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Abstract 

Background:  Thailand is a country with large diversity in rice varieties due to its rich and diverse ecology. In this 
paper, 300 rice accessions from all across Thailand were sequenced to identify SNP variants allowing for the popula-
tion structure to be explored.

Results:  The result of inferred population structure from admixture and clustering analysis illustrated strong evidence 
of substructure in each geographical region. The results of phylogenetic tree, PCA analysis, and machine learning on 
population identifying SNPs also supported the inferred population structure.

Conclusion:  The population structure inferred in this study contains five subpopulations that tend to group indi-
viduals based on location. So, each subpopulation has unique genetic patterns, agronomic traits, as well as different 
environmental conditions. This study can serve as a reference point of the nation-wide population structure for sup-
porting breeders and researchers who are interested in Thai rice.
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Background
Rice (Oryza sativa) has been the main carbohydrate 
source in Thailand for more than 4000 years (Weber et al. 
2010), and Thailand has been a major rice exporter since 
1851 (Siamwalla 1975). Accelerated cultivar selection for 
specific environments is important for rice breeding pro-
grams. The long time period of rice domestication has 
yielded many rice cultivars with wide variation in physi-
cal traits, such as size, flowering time, grain quality, and 
yield, to name a few.

Thailand has large diversity in ecological systems 
(Chakhonkaen et al. 2012). In the north, most of the area 
is covered by mountains and tropical rain forests, while 
central Thailand consists of plains and fields that are 

prone to flood. In the north-eastern part, plateaus are 
the main type of area. In the south are tropical coastal 
regions and tropical islands. See Fig. 1 for more details. 
According to Köppen climate classification (Köppen 
1884), the south of Thailand is in the Tropical monsoon 
climate zone (Am), while the rest of the country is in the 
Tropical savanna climate zone (Aw/As).

Due to the diverse ecology in Thailand, rice varie-
ties need to be adapted to their intended growth region 
and there is some degree of association between genetic 
variation and geographical origin of Thai rice (Pusadee 
et al. 2019). Moreover, there is a higher level of diversity 
in Thai rice accessions compared to selected rice acces-
sions obtained from International Rice Research Institute 
(IRRI) germplasm based on InDel markers (Chakhon-
kaen et  al. 2012). Limited data shows that Upland Thai 
rice forms a cluster of tropical japonica (Pathaichinda-
chote et  al. 2019; Chakhonkaen et  al. 2012; Kladmook 
et al. 2012), while lowland rice forms indica clusters.
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Understanding population structure and genetic 
diversity is an important step before Genome-wide 
association studies (GWAS) (Reig-Valiente et al. 2016), 
which paves the way for studies of traits and functional 
gene investigation. Studies in population structure and 
genetic diversity of Thai rice have been conducted using 
different sets of rice varieties and molecular mark-
ers. Comparison of genetic diversity among 43 Thai 
rice and 57 IRRI rice varieties was investigated, using 
single-stranded conformation polymorphism (SSCP) 
InDel markers (Chakhonkaen et al. 2012). Additionally, 
12 simple sequence repeat (SSR) markers were used to 
examine ongoing gene flow among three categories of 
rice variety in Thailand, including 42 wild rice varieties, 
12 weedy rice varieties, and 37 cultivated rice varieties 
(Pusadee et  al. 2013). Recently, with a greater number 
of rice germplasm accessibility, 144 Thai and 23 exotic 

rice varieties were included to evaluate genetic diver-
sity using SSR markers (Pathaichindachote et al. 2019). 
Another study assessed the population gene pool of 15 
Thai elite rice cultivars using InDel markers (Moonsap 
et al. 2019). It is worth noting that there are some limi-
tations regarding access to a high number of accessions 
for each region of Thailand and the application of SNP 
markers to explore variation among Thai rice germ-
plasms in these previous works.

To fill gaps in the literature, our study mainly focused 
on the population structure of 300 rice accessions, 277 
of which are grown in diverse ecological systems in Thai-
land and 23 obtained from IRRI germplasm collection. 
We use SNP markers derived from the Genotyping-by-
Sequencing (GBS) method to infer subpopulations. These 
accessions are a good representation of the nation-wide 
rice population structure.

Fig. 1  The environment of Thailand and the ratios of subpopulations in each area. The environment details are in the aspects of landforms, average 
temperature, amount of rain, and humidity in 2018 separated by regions (National statistical office of Thailand (NSO and T.N.S.O. 2020)). Each pie 
chart represents the ratio of each subpopulation members that have their known origin belong to the particular area. Note that there are no 
accessions for the east since it is not a rice cultivation area
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Results
Population Structure
After clustering the 300 accessions, five subpopulations 
were found in the dataset. These five inferred popula-
tions generally group according to geological areas of rice 
accession cultivation.

Table 1 shows the origins of 300 accessions where the 
clusters of IRRI accessions were labeled according to the 
work in Zhao et al. (2011). POP1 has a majority of indica 
accessions from Central Central Thailand. POP3 has a 
majority of indica accessions from Northeastern Thai-
land. POP2 represents rice accessions from both North-
eastern and Central Thailand, suggesting it is an admixed 
population of the two. POP4 represents accessions from 
Southern Thailand. And lastly, POP5 represents japon-
ica accessions from Northern Thailand. There are many 
accessions of indica from IRRI in POP1, which is con-
sistent with POP1 being indica. The majority of japonica 
accessions from IRRI are in POP5, which includes the 
Thai japonica accessions. Additionally, a Chi-Square Test 
of Independence excludes the possibility that the origins 
and subpopulations in Table 1 are independent (36 dof, p 
value < 0.01). Hence, areas of origin and suppopulation in 
Table 1 are associated with each other.

A principal component analysis showed that PC1 
separated the japonica population accessions (POP5) 
from the rest of the accessions, while PC2 separated 
the southern population accessions (POP4) from the 
central and northern accessions of indica (Fig.  2). 
Lastly, PC3 separated the central indica accessions 
(POP1) from the northern indica accessions (POP3), 
with the accessions identified as admixed (POP2) join-
ing the two, showing that the geographical separa-
tion is reflected in the genotypes of each accession. A 

phylogenetic tree was constructed and showed that 
the japonica population (POP5) was separated from 
the indica populations (Fig.  2D). Admixed accessions 
(POP2) were distributed among central (POP1) and 
northern (POP3) branches, supporting that POP2 is an 
admixed group of POP1 and POP3, while POP1, POP3, 
and POP4 were clearly separated from each other. 
Admixture analysis showed that POP1, POP3, POP4, 
and POP5 were grouped into different ancestors (differ-
ent colors). POP2, however, had mixed ratios of ances-
tor A and B, which were the ancestors of POP1 and 
POP3. This confirms that POP2 is an admixed popula-
tion of POP1 and POP3. POP1, POP3, POP4, and POP5 
have high bootstrap support around 0.9, while POP2 
has average support at 0.69 (Table  2). This is consist-
ent with POP2 representing an admixed population of 
POP1 and POP3.

The genetic distance of each population was esti-
mated using FST  between admixture ancestry popu-
lations, which is a widely-used measure of genetic 
variation among populations (Holsinger and Weir 
2009). The FST  (Table 3) shows that ancestor D, which 
was the ancestor of the japonica population (POP5), 
was the most distantly related.

The majority of accessions that formed POP4 were 
landraces from southern Thailand. These landraces 
were considered likely to be mostly indica, but there 
was no empirical evidence to support this. The FST  val-
ues suggest that the ancestry of POP4 (C) was closer to 
ancestors A and B, which are indica, than to ancestor 
D, which is japonica. In addition, two indica accessions 
from the central region belong to the same cluster as 
the landraces. The members of POP4 cluster in PCA 
plots are the indica accessions rather than the japonica 

Table 1  Origins of 300 rice accessions

There are 246 accessions from Thai known origins (north, north-east, central, or south), 31 accessions from Thai unknown origins, and 23 accessions from IRRI

Origin Subpopulations Total

POP1 POP2 POP3 POP4 POP5

North 4 5 7 0 29 45

North-East 1 14 37 0 1 53

Central 21 15 19 2 0 57

South 0 0 0 89 2 91

IRRI indica 7 1 0 0 0 8

IRRI Tropical japonica 1 2 0 0 2 5

IRRI Aus 0 3 0 0 0 3

IRRI Temperate japonica 0 0 0 0 4 4

IRRI Aromatic 0 0 0 0 3 3

Unknown 19 5 5 1 1 31

Total 53 45 68 92 42 300
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accessions (Fig. 2). This shows that the landraces from 
southern Thailand are primarily of indica descent.

The 300 accessions were compared against 30 acces-
sions of Thai rice selected from the 3,000 rice genomes 
project (3K RGP dataset) (Li et al. 2014) that have areas 
of origin in Thailand using PCA (Fig.  3). According to 
the result, indica accessions from the 3K RGP dataset are 
in POP1, POP2, POP3, and POP4, while japonica acces-
sions from 3K RGP dataset are in POP5. These 3K acces-
sions are consistent with the population groupings. An 
indica-japonica admixed variety from the 3K RGP data-
set is placed between the area of japonica and indica in 
the PCA (Fig. 3). Additionally, many accessions from the 
Southeast Asian Indica (IND3) are grouped with POP4 
(see Additional file 1: Table S7 for details regarding types 
of clusters in 3K RGP dataset).

Agronomic Traits of Subpopulations
There are three agronomic traits that were measured for 
all accessions: days to flowering, grain length, and plant 
height.

The broad-sense heritability estimates ( h2B ) were 97.8% 
for plant height, 98.6% for grain length, and 93.58% for 
flowering time.

Fig. 2  Population structure of 300 rice accessions inferred from 69,777 SNPs and 47,277 Indels. A Admixture plot of 300 rice accessions. The vertical 
axis represents an ancestry ratio of each accession. The horizontal axis represents individual accessions grouped by clustering analysis. Groups were 
assigned by clustering analysis on individual-admixture ratios. There are four ancestors (ancestor A–ancestor D) with five populations (POP1–POP5) 
inferred by clustering analysis. B The PCA scatter plot of first and second principal components (PCs) from a principal component analysis. C The 
PCA scatter plot of second and third PCs. Cluster colors were assigned according to ADMIXTURE clustering analysis results. The PC1 separates the 
japonica accessions (POP5) from the indica accessions. PC2 separates southern indica accessions (POP4) from central and northern accessions 
(POP1, POP2, and POP3). Lastly, PC3 separates central indica (POP1), from northern indica (POP3) with their admixture accessions appearing in 
between the two (POP2). D Phylogenetic tree of the 300 accessions, created by NJ tree, color coded according to the ADMIXTURE result

Table 2  Number of accessions and support of clustering 
assignment from bootstrapping for each population

The support number represents the likelihood that each cluster has the same set 
of members. Higher support implies a higher chance that cluster members are 
in the same population

Number of accessions Average 
support

POP1 54 0.98

POP2 45 0.69

POP3 67 0.92

POP4 92 0.89

POP5 42 0.99

Table 3  FST divergences between ancestry populations inferred 
by ADMIXTURE

A is an ancestor of indica (elite line), B is an ancestor of indica (modern variety), 
and D is the ancestor of japonica. By using a threshold of FST ≤ 0.3 to consider 
populations to have a similar type: either japonica or indica, C was assigned to 
be an ancestor of indica (landrace in southern part of Thailand)

FST Ancestor A Ancestor B Ancestor C

Ancestor B 0.178 – –

Ancestor C 0.208 0.209 –

Ancestor D 0.480 0.497 0.507
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For the days to flowering trait, central indica acces-
sions (POP1) flowered earlier than north-eastern indica 
accessions (POP3). The admixed population (POP2) 
had a flowering time roughly between that of POP1 and 
POP3, as expected. Southern indica accessions (POP4) 
have the latest flowering time of the 300 accessions 
investigated. Lastly, the japonica accessions (POP5) had 
a similar flowering time to POP1 (Fig. 4A, D).

The reason that rice in the central and northeast 
regions have different flowering times, even though the 
two areas have a similar latitude, is primarily because of 
distinct environment conditions in these regions to sup-
port multiple growing seasons per year. In central plain of 
Thailand, an irrigation system is well-managed and feasi-
ble for off-season rice cultivation, so farmers choose to 
grow short-duration rice varieties which can be harvested 
faster. Hence, there are more than one growing seasons 

Fig. 3  The Principal component analysis (PCA) for five inferred subpopulations and Thai rice accessions selected from 3K Rice Genomes Project (3K 
RGP dataset). A The PCA scatter plot of first and second principal components (PCs). B The PCA scatter plot of second and third PCs

Fig. 4  Subpopulation distributions of three phenotypes: days to flowering (A), grain length (B), and plant height (C). Domination graphs represent 
relationships between pairs of populations for days to flowering (D), grain length (E), and plant height (F). Arrow directions point from the 
population with a significantly higher phenotype value to the population with a lower phenotype value (with Mann Whitney test at α = 0.001)
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per year in the central area. In contrast, the north-east 
has less rainfall and less access to water sources com-
pared to the central region. Northeastern farmers tend to 
cultivate rice in one growing season per year and select 
for drought-tolerate varieties. This suggested different 
selection pressures for a days to flowering trait observed 
in this study.

For the grain-length trait, POP1, POP2, and POP3 
have similar grain length, while POP4 has a significantly 
shorter grain length, and POP5 has high variation of 
grain length. This indicates that japonica (POP5) cannot 
be distinguished from indica (POP1–POP4) by using the 
grain-length trait (Fig. 4B, E).

For the plant-height trait, ordering by ascending 
heights, the order is POP5, POP1, POP2, and POP3/
POP4. POP3 and POP4 have no significant difference in 
the height trait (Fig. 4C, F).

In the aspect of the association between phenotypes 
and known origins of accessions, with the Mann-Whit-
ney test at α = 0.001 , the results were as follows. The 
accessions from the south had significantly longer flow-
ering time and significantly shorter grain lengths than 
the rest. The accessions from the north had significantly 
shorter flowering time than the rest. The accessions from 
the north-east had significantly longer plant height than 
the north. The accessions from the central area had sig-
nificantly shorter plant height than the south. Hence, 
accessions can be separated roughly by these three traits, 
which implies that there are associations between traits 
and areas of origin of accessions. The potential cause of 
the difference in phenotypes might be the difference in 
landform and selection for crop use.

Unique SNPs of Subpopulations
A QTL analysis was used to identify SNPs with large 
variation in allele frequency between populations and 
50–100 of the SNPs with the greatest allele frequency dif-
ference between populations were selected to train a ran-
dom forest model to identify which population any given 
accession is from based on genotype. A total of 268 SNPs 
were selected (Additional file 1: Table S1).

Only POP5 had population specific SNPs that allowed 
for accurate population identification, this was not sur-
prising as this population is japonica and the other pop-
ulations are all indica (Table  4). The indica populations 
had too much allele sharing to allow for each accession to 
be accurately assigned to their population. The admixed 
population had the lowest rate of correct population 
assignment, while the other populations were all in the 
80–90% range (Table 4).

While a QTL analysis to identify population specific 
SNPs might be unconventional, it is well known that pop-
ulation stratification can result in false positives. In this 

particular case the populations in question are not dis-
crete populations, but rather groupings of accessions that 
tend to correlate with location and have genetic mixing 
between groups.

The majority of SNPs most predictive for POP1 
occurred on chromosome 1 in an interval between 21.6 
and 22.5 Mb and an interval on chromosome 3 between 
8.4 and 8.8 Mb. The majority of SNPs most predictive for 
POP2 occurred on chromosome 3 between 31 and 31.5 
Mb with some small intervals on chromosomes 5, 6 and 
7. There were 5 intervals of predictive SNPs for POP3 
and several small intervals. Chromosome 3 had a interval 
from 27.59 to 27.65 Mb, chromosome 5 had an interval 
from 18.71 to 18.78 Mb, chromosome 6 had two intervals 
from 7.61 to 7.68 Mb and 11.02 to 11.06 Mb, chromo-
some 10 had an interval from 14.74 to 14.8 Mb. POP4 had 
the most distinctive allele frequencies with SNP intervals 
on chromosome 1 at 21.07 to 21.11 Mb, chromosome 2 
at 5.32 to 5.35 Mb and 16.41 to 16.45 Mb, chromosome 
5 at 23.71 to 23.84 Mb, and chromosome 11 at 2.7 to 
2.8 Mb and 23.36 to 23.42. Of the 268 SNPs, there were 
110 SNPs located in 75 genes, although the majority of 
these are predicted genes with no known function (Addi-
tional file 1: Table S2). There were 259 genes within the 
upstream and downstream intervals of the 268 predictive 
SNPs and most were predicted genes of unknown func-
tion (Additional file 1: Table S3).

Discussion
According to the work in Chakhonkaen et  al. (2012), 
upland Thai rice grouped into a japonica cluster, while 
rice from other regions formed an indica cluster, which 
is consistent with the population structure found in this 
work. Additionally, PCA analysis of rice accessions in 
this work compared against accessions from the 3K rice 
genome project confirmed that POP5 is japonica, while 
the rest of the subpopulations are indica.

All of the accessions of rice in this study possess unique 
traits that make them suited to their growing environ-
ment and type of farming. The types of environmen-
tal conditions range from the tropical monsoon climate 
in the south to tropical savanna in central Thailand and 

Table 4  The result of 10-fold cross validation based on 268 SNPs 
for population classification using Random Forest algorithm

Precision Recall F1

POP1 0.83 0.93 0.88

POP2 0.76 0.62 0.68

POP3 0.90 0.91 0.90

POP4 0.97 0.98 0.97

POP5 1.00 1.00 1.00
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mountainous regions in northern Thailand. Group-
ing the accessions on genetic similarity tended to group 
accessions according to these environmental differences, 
which suggests that accessions in similar environments 
share the genetic variance that makes them suited to 
those environments.

The inferred subpopulation in the north is a japonica 
cluster (POP5). The other four inferred subpopulations 
are indica clusters in the central area (POP1), north-east 
(POP3), south (POP4), and the admixture of POP1 and 
POP3 (POP2). All inferred subpopulations were differ-
ent and could be separated fairly well using 268 selected 
SNPs using Random forest classifier, with the exception 
of the admixed cluster (POP2). This implies that the 
inferred subpopulations were reasonably robust.

An interesting finding was that the most predictive 
SNPs for each subpopulation occurred within a few small 
intervals, rather than randomly spread throughout the 
genome, which may suggest a selection pressure, perhaps 
selecting for a trait that makes the accession better in the 
area it is grown. However, the subpopulation groupings 
are broad, each covering a quite diverse range of envi-
ronments, and the allele frequencies between subpopu-
lations have a large amount of overlap, so many of these 
regions could be due to chance rather than function.

Although the majority of genes within or nearby the 
SNP intervals have an unknown function, some inter-
esting genes are functionally annotated, for example, 
Os03g0262000, Os05g0203800, Os06g0677800, and 
Os09g0433650. The gene Os03g0262000, is a homolog 
of AtPIP5K1 that is induced by water stress and abscisic 
acid in A. thaliana (Mikami et  al. 1998). Os05g0203800 
(OSMADS58) is identified as a rice C-class MADS box 
gene which plays a crucial role for flower development 
(Yamaguchi et  al. 2006; Yun et  al. 2013; Dreni et  al. 
2011; Chen et  al. 2015; Li et  al. 2011). Os06g0677800 
(OsARF17) encodes a rice auxin response factor (ARF) 
involved in plant defense against several different types 
of plant virus (Zhang et  al. 2020), and functions in leaf 
inclination regulation (Chen et al. 2018) and tiller angle 
modulation (Li et al. 2020). Os09g0433650 is located on 
chromosome 9 and associated with rice grain shape (Wu 
et  al. 2020). The roles of these candidate genes identify 
a potential relationship between predictive SNP markers 
and differences in agronomic traits found in the inferred 
subpopulations which could be further investigated.

Conclusion
Thailand is a country with large diversity in rice varieties 
due to its rich and diverse environment. In this paper, 300 
rice accessions (277 rice accessions from all across Thai-
land and 23 IRRI rice accessions) were sequenced to iden-
tify SNP variants allowing for the population-structure 

to be explored. The inferred population structure from 
admixture and clustering analysis illustrated strong evi-
dence of substructure for each geographical region. The 
results of phylogenetic tree, PCA analysis, and machine 
learning on SNPs selected by QTL analysis also sup-
ported the inferred population structure. Moreover, by 
using only 268 SNPs, a random forest classifier was able 
to classify individuals for four out of the five subpopu-
lations with reasonably high accuracy, the admixture 
population was the exception. This shows that these sub-
populations are unique enough to be distinguished by a 
small number of SNPs. A unique ecological system where 
rice is grown might play a key role in this uniqueness. 
The 268 SNPs may be used as markers of these subpopu-
lations for future studies. This study can serve as a ref-
erence point of the nation-wide population structure for 
supporting breeders and researchers who are interested 
in Thai rice. Finally, the dataset of 300 rice accessions is 
available at PRJNA753279-Thai Rice Genotyping Project.

Methods
Plant Material
The panel used in this study is composed of 300 Thai rice 
accessions representing diversity in phenotype, agro-eco-
system, and geographic origin: northern, northeastern, 
southern, and central region of Thailand. Detailed infor-
mation regarding the accessions is reported in Additional 
file 1: Table S4.

Plant Cultivation
The study was carried out in the wet season of 2018 
at Ubon Ratchathani Rice Research Center (URRC) 
of Ubonratchatani province,Thailand ( 15◦19′55.2′′ N, 
104

◦
41

′
27.9

′′E). Seeds of the 300 rice accessions were 
germinated in a wet seedling bed on 16th June 2018. The 
seedlings were transplanted in a puddled field at 30 days 
after sowing (DAS) in 80× 380 cm plots (5 rows × 20 
plants). Fertilizers were applied as follows: 50 kg/ha N, 50 
kg/ha P2O5 , 25 kg/ha K2O at 10 days after transplanting; 
and top-dress with 10 kg/ha N at 30 days after transplant-
ing. The experimental field was managed according to 
normal agricultural practices regarding crop protection 
and paddy water management. The mean air tempera-
ture ranged from 24.5 to 31.7  ◦ C. The highest and low-
est relative humidity recorded during the experiment 
was 93.6 to 65.7%. No extremely high temperature or 
extremely low relative humidity was recorded, therefore 
heat stress was not a cause that affected growing and/
or fertility conditions. Flowering time (days to flowering 
after sowing, DTF) was recorded when 50% of the plants 
in each plot had flowered. At maturity, the five plants in 
the middle position of each plot were selected for assess-
ment of plant height and grain length. The broad-sense 
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heritability ( h2B ) was calculated as h2B = σ
2
G/(σ

2
G + σ

2
e /r) , 

where σ 2
G represents genetic variance, σ 2

e  represents 
residual variance and r is the number of replicates.

Genotyping by Sequencing and Variance Calling
The genotypic sequences were generated from Ion S5TM 
XL Sequencer (Thermo Fisher Scientific). The data were 
obtained as BAM files. The ApeKI enzyme was used for 
genomic DNA digestion to prepare the DNA libraries for 
each accession. E-GelTM SizeSelectTM agarose gels (Invit-
rogen) were used to select DNA fragments for 250–300 
bp. Fastq files were created from BAM files using Sam-
tools v1.9 (Li et al. 2009). Then, reads were mapped to the 
japonica reference genome using Burrow-wheeler aligner 
(BWA) v0.7.17 (Li 2013) and SAMtools. Variants were 
called using using GATK v4.1.4.1 (McKenna et al. 2010).

Population Structure Analysis
Numerical Genotype Function
Genotype was converted into a numerical value, such 
that homozygous reference allele was 1.0, homozygous 
alternate allele was 0.0, and heterozygous was 0.5 using 
TASSEL (Bradbury et al. 2007). The SNPs were filtered to 
have a minimum allele frequency of 0.05 and a minimum 
call rate of 70% per SNP. The SNP number reduced from 
3,366,491 to 117,054 sites after filtering.

Admixture Analysis
Numerical genotypes were used to create .ped, .map and 
.bed files for ADMIXTURE (Alexander et al. 2009) analy-
sis to estimate ancestry ratios of all individual accessions. 
The optimal number of ancestors was found to be four by 
the Elbow method (see Additional file 2 for the result of 
the Elbow method). The FST values where also calculated 
by ADMIXTURE (Alexander et al. 2009).

Clustering Analysis
The ancestry-ratio vectors of each SNP were used for 
data clustering. The individual assignments of clustering 
were inferred by applying a k-means clustering approach 
(Forgy 1965) in the R software package (R Development 
Core Team 2011). The Elbow method was applied to 
infer the optimal number of clusters based on Between-
cluster and Total Sum-of-Square (BCTSS) Ratio. The 
BCTSS ratio represents a ratio of difference of distance 
from individuals to their cluster centroid between cur-
rent clustering assignment compared to single cluster 
assignment. The optimal number k∗ of clustering assign-
ment should reduce BCTSS ratio significantly compared 
against k∗ − 1 and k∗ + 1 cases (see Additional file 2 for 
the result of the Elbow method).

A 10,000 iteration bootstrap approach (Efron 1992) 
was deployed to estimate the support of clustering 

assignment of each population. The clustering assign-
ment that maximized BCTSS ratio with the optimal k 
along with the support of assignment from bootstrap was 
used to represent the subgroups of the population.

Principal Components Analysis
PCs were generated from numeric genotype data using 
TASSEL (Bradbury et al. 2007).

Phylogenetic Tree Construction
A phylogenetic tree was generated by Neighbor-Joining 
method (Saitou and Nei 1987) using the numerical geno-
type data in TASSEL (Bradbury et al. 2007).

Domination Graphs Inference
Domination graphs, which represent relationships 
between pairs of populations for three phenotypes, were 
inferred using EDOIF package (Amornbunchornvej et al. 
2020). For each phenotype, nodes of the domination 
graph are subpopulations while there is an edge from a 
population with a significantly higher phenotype value 
to a population with a lower phenotype value. The Mann 
Whitney test was deployed to infer edges of a domination 
graph with α = 0.001.

Population Specific SNPs
We investigated the potential of identifying SNPs that 
were specific to each population identified by the admix-
ture analysis. These groupings can include a large num-
ber of accessions and the accessions have varying levels 
of relatedness, which means varying levels of SNP shar-
ing occur within and between populations, so a large 
number of SNPs would be required to discriminate 
between populations. The variants were filtered to select 
for bi-allelic SNPs where all accessions were homozy-
gous and a series of Quantitative trait locus (QTL) analy-
ses were performed to identify the most discriminatory 
SNPs. The phenotype for each QTL analysis was set as 
a binary trait of ‘same population’ or ‘other populations’ 
using the population groupings identified by the admix-
ture analysis. A separate QTL analysis was performed 
for each population and the SNPs with the highest LOD 
score and largest allele frequency difference were taken 
as being the most predictive for that population. These 
SNPs were then used to train a random forest model 
(Breiman 2001) using the R randomForest package (Liaw 
and Wiener 2002) and the R caret package (Kuhn 2020). 
Gene information from the GFF was overlaid on the SNP 
data to identify any population discriminatory SNP that 
was within a gene. In addition, genes within intervals of 
closely spaced predictive SNPs were also investigated.
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Population Classification
We deployed machine learning data classification 
to investigate whether the set of population specific 
SNPs we selected can be used to discriminate between 
the five populations. We used 10-fold cross validation 
(Allen 1974), which is a technique in machine learning 
to measure the performance of prediction from a set of 
classifiers. We used a random forest model (Breiman 
2001) as the main classifier in the analysis training on 
the 268 selected SNPs to classify the five populations 
of 300 rice accessions. A true positive (TP) is when 
the predicted population was the same as the ADMIX-
TURE derived population. The false positive (FP) count 
is the incorrect inclusion of an accession into a subpop-
ulation and the false negative (FN) count is the incor-
rect exclusion of an accession out of a subpopulation, 
calculated per subpopulation. The precision is the ratio 
of the number of TP cases to the sum of TP and FP 
cases. The recall is the ratio of the number of TP cases 
to the sum of TP and FN cases. The F1 score is calcu-
lated from precision and recall as follows.
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