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Abstract

Background: Aerobic rice production (AP) may be a solution to the looming water crisis by utilising less water
compared to traditional flooded culture. As such, development of genotypes with narrow root cone angle (RCA) is
considered a key AP adaptation trait as it could lead to deeper rooting and ensure water uptake at depth.
Quantitative trait loci (QTL) and genes associated with rooting angle have been identified in rice, but usually in
conventional transplanted systems or in upland and drought conditions. This study aimed to identify QTL
associated with RCA in AP systems using a recombinant inbred line population derived from IRAT109.

Results: Four experiments conducted in glasshouse and aerobic field conditions revealed significant genotypic
variation existed for RCA in the population. Single and multiple QTL models identified the presence of eight QTL
distributed in chromosomes 1, 2, 3, 4, and 11. Combined, these QTL explained 36.7-51.2% of the genotypic
variance in RCA present in the population. Two QTL, gRCAT.7 and gRCA1.3, were novel and may be new targets for
improvement of RCA. Genotypes with higher number of favourable QTL alleles tended to have narrower RCA.
gRCA4 was shown to be a major and stable QTL explaining up to 24.3% of the genotypic variation, and the
presence of the target allele resulted in as much as 8.6° narrower RCA. Several genes related to abiotic stress
stimulus response were found in the gRCA4 region.

Conclusion: Stable and novel genomic regions associated with RCA have been identified. Genotypes which had
combinations of these QTL, resulted in a narrower RCA phenotype. Allele mining, gene cloning, and physiological
dissection should aid in understanding the molecular function and mechanisms underlying RCA and these QTL.
Ultimately, our work provides an opportunity for breeding programs to develop genotypes with narrow RCA and
deep roots for improved adaptation in an AP system for sustainable rice production.
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Background

Water availability for agricultural production is currently
under threat, and is expected to decrease as a result of
increasing population, higher food demand, and global
climate change (Elliott et al. 2014; Mickelbart et al
2015). The challenge now is to increase food and agri-
cultural productivity while adapting to and mitigating
the effects of climate change (Thorup-Kristensen et al.
2020). The interplay between water-intensive nature of
traditional rice production grown under permanent
water, looming water crisis, and increasing labour costs
has shifted the attention to aerobic rice cultivation. As
defined by Kato et al. (2009), aerobic rice production
(AP) system is an intensive rice cultivation method
which consists of direct seeded rice cultivation under
non-flooded, well-watered conditions. The AP system
was shown to use less than 50% of the irrigation water
compared to conventional flooded rice in China (Bou-
man et al. 2007) in addition to reduced labour require-
ments (Huaqi et al. 2002) and greenhouse gas emissions
in the Philippines (Alberto et al. 2009).

Root system architecture (RSA) is the arrangement of
the crop root system in terms of specific geometric con-
figuration across a rooting medium. RSA of crops is
determined by several factors including branch distribu-
tion and magnitude, root growth angle, and root length
(Abe and Morita 1994; Jung and McCouch 2013). RSA
determines anchorage, soil nutrient and water exploit-
ation, and developmental plasticity, and these qualities
will have significant effect on maximum vyield and yield
stability. Root cone angle (RCA), a component of RSA,
is the rooting angle of a plant relative to the vertical axis
(Bettembourg et al. 2017) and is determined by measur-
ing the two most external nodal roots of a plant, while
root growth angle (RGA) is relative to the horizontal
axis or soil surface, and as such, RCA and RGA are in-
versely related. Genotypes with narrow RCA (wider
RGA) are expected to have deeper rooting systems, al-
though variable results have been observed in terms of
the relationship between RCA/RGA and rooting depth.
By evaluating 12 cultivars in upland fields, Kato et al.
(2006) suggested that RGA was associated with geno-
typic variation on development of deeper roots. Simi-
larly, Uga et al. (2013a) also showed that genotypes with
higher ratio of deep roots (RDR, increased RGA) tended
to have increased rooting depth using Kinandang Patong
(KP), IR64, and a near isogenic line derived from KP/
IR64 cross with DROI, in an upland field condition. On
the contrary, Abe and Morita (1994) showed that this re-
lationship was dependent on specific cultivars, in
addition to environmental and agronomic factors. In an
AP system, significant genetic correlations between per-
centage of deep roots and grain yield has been found, re-
vealing the advantage of deeper roots in aerobic
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conditions (Mitchell et al. 2019). Plants in AP systems
are typically exposed to transient water stress between
irrigations in the upper soil profile, and as such, develop-
ment of deeper roots allow the uptake of water at depth.
In terms of phenotyping, rooting depth is relatively hard
to determine while RCA is easier to measure with estab-
lished phenotyping methods already in place (Courtois
et al. 2013; Trachsel et al. 2011). The broad sense herit-
ability of rooting angle traits has been shown to be
moderate to high in rice and other cereals (Alahmad
et al. 2019; Courtois et al. 2013). Additionally, large gen-
etic variation also exist in rice germplasm for RCA
(Bettembourg et al. 2017). It is therefore plausible to get
good responses to selection for RCA. To be able to do
this, a greater understanding of the genomic regions
such as quantitative trait loci (QTL), genes, and path-
ways involved in the development of narrower RCA may
help in breeding efforts to improve rice productivity
especially for AP systems.

Several studies have been conducted in rice to investi-
gate genomic regions associated with narrow root angle
(Kitomi et al. 2015; Lou et al. 2015; Uga et al. 2015; Uga
et al. 2013a; Uga et al. 2013b). Using RDR to shallow
roots, as an index of RGA and rooting depth, DROI was
mapped in chromosome 9 and was subsequently cloned
using KP, an upland cultivar, as the donor (Uga et al.
2013a). It was established that 1bp-deletion in IR64
caused a premature stop codon in the gene and the
transformation of KP containing candidate gene in-
creased deep rooting. To date, DROI is the only deep
rooting gene cloned that was demonstrated to increase
RDR thereby stabilising rice production in upland condi-
tions and under drought stress. DRO2, DRO3, DRO4,
and DROS were also mapped from KP using different
populations and genetic backgrounds. DRO2 was
mapped in chromosome 4 using three F, populations of
different genetic backgrounds- ARC5955 (aus), Pinulu-
potl (indica), and Tupa729 (tropical japonica). DRO3 is
a QTL for RGA identified from KP and only affects the
RGA of rice when DROI functional allele is also present.
DRO4 and DROS were identified and mapped in
chromosome 2 and 6 respectively using three popula-
tions (Momiroman, Yumeaoba, and Tachisugata) and
KP as the donor. It was established that RGA of rice ge-
notypes with functional DROI alleles were controlled by
major QTL (DRO2, DRO3, and DRO4). Furthermore, an-
other QTL for RDR, gRDR-2, was also identified from
IRAT109 and was mapped on chromosome 2 (Lou et al.
2015). IRAT109, an upland tropical japonica cultivar ori-
ginating from Cote d’Ivoire, Africa, has been shown to
have robust root system (Qu et al. 2008). As a result,
IRAT109 has been used extensively as a parent in QTL
mapping experiments involving various root traits (Lou
et al. 2015; Qu et al. 2008; Yue et al. 2006). The QTLs
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mentioned above were identified and characterised on
paddy fields and usually with drought stress. To date,
there has been limited studies involving the identifica-
tion and characterisation of genomic regions associated
with RCA for a high yielding aerobic cultivation system,
where water availability is generally high but transient
water deficit develops.

This study was conducted to identify stable and
environment-specific genomic regions associated with
rice RCA grown in AP system. A recombinant inbred
line (RIL) population derived from IRAT109 was utilised
and evaluated in glasshouse and aerobic field conditions.
The detected QTL were compared with previously re-
ported loci in literature to identify stable and novel gen-
omic regions associated with RCA which may be
exploited further for precise introgression in target culti-
vars for improved adaptation in AP systems.

Methods

Plant Materials

An elite Australian cold tolerant cultivar, Sherpa, was
crossed with an upland tropical japonica cultivar,
IRAT109. F;s between these cultivars were produced on
two separate occasions. Resulting Fi;s were then self-
pollinated to produce F,s, and subsequently, single seed
descent method was carried out until Fs generation to
produce the RILs. A total of 252 RILs derived from
Sherpa/IRAT109 were genotyped and evaluated for RCA
at the University of Queensland (UQ) Gatton (27.5551°
S, 152.3369° E) and St Lucia (27.4975° S, 153.0137° E)
campus.

SNP Genotyping

The RILs (252) were genotyped using the Diversity
Arrays Technology (DArT) genotyping-by-sequencing
platform (DArTSeq). Initially, there were a total of 254
RILs, but subsequent analyses revealed two pairs of
genotypes were identical based on single nucleotide
polymorphism (SNP) data. In the succeeding analyses
carried out (both genotype and phenotype data), these
identical pairs were treated as one, making the final
number of RILs to 252. DArTSeq allowed for complexity
reduction and sequencing of low copy sequences (corre-
sponding predominantly to active genes) through the
use of methylation sensitive restriction enzymes. These
libraries were then sequenced using a next generation
sequencing platform (Illumina HiSeq 2500) and the
resulting sequences were aligned to Oryza sativa v7.0
reference genome (https://jgi.doe.gov/) to identify SNPs.
The R package dartR (Gruber et al. 2018) was used to
filter SNPs called from the DArTSeq data. Missing SNP
data were imputed using softImpute (Hastie et al. 2015)
R package. In summary, polymorphic SNPs between
Sherpa and IRAT109 were identified, and SNP loci with
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call rates below 80% and a minor allele frequency (MAF)
of <5% were omitted from the genotype data. Addition-
ally, markers deviating from the expected allele frequen-
cies of RILs were also dropped.

RCA Phenotyping

A total of four experiments were conducted to evaluate
RCA. One experiment was conducted in a glasshouse at
UQ St Lucia with controlled temperatures while the
other three experiments were carried out in the field at
UQ Gatton. The experiments were part of a wider evalu-
ation program, and as such carried a large number of
non-RIL genotypes for evaluation. The parents and
Australian standard, Reiziq, were present in all experi-
ments. The number of RIL genotypes varied from 234 to
250 depending on seed availability.

The glasshouse experiment (GH) was conducted follow-
ing the clear pot method inspired by Richard et al. (2015)
for RCA determination, with some modifications. In brief,
single seeds of RILs and check varieties were direct seeded
in 4 L clear pots (ANOVApot®, 200 mm diameter, 190 mm
height, http://www.anovapot.com/php/anovapot.php)
filled with pine bark potting media (70% composted pine
bark 0-5 mm, 30% coco peat, pH 6.35, EC = 650 ppm, ni-
trate =0, ammonia <6 ppm and phosphorus =50 ppm)
with 3 g/L Osmocote Exact 3-4 M (19-9-10 + 2MgO + TE,
ICL Specialty Fertilizers), 2 g/L. Osmocote Exact 5-6 M
(15-9-12 + 2MgO + TE) and 0.82 g/L Suscon Maxi Green
(Nufarm, Australia). Seeds were sown vertically at a depth
of 3 cm along the pot wall with a final density of 12 plants
per pot. To facilitate root growth along the wall of the pot,
the seeds were seeded with lemma (embryo) oriented
downwards facing the wall. The clear pots were then
inserted inside a similar sized 4 L black pots to prevent
light penetration. Pots were watered overhead with deio-
nised water every 2-3 days. The experiment was carried
out in a temperature-controlled glasshouse set at 28 °C/
21 °C day/night temperatures with natural light. RCA was
measured manually 35 days after sowing (DAS) using a
protractor, by measuring the cone angle from the two
most external nodal roots. In total, 282 genotype entries,
including 245 RILs, were evaluated. The parent genotypes
as well as an Australian standard had 6 replications while
the remaining genotypes were replicated twice and ar-
ranged in a randomised complete block design.

The three field experiments were conducted in two
seasons, 2018-2019 and 2019-2020. An intermittent
water stress (IWS) field experiment (IWS19) was con-
ducted in the 2018-2019 season with a partially-
replicated design (278 genotypes, 250 RILs, 43%
replication) while both well-watered (WW) and IWS
experiments were conducted in 2019-2020 season
(WW20 and IWS20) with resolvable column design with
two replications (246 genotypes, 234 RILs) in each
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experiment. The designs were generated using R package
DiGGer (Coombes 2009). IWS19 and WW?20 were irri-
gated three times a week (Monday, Wednesday and
Friday) while IWS20 was irrigated twice a week (Tues-
day and Friday), with 24 mm per irrigation event. In
IWS19 a solid set sprinkler irrigation was utilised, while
in WW20 and IWS20 irrigation was applied via a lateral
boom irrigation. Due to differences in application
methods the IWS19 was considered sub-optimal,
compared to the lateral boom irrigation in WW?20.
IWS19, IWS20, and WW20 received a total of 9.6, 10.7,
and 16.6 megaliters/ha of combined irrigation and rain-
fall, respectively.

IWS19 consisted of plots of 1 m in length with six rows
at an inter-row spacing of 0.2 m, and planted at 180-220
seeds m~* with a single row push seeder. Basal fertiliser
was applied 5 days prior to sowing at a rate of 480 kg/ha
using Incitec Pivot’s Pastureboosta (24—4-13-4) fertiliser
with an additional 15 kg/ha of zinc sulphate monohydrate
and was lightly incorporated. An additional 80kg/ha of
nitrogen was applied at 52 DAS in the form of urea. Pre-
emergent herbicide treatment was carried out 5 days after
initial irrigation. The treatment consisted of recom-
mended rates: (1) Stomp 440 (440 g/L Pendimethalin,
CropCare), (2) Magister (480g/L Clomazone; FMC
Australia), (3) Gramoxone (250 g/L Paraquat, Syngenta).

In WW20 and IWS20, seeds were drill sown to a
depth of 3-4cm at a rate of 130kg/ha which is
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considered as industry recommendation. Plots were 2 m
in length with seven rows and an inter-row spacing of
0.22 m, resulting in a 3.08 m? plot size. Basal fertiliser was
applied as 400 kg/ha of Incitec Pivot's CK140S (23-2-18-
4) and 15kg/ha of zinc sulphate monohydrate, and
nitrogen topdressing occurred at 42 and 54 DAS for the
WW and IWS, respectively. Furthermore, IWS20 had
addition foliar application of iron sulphate (20 g/L iron
sulphate+ 6 g/L. urea at 150L/ha) at 89 DAS. Pre-
emergent herbicide regime was the same as IWS19,
however Sempra® (750 g/kg Halosulfuron-Methyl, Nufarm)
was also applied at 56 DAS in TWS20.

Root crowns were manually removed out of the plots,
~99 DAS, after majority of the genotypes had reached
the heading stage (IWS19 and WW20) and after matur-
ity (IWS20). Two representative plants were selected
from an internal row. The plants were lifted from the
ground along with soil attached. Soil particles were
manually removed from the roots to facilitate the meas-
urement of RCA (Fig. 1) similar to the procedure carried
out in GH.

Statistical Analysis

A multiplicative mixed linear model was used for the
analysis which was implemented in ASReml (V4.1; VSN;,
UK) package running in the R environment (R Core
Team 2019). The parents, Reiziq and RIL entries that
were present in at least two environments were treated

a

b

Fig. 1 Root cone angles of a (a) wide-angled genotype and (b) narrow-angled RILs from WW20 experiment
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as a random effect, while all other entries were treated
as a fixed effect. Best linear unbiased predictors (BLUPs)
were obtained after accounting for randomisation
process and spatial variation. A multi-environmental
(MET) analysis was undertaken where genotype by en-
vironment was modelled using an unstructured
variance-covariance matrix. BLUPs for each genotype
across trial combination were predicted. Generalised
heritability for individual experiments were calculated
according to Smith et al. (2006). Heritability was calcu-
lated twice using the variance parameters estimated from
the single experiment and MET analysis to describe the
improvement in the predictions.

Linkage Map Construction and QTL Mapping

Linkage map was constructed from the final filtered
genotype data using ASMap (Taylor and Butler 2017)
and R/qtl package (Broman et al. 2003). Markers with
(1) identical genotype data, (2) potential evidence for
genotyping errors (Lincoln and Lander 1992), (3) located
on the same position, and (4) with missing data greater
than 5% were dropped from the genotype data. Genetic
distances between markers, in centiMorgans (cM) were
estimated using the Kosambi map function of ASMap
package (Taylor and Butler 2017). The final linkage map
was estimated using the Lander-Green algorithm
(Lander and Green 1987). Conditional genotypic prob-
abilities were computed using 1cM step distance and
then genotypes were simulated given observed marker
data by utilising sim.geno function with 32 replications
and then single and multiple QTL model analysis were
carried out using the Haley-Knott regression method
(Haley and Knott 1992) using BLUPs computed from
the MET model. For both QTL models, the logarithm of
odds (LOD) threshold used to report QTL were based
on the results of 1000 permutations at a 5% significance
level. Bayesian credible confidence intervals around each
significant QTL peak were determined using bayesint
function of R/qtl. Two-dimensional scans with two-QTL
and multi-QTL model, similar with composite interval
mapping, to identify multiple and interacting QTL were
carried out using stepwiseqtl, refineqtl, and fitqtl func-
tions in R/qtl. The estimated effects and R* by each and
all QTL were also estimated. Linear regression was car-
ried out using R to test for the significance of pyramid-
ing identified QTL in respective experiments.

Results

RCA Genotypic Variation

Of the 252 RILs, 245, 250, 234, and 234 were pheno-
typed for RCA in GH, IWS19, WW20, and IWS20, re-
spectively. Of these, a total of 236 (93.7%) RILs were
present in at least two environments and were retained
in the MET analysis. Highly significant (P <0.001)

Page 5 of 12

genotypic variation in RCA was found in RILs across
three experiments conducted (GH, WW20, and I'WS20),
and significant (P < 0.05) variation was found in IWS19.
RILs in GH experiment had narrower RCA than in the
field and ranged from 68°-104° (Fig. 2a), with a mean of
86°. In the IWS19 field experiment, RCA ranged from
111°-137°, with a mean of 123° (Fig. 2b). In WW20 and
IWS20, a greater range in RCA existed among RILs,
compared to IWS19, with wider RCA observed (Table 1)
in WW20 (Fig. 2c) and I'WS20 (Fig. 2d). Single trial her-
itability ranged from 0.14—0.48, while an improved herit-
ability was observed in MET analysis (Table 1).

In terms of the parents, IRAT109 consistently showed
narrower RCA compared to the recipient parent, Sherpa
(Table 1). Among the field experiments, WW20 had the
highest difference between the parents, with IRAT109
having an RCA of 127° while Sherpa had 141"
Transgressive segregation was also observed in all the
experiments conducted. Consistent among the experi-
ments, the top 10% narrowest RILs had narrower RCA
compared with IRAT109, and the top 10% widest RCA
RILs produced wider root angle compared with Sherpa.

Strong positive genetic correlations existed for RCA
between the experiments. The strongest correlation with
r=0.95 existed between IWS19 and IWS20, while be-
tween water regimes in WW20 and IWS20 (r=0.86),
and between IWS19 and WW20 (r=0.72). There was
also a positive relationship observed between the glass-
house and field experiments conducted. GH showed a
moderate positive correlation of r=0.61, r=0.56, and
r=0.44 with WW20, IWS20, and IWS19 respectively.

SNP Genotyping and Linkage Map Construction

DArTSeq resulted in a total of 6508 SNP loci distributed
across the rice genome. After filtering for loci with low
call rates, MAF, and polymorphic between Sherpa and
IRATI109, a total of 2624 high quality SNP loci were
retained in the dataset (Fig. S1). Analysis of the markers
revealed the number of SNP markers ranged from 106
(chromosome 9) to 446 (chromosome 1) per chromo-
some, with an average of around 219 markers. In terms
of physical distance, the average distance in between
markers ranged from 93.74kb (chromosome 1) to
230.93 kb (chromosome 2), with an average distance of
153.06 kb across the rice genome (Table S1). Identifica-
tion of redundant markers was carried out to find
markers that were completely correlated. After the exe-
cution of filtering algorithms described above, a total of
1394 markers were retained in the final dataset.
Chromosome 1 still had the highest number of markers
with 268, while chromosome 9 had the lowest with a
total of 49 markers. Distance wise, chromosome 1 also
had the average distance of closest markers, with a mean
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Fig. 2 Distribution of the RCA obtained from Sherpa/IRAT109 recombinant inbred lines. a GH - Glasshouse Experiment; b IWS19 - intermittent
water stress 2019 experiment, ¢ WW20 - well-watered 2020 experiment, and d IWS20 - intermittent water stress 2020 experiment. RCA- root
cone angle

of 156.14 kb apart, while chromosome 9 had the largest
average distance of 459.35 kb.

The final SNP data consisting of 1394 markers was
utilised to construct the linkage map. These markers
covered a total of 1460.5cM of rice genome using the
Kosambi map function (Fig. S2). Similar to the physical

Table 1 RCA (°) statistics for RILs derived from Sherpa/IRAT109
evaluated in four experiments

GH IWS19  WW20  IWS20
n=245 n=250 n=234 n=234
RILs
Min 68 m 114 110
Max 104 137 161 145
Mean 86™* 123* 138** 127%*
Single trial heritability 038 0.14 048 042
MET heritability 047 042 0.62 0.62
Parents
IRAT109 80 117 127 118
Sherpa 88 125 141 129
RCA Groups
Mean top 10% narrowest RCA 75 115 123 116
Mean top 10% widest RCA 97 131 152 137

RCA root cone angle, GH Glasshouse Experiment, IWS19 intermittent water
stress 2019 experiment, WW20 well-watered 2020 experiment, and [WS20
intermittent water stress 2020 experiment; ** - P < 0.001; *- P < 0.05; MET-
multi-environment trial

map length, chromosome 1 was the longest with 179.6
c¢M while chromosome 10 was the shortest with a total
length of 79.1 cM. The largest inter-marker distance was
36.0 cM, observed in chromosome 2. The mean distance
in between markers across the whole genome was 1.1
c¢M. The final linkage map constructed and utilised in
this study was in congruence with both the length of
chromosomes in terms of physical distance and with
previously constructed linkage maps (Harushima et al.
1998). Additionally, using this final SNP data, the RILs
were genotyped with an average of 97.4% of the markers
across the genome. Also, on average, RILs have 51.9%
Sherpa (AA) allele, and 48.1% IRAT109 (BB) allele.

Genomic Regions Associated with RCA

Using the constructed linkage map and phenotype data,
two dimensional scans and analysis for multiple-QTL
models identified significant genomic regions located on
chromosomes 1 and 4 associated with RCA, similar to
the results compared with single QTL model (Table 2,
Fig. 3). With the final QTL models in each environment,
no significant interactions between genomic regions
were identified. Similar with the single QTL model, the
genomic region on chromosome 4 (gRCA4) was consist-
ent and registered the highest LOD scores in all the ex-
periments (Table 2). This QTL was located around
97.0-104.6 cM (29.78-30.69 Mb, LOD: 12.45-20.70) and
was able to explain about 17.40-24.28% of the genotypic
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Table 2 Putative QTL associated with RCA identified using Sherpa/IRAT109 RIL population
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Experiment QTL Chr Nearest Marker Mb cM Cl (cM) LOD AE Favourable Allele R?
GH gRCAT.1 1 Chr1_39524707 39.52 154.60 148.7-1624 537 2.10 Sherpa 6.99
gRCA3 3 Chr3_16551946 16.55 78.23 716-81.0 6.10 -1.90 IRAT109 8.00
qRCA4 4 Chr4_30036160 30.03 10143 97.0-104.0 1245 -297 IRAT109 1740
(36.73)
IWS19 gRCA1.2 1 Chr1_19340596 19.34 84.87 67.2-89.8 5.06 -1.73 IRAT109 522
qRCA1.3 1 Chr1_24919134 24.92 99.88 99.0-100.5 794 181 Sherpa 842
gRCAT.1 1 Chr1_39416289 3942 16141 150.7-164.9 7.66 1.39 Sherpa 8.10
gRCA2.1 2 Chr2_27972049 2797 122.53 119.0-133.2 4.64 1.36 Sherpa 4.76
qRCA2.2 2 Chr2_30400561 3040 134.12 1314-1359 948 -1.92 IRAT109 1022
gRCA4 4 Chr4_29775386 29.78 98.97 97.0-99.9 20.13 —247 IRAT109 2418
gRCATT 11 Chr11_19591983 19.59 7631 734-833 574 -1.16 IRAT109 5.96
(49.72)
WW20 gRCAT.1 1 Chr1_39524707 39.52 153.61 148.7-1624 9.35 3.68 Sherpa 10.22
gRCA3 3 Chr3_16551946 16.55 76.34 44.6-100.3 331 -1.86 IRAT109 412
gRCA4 4 Chr4_30366129 3037 102.14 99.0-104.6 1551 -4.29 IRAT109 211
(38.31)
IWS20 gRCA1.2 1 Chr1_23120475 23.12 85.86 78.0-90.8 540 —244 IRAT109 542
gRCA1.3 1 Chr1_24919134 24.92 99.88 99.0-100.5 8.84 263 Sherpa 9.18
gRCAT.1 1 Chr1_39416289 3942 161.41 152.6-164.9 8.90 1.97 Sherpa 9.25
gRCA2.1 2 Chr2_27972049 27.97 12253 119.0-1332 4.30 1.71 Sherpa 427
gRCA2.2 2 Chr2_30400561 3040 134.12 1314-1359 8.79 —242 IRAT109 9.12
gRCA4 4 Chr4_29775386 29.78 98.97 97.0-99.9 20.70 -3.28 IRAT109 24.28
qgRCATT 1 Chr11_20763446 20.76 82.62 734-84.0 502 -1.38 IRAT109 503
(51.22)

Mb - physical map position of each marker based on the Nipponbare sequence at RAP database (http://rapdb.dna.affrc.go.jp/); Cl- bayesian credible confidence
intervals in centiMorgan (cM); AE: additive effect of the allele from IRAT109 compared with that from the recipient line, Sherpa; R? - percentage of the genotypic
variance explained by each QTL. Numbers in parentheses indicate percentage of the variance explained by multiple QTL; GH - Glasshouse Experiment; IWS19 -

intermittent water stress 2019 experiment, WW20 - well-watered 2020 experiment, and IWS20 - intermittent water stress 2020 experiment

variation present for RCA in the population. Another
novel QTL detected across all the experiments was lo-
cated in chromosome 1 (gRCA1I.1, pos: 148.7-164.9 cM,
LOD: 5.37-9.35). This was a minor QTL which ex-
plained 6.99-10.22% of the variation in RCA in the
population. Introgression of the IRAT109 allele of the
QTL from chromosome 4 resulted in a narrower RCA,
ranging from 4.94-8.58°, while IRAT109 allele from the
chromosome 1 QTL resulted in a wider RCA, ranging
from 2.78-7.36".

Aside from these stable QTL mentioned above, six
environment-specific genomic regions associated with
RCA were also identified in chromosomes 1, 2, 3, and 11
(Table 2) using the multiple QTL model approach. It
was noted that compared with the results from the sin-
gle QTL model, genomic regions located on chromo-
somes 3 and 12 (Fig. S3) previously significant for
IWS19 and IWS20 became insignificant and were there-
fore dropped from the final multiple QTL model. More-
over, compared with the single QTL model, the multiple

QTL model identified additional genomic regions associ-
ated with RCA. Five genomic regions located on chro-
mosomes 1, 2, and 11 (gRCAIL2, gqRCA1.3, qRCA2.1,
qRCA2.2, and qRCA11) were found to be significant in
the intermittent water stress environments, IWS19 and
IWS20. Detecting similar genomic regions acting on
these two experiments seems sensible since these were
both regarded as IWS environments and there was also
strong positive genetic correlations between the two.
Looking closer into the QTL, the pairs of QTL identified
on chromosomes 1 and 2 were located in close proxim-
ity with each other, 14.0 and 11.6 cM apart, respectively.
In both instances, introgression of IRAT109 alleles from
these regions resulted in contrasting effects with RCA,
thereby nullifying the effect when being considered in
the single QTL model. Finally, gRCA11, on the long
arm, was also found to be associated with RCA in the
abovementioned experiments and the donor allele re-
sulted in a narrower RCA of about 2.32°-2.76°. Looking
into the more favourable water availability GH and
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Fig. 3 LOD profiles for QTL associated with RCA detected using single and multiple QTL models. Red line — single QTL LOD profile; black line —
multiple QTL LOD profile; a GH - Glasshouse Experiment; b IWS19 - intermittent water stress 2019 experiment, ¢ WW20 - well-watered 2020
experiment, and d IWS20 - intermittent water stress 2020 experiment; RCA- root cone angle; LOD- logarithm of odds; QTL- quantitative trait loci

WW20 experiments, a genomic region specific to these
experiments was also identified in chromosome 3
(qRCA3). This region was similar to that identified from
the single QTL model, and its introgression resulted in
about 3.72°-3.80° narrower RCA.

Combining the QTL analyses for RCA from the four
experiments, a total of eight genomic regions associated
with RCA in aerobic conditions were found on chromo-
somes 1, 2, 3, 4, and 11. Using different models, consist-
ent genomic regions were identified in chromosomes 1
and 4 across all the experiments conducted. IRAT109 al-
lele from the gRCA1.1 increased RCA while it decreased
RCA in gRCA4. Additionally, environment specific QTL
were also detected on chromosomes 1, 2, 3, and 11.
More importantly, gRCA4 appeared to be consistently
associated with narrower RCA, regardless of whether the
analysis was carried out in single or in multiple QTL
models and hence has been identified as a valuable gen-
omic region for aerobic adaptation.

Benefit of Stacking QTL Identified

Using the genotype information of RILs in the peak
markers of identified QTL, the allelic composition and
the number of genomic regions with favourable alleles
for each RIL was determined. A simple regression ana-
lysis between the number of favourable alleles present
and the BLUPs revealed a significant benefit of stacking
QTL (* =0.30-0.32**, P<0.001). In the relatively well-
watered environments, the narrowest RCA was achieved

when gRCA1.1, gRCA3.1 and gRCA4.1 were combined
(Table 3). The combination of these three QTL resulted
in 7.8-11.0° narrower RCA compared to the mean RCA
of genotypes with single QTL. In the case of the seven
QTL in the IWS environments, there was the potential
for 128 QTL combinations all of which were not present
in the RIL population. Thus, inspection of the relative
effects of the QTL in IWS environments as well as all
the combinations available in the RILs was undertaken
which revealed four QTL (qRCAIL 1, qRCA2.1, gRCA2.2,
and gRCA4) were the most valuable from the identified
seven QTL (Table 4). The presence of these four QTL

Table 3 RCA (°) of RILs with different QTL combinations in GH
and WW?20 environments

QTL Combination N GH ww20

RCA SE RCA SE
No QTL 24 93.8 1.0 147.0 13
qRCAT.1 17 89.8 1.1 142.8 16
gRCA3 18 885 1.5 1432 12
qRCA4 48 879 0.7 139.7 038
GRCAT.T+ qRCA3 20 87.1 13 140.0 15
gRCAT.1 + gRCA4 21 85.1 12 134.0 1.5
GRCA3 + qRCA4 43 84.1 09 1359 11
GRCAT.T+ qRCA3 + qRCA4 45 80.9 038 1309 1.1

RCA root cone angle, RIL recombinant inbred line, QTL quantitative trait loci,
GH glasshouse experiment, WW20 well-watered 2020 experiment, N number of
genotypes, SE standard error of the mean
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Table 4 RCA (°) of RILs with different QTL combinations in
IWS19 and IWS20 environments

QTL Combination N IWS19 1WS20
RCA SE RCA SE
No QTL 8 1295 14 1351 17
gRCAT.1 3 1266 18 1314 28
gRCA2.1 15 1269 09 1319 12
qRCA2.2 13 1256 13 1306 16
gRCA4 13 1246 08 1287 1.1
gRCAT.T+gRCA2.1 20 1246 09 1288 1.1
gRCAT.T+qRCA2.2 13 1253 09 1298 12
GRCA2.1 +qRCA2.2 6 1249 14 1295 16
gRCAT.T + gRCA4 3 1247 15 1277 22
gRCA2.1 + gRCA4 40 1239 06 1276 07
gRCA2.2 + qRCA4 30 1223 08 1257 10
GRCAT.1+ GRCA2.1 + gRCA2.2 T 1134 () 1147 ()
GRCAL.T + RCA2.1 + GRCA4 30 1210 06 1234 09
GRCAI1.T +gRCA2.2 + qRCA4 25 1197 08 1222 11
GRCA2.1 + GRCA2.2 + GRCA4 8 1199 09 1226 12
QRCAL.T+QRCA2.1+qRCA22+gRCA4 8 1175 15 1190 20

RCA root cone angle, RIL recombinant inbred line, QTL quantitative trait loci,
IWS19 intermittent water stress 2019 experiment, /WS20 intermittent water
stress 2020 experiment, N number of genotypes, SE standard error of

the mean

together also resulted in narrower RCA (8.2-11.5°) com-
pared to the genotypes having single QTL.

Discussion

This paper evaluated a RIL population derived from a
genotype with known narrow RCA, IRAT109, in both
glasshouse and field conditions spanning 2 years. The
RCA values obtained from the glasshouse experiment
ranged from 78°-104°, while the field experiments ranged
from 114°-161° in WW environments and 110°-145° in
IWS environments. This range in RCA was narrower
but within the range obtained by Bettembourg et al.
(2017) who evaluated a diverse rice germplasm set con-
sisting of indica and japonica cultivars. The difference in
the range obtained may be due to the nature of genetic
materials utilised in this study. Using a set of 166
japonica genotypes, a range of 36°-164° RCA using the
Rhizoscope phenotyping system was reported (Bettem-
bourg et al. 2017). In this present study, genetic
correlation analysis conducted between the experiments
also showed moderate to strong positive relationships
between RCA measured across experiments, including
between glasshouse and field experiments. To our know-
ledge, this is the first report showing the utility of a clear
pot method to evaluate rice RCA by measuring RCA of
nodal roots in early growth stages. The utility of a
similar method was first shown in wheat and barley by
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measuring seminal root angle (Richard et al. 2015;
Robinson et al. 2016). Positive genetic correlations be-
tween the glasshouse and field experiments was indicative
that screening for RCA of nodal roots in early growth
stages can be used as a selection method for genotypes to
be tested in the field, similar to what has been observed in
the seminal root angle screening and RSA in wheat
(Manschadi et al. 2008). The phenotyping system eva-
luating RCA based on nodal roots, around 35 DAS has
been established here as a high throughput method for
providing valuable phenotypic and genotypic RCA dis-
crimination pertinent to AP production environments.
Linkage mapping utilising RILs derived from parents
with contrasting root angle detected genomic regions
associated with RCA in both glasshouse and field experi-
ments. In terms of RCA, Bettembourg et al. (2017) sug-
gested that a linkage mapping approach may be a better
tool to identify genomic regions associated with the trait
rather than genome wide association (GWAS) mapping.
In their study, subpopulations in a japonica panel they
utilised showed only one-tail extremes and a very low
number of extreme accessions, which will ultimately
result in the SNPs being filtered out and by extension,
undetectable QTL (Verdeprado et al. 2018; Zhang et al.
2016). In our study, using single and multiple QTL
linkage mapping models, three QTL each have been
identified in GH and WW?20 experiments, while seven
QTL were identified each in IWS20 and IWS19. Of the
total eight QTL identified across all environments, six
(qRCAL.2, gqRCA2.1, qRCA2.2, qRCA3, qRCA4, and
qRCA11) have been previously reported to be associated
with root angle (Bettembourg et al. 2017; Lou et al.
2015; Uga et al. 2013b) while the other two (gRCAIL.I
and gRCA1.3) were novel and were first reported in this
study (Fig. S4). gRCA1.2 and qRCA3 were mapped in
relatively large genetic distance and as such, they may be
less reliable. Given that their effects were also minor,
these loci were considered of low priority. Nevertheless,
genotyping with additional markers, such as simple se-
quence repeats and insertion/deletion markers, to satur-
ate the region may provide further clarity in these loci.
Of the eight QTL identified, gRCA1.1 (39.42-40.41 Mb)
and gRCA4 (29.78-30.69 Mb) were shown to be stable
across environments. The donor allele for narrow RCA
in gRCAI.1 was from Sherpa, while the gRCA4 locus
was from IRAT109. It is highly plausible that the allele
frequency of this beneficial allele of gRCA1.1 is already
high in current Australian germplasm and is therefore
more accessible to the breeding programs. On the other
hand, gRCA4 was shown to contribute narrower RCA
and had the largest contribution to the total genotypic
variance. To our knowledge, for the first time, this study
also reports a major, stable QTL associated with rice
RCA grown in AP systems in both glasshouse and field
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conditions. Several experiments conducted in trans-
planted systems or in artificial growth media have impli-
cated these regions to be associated with rooting angle
and other root-related traits. Using F, populations de-
rived from three cultivars and KP as the donor genotype,
the same region on chromosome 4 (28.76-30.69 Mb),
DRO2, was shown to be associated with RDR (Uga et al.
2013b), with RM6089 as the nearest marker. Using
GWAS approach, Bettembourg et al. (2017) also identi-
fied a QTL on chromosome 4 located at 30.76 Mb from
a japonica panel genotyped using a high density array. It
is worth noting however, that this QTL was absent when
the analysis was extended in an indica panel suggesting
the absence or possibly presence at low frequencies of
this particular QTL in the indica subgroup. The results
of the present study provides us with confidence that
qRCA4 would have the potential utility for both indica
and japonica breeding programs. Although gRCA4 has
been previously implicated with rooting angle in hydro-
ponics and controlled environments (Bettembourg et al.
2017; Uga et al. 2013b), its identification in field
conditions in this study further cemented its value for
the improvement of narrow RCA in multiple AP environ-
ments. A closer inspection of gRCA4 locus established
that there were a total of 126 genes in the region using the
MSU Osal Rice Gene Models database (Ouyang et al.
2007). Seven of these genes were enriched genes related to
abiotic stimulus (LOC_0Os04g49930, LOC_0Os04g49970,
LOC_0s04g49980, LOC_Os04g50820, LOC_0Os04g50880,
LOC_0Os04g50990, and LOC_Os04g51330). There were
also some notable genes encoding for transcription factors
which are associated with endogenous stimuli. These in-
formation and potential candidate genes can aid in future
molecular marker development activities and ultimately,
identification of gene/s responsible to the target trait: nar-
row RCA. Additionally, using the 3 K Rice Genome Pro-
ject (3KRGP) 400 K SNP database (Mansueto et al. 2017),
a total of 644 SNPs were identified within the region.
Using this data, priority SNPs can be identified such as
those residing in (1) coding regions causing synonymous/
non-synonymous mutation, (2) 3" and 5" UTR, (3) exonic
region and (4) promoter region. Since IRAT109 was in-
cluded in the 3KRGP, its allele can be compared to other
target or known genotypes and marker development can
be tailored based on this information along with allele
frequencies.

Of particular interest was that under IWS experiments,
QTL with relatively higher additive effects compared to
other regions were identified. This suggests that along
with stable QTL identified above (gRCAI.1 and gRCA4),
these IWS environment-specific QTL are also excellent
targets for improvement of RCA for AP. It was also
shown that genotypes possessing higher number of
favourable QTL alleles tended to have narrower RCA. It
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has to be noted though that the analysis for stacking
favourable QTL alleles was carried out in the RILs with
non-uniform genetic background and may have led to
over or under estimation of QTL effects, especially
minor QTL. Development of near isogenic lines prior to
QTL pyramiding will aid in the precise determination of
QTL effects, in single or pyramided state, similar to what
has been shown in brown planthopper resistance genes
(Jena et al. 2017). Taken together, by implementing mul-
tiple QTL mapping strategies (single and multiple QTL
models in R/qtl), we have identified a major and stable
QTL across different environments/experiments and
have also identified with high confidence novel QTL
with moderate effects. The identification of these stable
and novel genomic regions may provide value to breed-
ing programs around the globe which target AP systems.

Currently, the RILs derived from Sherpa/IRAT109
cross are being tested for yield in AP systems. In terms
of AP systems, it remains to be shown if similar effects
achieved with DROI, which increased yield under
drought and upland conditions, can be revealed by
introgressing gqRCA4 into different genetic back-
grounds. To facilitate its inclusion in routine marker
assisted selection programs, it is imperative that its
effect and the robustness of the marker is demon-
strated in multiple genetic backgrounds (Cobb et al.
2019). Segregating populations in three different gen-
etic backgrounds were developed and are currently
being evaluated to validate the effect of gRCA4. If
successful, this could lay the foundations to develop
high throughput molecular markers targeting this re-
gion. To date, there is very limited information avail-
able with regards to molecular markers related with
QTL associated with root angle and depth possibly
due to limited databases and sequence information
available when these QTL were identified previously.
With the advent of databases such as 3KRGP and
other comparative genomics tools, development of
molecular markers is now more attainable and should
pave the way for the potential introgression of this
locus into breeding programs when pertinent to the
target production environment.

Conclusions

We have identified eight QTL associated with rice RCA
in an AP system, two of which were novel and have not
been previously reported. When these favourable QTL
were in combination, there was additional advantage by
producing genotypes with narrower RCA. qgRCA4 is a
promising major QTL that has been shown to be associ-
ated with narrow RCA which was consistently detected
across experiments, and thus, it has a high potential in
improving RSA of rice in the context of aerobic produc-
tion. Detailed physiological dissection of RCA and the



Vinarao et al. Rice (2021) 14:28

relationship of this QTL with grain yield and other
physiologically important traits related to photosynthetic
rates and metabolic activities under mild water stress
conditions will shed some light on mechanisms related
to its action. Finally, allele mining, haplotype analysis
using publicly available databases, and gene cloning will
enable breeding for improved rooting angle and indir-
ectly depth, through marker-assisted selection and the
elucidation of its molecular function.
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