biology of the rice plant with work to help farmers improve productivity.
First, researchers are developing, and must further develop, novel and robust approaches to use the wealth of genetic diversity of rice. IRRI is mobilizing the scientific community to establish a public genetic diversity research platform using a variety of germplasm and specialized genetic stocks.
Second, we must continue to develop methods to understand complex traits. By fully exploiting functional genomics tools, it will be possible to bridge the many existing genotype–phenotype gaps [2]. If we take progress in human genetics as a guide—in which scientists have been able to see how complex traits can be defined despite limited capacity to do controlled genetics—much more can be done in rice research in terms of discovering novel genetic control. In many ways, it is not technology that limits researchers, but the resources and investment needed to apply various toolboxes to rice.
Third, we must continue to develop the rice plant as both a crop and biological model for plant-science research and, in so doing, build a critical mass of knowledge directed to solving practical problems. We cannot expect every plant-science graduate to become an agricultural scientist, but having rice as a research model will enable us to tap into a vast pool of talented people and channel their energy and knowledge into solving some of the greatest agricultural challenges we face.
There are two key points in this paper. First, our capacity to perform research—to increase our understanding of the rice plant and the environments in which it is grown and to thus develop technologies that can help millions, if not billions, of people—is greater than ever. Second, given the world’s current food situation, the need for such research is equally great. The potential is enormous, but it will take commensurate will—political, economic, educational, and scientific—to approach that potential.
Another crucial element, especially for IRRI and its national partners throughout the rice-growing world, is the need to target research toward areas where it is most needed. To do that, we must have the best possible understanding of not only the rice plant, its physiology, and its agronomy, but also the big picture—knowledge of where and how it is grown and by whom, of how it is processed, transported, and marketed, and of how it is consumed and stored.