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Abstract

Background: Wild-abortive cytoplasmic male sterility (CMS-WA) and Honglian CMS (CMS-HL) are the two main
CMS types utilized in production of three-line hybrid rice in xian/indica (X)) rice. Dissection of the genetic basis of
fertility restoration of CMS-WA and CMS-HL in the core germplasm population would provide valuable gene and
material resources for development of three-line hybrid combinations.

Results: In this study, two F; populations with CMS-WA and CMS-HL background respectively were developed
using 337 X/ and aus accessions being paternal parents. Genome-wide association studies on three fertility-related
traits of the two populations for two consecutive years revealed that both fertility restoration of CMS-WA and CMS-
HL were controlled by a major locus and several minor loci respectively. The major locus for fertility restoration of
CMS-WA was co-located with Rf4, and that for fertility restoration of CMS-HL was co-located with Rf5, which are
cloned major restorer of fertility (Rf) genes. Furthermore, haplotype analysis of Rf4, Rf5 and Rf6, the three cloned
major Rf genes, were conducted using the 337 paternal accessions. Four main haplotypes were identified for Rf4,
and displayed different subgroup preferences. Two main haplotypes were identified for Rf5, and the functional type
was carried by the majority of paternal accessions. In addition, eight haplotypes were identified for Rf6.

Conclusions: Haplotype analysis of three Rf genes, Rf4, Rf5 and Rf6, could provide valuable sequence variations that
can be utilized in marker-aided selection of corresponding genes in rice breeding. Meanwhile, fertility evaluation of
337 accessions under the background of CMS could provide material resources for development of maintainer lines

and restorers.
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Background

Cytoplasmic male sterility (CMS) in higher plants is char-
acterized by the inability to produce functional pollens,
and is caused by chimeric open reading frame (ORF) in
the mitochondrial genome. Nuclear-encoded restorer of
fertility (Rf) genes produce proteins that are targeted to
mitochondrial and can suppress the function of ORFs
conferring CMS (Chen and Liu 2014). The exploitation of
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CMS and Rf genes systems in rice facilitate the develop-
ment and commercialization of the three-line hybrid rice,
which has made tremendous contribution to the food
security worldwide (Li et al. 2007). According to that the
pollen fertility is determined by the sporophytic genotype
or gametophytic genotype, CMS could be divided into two
types, sporophytic and gametophytic types. Wild-abortive
CMS (CMS-WA) and Honglian CMS (CMS-HL) are the
two main CMS types utilized in production of three-line
hybrid rice in xian/indica (XI) rice, and CMS-WA is a typ-
ical sporophytic type while CMS-HL is a gametophytic
type (Li et al. 2007). Mining and cloning of Rf genes for
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the two CMS types could be of great use in development
of three-line hybrid rice combinations, and further im-
proving the yield of rice.

Sterile lines carrying CMS-WA produce pollens that
display irregular shape and no starch accumulation (Chen
and Liu 2016). CMS-WA is caused by WA352, a novel
mitochondrial gene originated recently in wild rice, and
the protein WA352 abolishes the function of COX11 in
peroxide metabolism, further triggers premature tapetal
programmed cell death and finally results in the abortion
of pollens (Luo et al. 2013). Previous studies showed that
two major genes, Rf3 and Rf4, could restore the fertility of
CMS-WA (Yao et al. 1997, Zhang et al. 1997). Rf4 encodes
a pentatricopeptide repeat (PPR) protein with 782 amino-
acid residues, which suppresses WA352-mediated male
sterility by decreasing WA352 mRNA levels (Kazama and
Toriyama 2014, Tang et al. 2014). However, Rf3 is still
under cloning. In addition, several minor loci conferring
fertility restoration of CMS-WA were reported (Bazrkar
et al. 2008, Zhuang et al. 2001).

Sterile lines carrying CMS-HL produce pollens that dis-
play regular shape and no starch accumulation (Hu et al.
2016). CMS-HL is caused by the mitochondrial gene
orfH79, and the protein ORFH79 interacts with a subunit
of the mitochondrial electron transport chain complex III,
further causes energy production dysfunction and oxida-
tive stress, and finally leads to abnormal pollen develop-
ment (Peng et al. 2010, Wang et al. 2013). Two major
genes, Rf5 and Rf6, could restore fertility of CMS-HL
(Huang et al. 2012a). Rf5 encodes a protein with 16 PPR
motifs, which is a component of a restoration of fertility
complex conferring the processing of CMS-associated
transcript atp6-orfH79, together with at least another two
members (Hu et al. 2012, Qin et al. 2016). Similarly, Rf6
encodes a protein with 20 PPR motifs, and the protein
RF6 forms a new complex with other members to cleave
the aberrant transcript atp6-orfH79 (Huang et al. 2015).
However, the co-existence of Rf5 and Rf6 can only restore
fertility of 75% of pollens. In order to further improve
pollen fertility and seed-setting rate of F; lines with CMS-
HL, novel Rf genes are awaited to be identified.

Genome wide association studies (GWAS) have been
proved to be powerful in dissection of complex traits in
rice (Han and Huang 2013). Up to now, the genetic bases
of many important agronomic traits of rice, such as flow-
ering time, grain yield traits, tiller angle, panicle architec-
ture and out-crossing traits, have been investigated with
GWAS (Bai et al., 2016, Dong et al. 2016, Guo et al. 2017,
Huang et al. 2012b). However, GWAS has not been ap-
plied to dissect the genetic basis underlying fertility restor-
ation of CMS-WA and CMS-HL. Therefore, two F;
populations with CMS-WA and CMS-HL background re-
spectively were developed using 337 XI and aus accessions
being paternal parents in this study, and subjected to
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evaluation of three fertility-related traits. GWAS of the
three traits revealed the corresponding genetic basis. In
addition, haplotype analysis of Rf4, Rf5 and Rfb, the three
major genes for CMS-WA and CMS-HL respectively,
were conducted.

Results

Variation and Correlation of Fertility-Related Traits

As shown in Fig. 1, after stained with 1% I,-KI solution, the
pollens of HUA (Fig. 1la) showed no starch accumulation
and were termed completely sterile, and that of the F; com-
bination ‘HUA/Minghui 63 (Fig. 1b) were stained with a
color of dark-blue and were termed completely fertile. In
contrast, the pollens of YTA (Fig. 1c) showed obvious starch
accumulation, although they were completely sterile accord-
ing to the values of BSS and NSS (data not shown). The
pollens of the F; combination ‘YTA/9311" (Fig. 1d) were
nearly indistinguishable from that of YTA. Thus, the pollen
fertility of the F; population with CMS-HL was excluded in
this study.

For the population with the CMS-WA background, all
the three fertility-related traits displayed continuous and
extensive variation (Fig. 2a-c, Additional file 1: Figure S2a-
). A significant difference on the distribution of pollen
fertility was observed between F; lines with the two XI
subgroups being paternal parents (Fig. 2a, Additional file
1: Figure S2a). The values of pollen fertility for the major-
ity of F; lines with X7 I accessions being paternal parents
were 0, while that for the majority of F; lines with XI IT ac-
cessions being paternal parents were over 60%. Both the
values of BSS and NSS of F; lines with XTI IT accessions be-
ing paternal parents were obviously higher than that with
XI I accessions being paternal parents on average (Fig. 2b-
¢, Additional file 1: Figure S2b-c). All the three traits were
significantly positively correlated with each other in year
2013 and 2014, and the highest correlation was observed
between pollen fertility and NSS in 2014 with a value of
0.91 (Fig. 3a).

For the population with the CMS-HL background, the
two fertility-related traits displayed continuous variation
(Fig. 2d-e, Additional file 1: Figure S2d-e). Both the
values of BSS and NSS of F; lines with the two XI sub-
groups accessions being paternal parents were obviously
higher than that with aus accessions being paternal par-
ents on average. Both the two traits were significantly
positively correlated with each other in year 2013 and
2014, and the highest correlation was observed between
BSS and NSS in 2013 with a value of 0.74 (Fig. 3b).

Loci Associated with Fertility-Related Traits

GWAS for fertility-related traits were conducted with
the LMM model for the two F; populations with differ-
ent CMS background respectively, and a P value of 8.7 x
10 ® was used as the genome-wide significance thresholds.
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Fig. 1 Pollens of HUA (a), HUA/MH®63 (b), YTA (c) and YTA/9311 (d), stained with a 1% I,-KI solution
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For the population with CMS-WA background, a total of 3,
8 and 2 loci were detected for pollen fertility, BSS and NSS re-
spectively in 2 years, and the phenotypic variation explained by
each locus was ranging from 290% to 4846% (Table 1).
Among those, three major loci around the 18.8 Mb of chromo-
some 10 were responsible for the three fertility-related traits in
both years respectively, which were co-localized with Rf%, the
well-known major gene for fertility restoration of CMS-WA

(Table 1, Fig. 4a-c, Additional file 1: Figure S3a-c). The
remaining loci were only detected in 1 year.

For the population with CMS-HL background, 5 and 1 loci
were detected for BSS and NSS respectively in 2 years, and
the phenotypic variation explained by each locus was ranging
from 6.35% to 31.08% (Table 2). Among those, two major
loci around the 18.8 Mb of chromosome 10 were responsible
for the two fertility-related traits in both years respectively,
which were co-localized with Rf5, the well-known major
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gene for fertility restoration of CMS-HL (Table 2, Fig. 4d-e,
Additional file 1: Figure S3d-e). The remaining loci were only
detected in 1 year.

Haplotype Analysis of Rf4, Rf5 and Rf6

The co-localization of Rf4 and Rf5 with the major loci for
CMS-WA and CMS-HL detected in this study respectively,
indicated that they are likely to be functional genes

underlying them. In order to further validate it, haplotype
analysis of Rf4 and Rf5 were performed using the 337 pater-
nal accessions. In addition, Rf6, another well-known major
gene for CMS-HL, was also subjected to haplotype analysis,
though it was not detected in this study.

For Rf4, four main haplotypes and a rare haplotype
were classified according to sequence variations in cod-
ing region (Fig. 5a, Additional file 2: Table S3). The H1

Table 1 Genome-wide significant associations for pollen fertility, BSS and NSS of the F; population with the background of CMS-WA

in year 2013 and 2014 using the linear mixed model

Trait Chr. 2013 2014 Known
Position P-LMM  Allele”  MAF?  PVE %)®  Position PLMM  Allle MAF  PVE@) o
Pollen fertility 1 5631778 297608 A/T 0168 1901 Rf3
9 10301051 811608 G/A 0361 290
10 18809352  542E-12 /T 0359 3767 18803763  233E-20 (/T 0350 4846 Rf4
BSS 4 113551  654E-10  A/G 0.241 16.90
4 962,149 136608  A/C 0172 1589
6 11,935371  1.18E-08  T/A 0061 11.91
6 28616342 237607 G/A 0495 293
8 6798111 427608 /T 0078 2548
9 10218016  338E-08 G/A 0358 445
10 18826378  350E-13  T/G 0.176 3354 18803939 20214  C/T 0182 1937 Rf4
12 23866969  955E-09  T/C 0325 2010
NSS 4 54458 307608  A/C 0326 12.51
10 18807,815  420E-10  C/G 0413 4152 18803939 202816 C/T 0182 19.05 Rf4

Note: 1) Allele is presented with the format of ‘major allele / minor allele’
2) MAF minor allele frequency
3) PVE phenotypic variation explained by each locus
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type is represented by the allele from the well-known re-
storer Minghui 63 (C147), and is evenly distributed in X7
I and XI II accessions. Compared to H1, the H2 type
shows two nonsynonymous SNPs and is mainly existed
in XI II accessions. The H3 type shows 74 common
SNPs which leads to a change of 50 amino-acid residues,
and is mainly existed in aus accessions. The H4 type is
represented by the allele from HUA and many well-
known maintainer lines such as Zhenshan 97B (C145),
and shows 90 common SNPs and 2 large insertions, of
which the first 1515bp insertion introduces a stop
codon. The H4 type is mainly existed in X/ I accessions.

The H5 type is only carried by two XI I accessions, and
represented by the allele from Nipponbare, a geng/japon-
ica accession having the reference genome of Oryza
sativa. Compared to H1, H5 shows 62 common SNPs
that leads to a change of 37 amino-acid residues. Results
of multiple comparisons showed that both the values of
pollen fertility and NSS of H1 and H2 were significantly
higher than that of H3 and H4 in year 2013 and 2014
(Fig. 5b, Additional file 1: Figure S4a).

For Rf5, two main haplotypes and several rare haplo-
types were classified according to sequence variations in
coding region (Fig. 5¢, Additional file 2: Table S4). The
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Table 2 Genome-wide significant associations for BSS and NSS of the F; population with the background of CMS-HL in year 2013

and 2014 using the linear mixed model

Trait Chr. 2013 2014 Known
Position PLMM  Allele”  MAF?  PVE (%)  Position PLMM  Alele  MAF  PVE@) o
BSS 2 26,741,479 2.24E-07 G/A 0.059 8.18
4 12,956,620 1.17E-08 T/C 0359 8.81
6 21,359,687 1.36E-07 AT 0377 11.25
10 18,828,056 1.39E-08 G/A 0492 12.79 18,880,986 1.74E-10 A/G 0456 18.09 Rf5
12 16,744,603 7.69E-08 A/G 0.101 6.35
NSS 10 18,804,231 4.08E-15 A/C 0231 2825 18,876,148 8.10E-20 A/G 0.129 31.08 Rf5
Note: 1) Allele is presented with the format of ‘major allele / minor allele’
2) MAF minor allele frequency
3) PVE phenotypic variation explained by each locus
N
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H1 type is represented by the allele from the well-known
restorer 9311, while the H2 type is represented by the al-
lele from YTA. Compared to H1, the H2 type shows 20
SNPs which leads to a change of 14 amino-acid residues,
and the rare H3 type shows 60 SNPs including 39 non-
synonymous SNPs and is existed only in aus accessions.
Results of multiple comparisons showed that both the
values of BSS and NSS of H1 were significantly higher
than that of H2 in year 2013 and 2014 (Fig. 5d, Add-
itional file 1: Figure S4b).

For Rf6, eight haplotypes were identified according to se-
quence variations in genomic region (Fig. 6a). The H1 type is
represented by the allele from 9311, while H4 is represented
by the allele from YTA. The first three types carry a 327 bp
insertion, among which the H1 type is carried by 36 out of
39 lines. Among the remaining five types that not carrying
the insertion, H4 and H6 are mainly existed in X7 I acces-
sions, H5 is mainly in aus accessions, and H8 is mainly in X7
I accessions. With Rf5 fixed as the H1 type, multiple com-
parison of the six main Rf6 haplotypes revealed that no sig-
nificant difference in BSS and NSS was observed among
different types, except for between H5 and H6 (Fig. 6b).
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Discussion

Genetic Basis Underlying Fertility Restoration of CMS-WA
and CMS-HL

In this study, GWAS revealed that fertility restoration of
CMS-WA was mainly conditioned by the major gene Rf4,
as the remaining loci could not be repeatedly detected in
2 years and accounted for less variation (Table 1). The
locus around 5.6Mb of chromosome 1 contributed
19.01% of the variation of pollen fertility in year 2014, and
was located to the mapping region of Rf3 (Qi et al. 2008,
Suresh et al. 2012, Yao et al. 1997, Zhang et al. 1997). The
other loci were novel. For CMS-HL, Rf5 was the unique
major gene in the association population, and the
remaining loci were only responsible for BSS in 2014 (Fig.
4, Table 2).

The majority of loci could not be repeatedly detected
in 2 years, which may be attributed to two reasons. First
of all, the number of loci conferring BSS far overweighs
that conferring pollen fertility and NSS (Tables 1 and 2),
demonstrating that some loci for BSS may be false, due
to artificial and environmental effect. At flowering stage,
selected panicles were tightly bagged, which affected the
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Fig. 6 Haplotype classification and multiple comparisons of Rf6. In a, red numbers in the Position row indicate selected SNPs to differentiate different
haplotypes in the partial sequencing of Rf6. The H2 type carries a SNP in the 327 bp insertion that produces a stop codon. In b, superscript letters
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elongation of stem of different lines to varying degrees.
Stems of some lines were bent over a large angle and
even broken off, leading to less or no seed-setting rate.
On the other hand, the bag limited the space of panicles,
especially for those lines displaying large panicles, and
caused increase in local temperature, which would also
decrease seed-setting rate. In addition, the reality of the
loci for BSS await further validation. Secondly, the size
of the two association populations in 2013 was about
100 lines less than that in 2014 respectively, which could
explain why some loci in 2014 were not detected in
2013, such as Rf3, the reported major gene for CMS-
WA (Additional file 2: Table S1). The 337 paternal ac-
cessions and the two maternal parents displayed huge
variations in heading date (http://ricevarmap.ncpgr.cn/
v2/), which made it of great difficulty to make hybrids
covering all paternal accessions in the planting season of
year 2012, and some hybrids were further made in year
2013. With the two reasons above, the stable detection
of Rf4 and Rf5 further demonstrated that the two are
major genes for corresponding CMSs.

Haplotype Analysis of Rf Genes

Haplotype analysis of Rf4 revealed five types, among
which the H1, H2, H4 and H5 had been reported by
Tang et al. (2014). The H2 type is carried by the restorer
IR24 (not in our accessions), demonstrating that it is
functional, which is consistent with the result of multiple
comparisons of fertility-related traits in our study (Tang
et al. 2014). Therefore, the two nonsynonymous SNPs in
H2 are likely to make little change to the function of
RF4. No difference was observed between the three traits
of H3 and H4, indicating that H3 is also a nonfunctional
type, duo to the change of 50 amino-acid residues (Fig.
5a-b, Additional file 1: Figure S4a). In addition, among
the paternal parents used in this study, aus accessions
carry only the nonfunctional H3 and H4 type, 125 of
143 XI I accessions carry the nonfunctional H4 type, and
59 of 64 accessions carrying the functional H2 type be-
long to XI II group. The subgroup preferences of differ-
ent Rf4 haplotypes implied that Rf4 had been subjected
to selection in rice breeding, and contributed greatly to
the differentiation of the three subgroups.

Haplotype analysis of Rf5 revealed two main haplo-
types and several rare haplotypes that are carried by less
than five accessions (Additional file 2: Table S1, Fig. 5c).
The non-function H2 type carried by YTA does not have
the functional SNP reported by Hu et al. (2012) (Add-
itional file 2: Table S4). Therefore, the change of 14
amino-acid residues is likely to abolish the function of
RF5 in fertility restoration, which is the same as the H3
type of Rf4. H1 type is carried by the majority of paternal
accessions, implying that it has other important func-
tions that facilitates its spreading in cultivated rice,
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though it is still not clear. Several rare haplotypes in-
cluding the H3 type are existed only in aus accessions,
and the two main haplotypes are also existed in aus ac-
cessions, showing that aus accessions are valuable germ-
plasm resource for investigation of the evolution of Rf5
alleles (Additional file 2: Table S1).

Haplotype analysis of Rf6 revealed eight haplotypes,
among which the first three types carry the functional
327 bp insertion reported by Huang et al. (2015) (Fig.
6a). However, multiple comparison of the six main hap-
lotypes indicated that the 327 insertion is not likely to
be the functional variation. As BSS and NSS are only in-
direct reflections of fertility restoration, the conclusion
above is awaited further to be validated with pollen fer-
tility, which was unfortunately difficult to evaluate in this
study.

Difficulties in Mining Rf Genes Using GWAS

GWAS have been proved to be powerful in genetic dis-
section of complex quantitative traits in rice and identi-
fying candidate genes underlying target traits (Han and
Huang 2013). However, its power suffered a major set-
back in mining Rf genes, at least in this study. GWAS of
fertility-related traits revealed that both the fertility res-
toration of CMS-WA and CMS-HL were controlled by a
major locus and several minor loci (Tables 1 and 2).
However, the two major loci were located to a region
containing about 10 genes encoding PPR proteins, which
show high sequence homology (Tang et al. 2014). With-
out previous studies on gene cloning of Rf4 and Rf5, it
would be of great difficulty to ascertain underlying func-
tional genes. Furthermore, although the Rf3 region was
detected for pollen fertility, the region about +100 kb
away from the strongest signal contains 20 annotated
ORFs, but none encode PPR proteins or other known
homology proteins involved in fertility restoration, mak-
ing it difficult to select candidate genes. Therefore, just
like all the seven cloned Rf genes in rice viz Rfla, Rf1b,
Rf2, Rf4, Rf5, Rf6 and Rf17, map-based cloning is the
only choice to narrow the target locus down to the smal-
lest region containing the functional gene (Fujii and
Toriyama 2009, Hu et al. 2012, Huang et al. 2015, Itaba-
shi et al. 2011, Tang et al. 2014, Wang et al. 2006). In
addition, the three fertility-related traits are easily af-
fected by environment. The durable high temperature
and humidity in Wuhan during the growing season
exerted great pressure to the fate of developing and de-
veloped pollens, which resulted in the unrepeatable de-
tection of many association signals in two different
years, especially for those minor loci (Tables 1 and 2).
Therefore, a combination of GWAS and linkage map-
ping would be better in mining Rf genes, which would
provide not only an overview of the genetic basis, but
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also a high resolution of functional genes (Deng et al.
2017, Wang et al. 2018).

Application in Development of Three-Line Hybrid Rice

A three-line hybrid combination consists of three lines, a re-
storer, a CMS line and its maintainer line. No Rf genes are
allowed in the genome of CMS lines and its maintainer lines,
in order to maintain the complete sterility of CMS lines. In
contrast, Rf genes are favored by restorers to restore the fer-
tility of CMS lines as much as possible. Therefore, selection
of Rf genes is of great importance in development of three-
line hybrid rice. Some markers have been developed for Rf%
in previous studies (Chen et al. 2017, Suresh et al. 2012, Tang
et al. 2014). In this study, the haplotypes of three Rf genes viz
Rf%, Rf5 and Rf6 have been systematically classified using 337
accessions that covering the majority variation of XI and aus
accessions worldwide, providing valuable sequence variations
for the development of co-segregating markers (Additional
file 2: Table S3-S4, Fig. 6a). Take Rf4 for example. SNPs at
the position of +503, +919, +929/930, + 1607, + 1618, +
1621 of the coding region and the 1515 bp insertion are co-
segregated with the function of RfZ, and thus could be devel-
oped into suitable molecular markers to facilitate selection of
Rf4.

Except for major genes, minor Rf genes are vital in
breeding process, which not only affect the sterility sta-
bility of CMS lines greatly, but also the degree of fertility
restoration of restorers. However, the selection efficiency
of minor Rf genes is far from expectations, due to the in-
ability to precisely mapping them. In order to avoid the
disturbance of minor Rf genes, new maintainer lines are
always developed from progenies of existing maintainer
lines, and so do restorers, which severely limit the gen-
etic diversity of hybrid combinations. In this study, the
ability of fertility restoration of 337 accessions for CMS-
WA and CMS-HL has been evaluated individually (Add-
itional file 2: Table S1). The accessions that displayed no
fertility restoration under the background of CMS could
be directly used as maintainer lines or used as parents of
novel maintainer lines, and those showing high fertility
restoration under the background of CMS could be used
in breeding of restorers. The majority of 337 accessions
are inbred lines or landraces from worldwide, and sev-
eral breeders are not familiar with them, suggesting that
these accessions have not been exploited in hybrid rice
breeding (personal communication, Xie et al. 2015).
Therefore, results in this study could provide valuable
germplasm resources to broaden the genetic diversity of
three-line hybrid rice.

Materials and Methods

Population Construction and Planting

Two representative XI CMS lines were used as maternal
parents in this study, which were Hual517A (HUA) and

Page 9 of 12

YuetaiA (YTA). HUA is a CMS-WA line bred by our lab
and shows high resistance to rice blast. YTA is a leading
CMS-HL line, and its derived combination YTA/9311
displayed good performance in Southeast Asia countries
(Zhu et al. 2010). The paternal parent population con-
sisted of 337 XI and aus lines from the 533 Oryza sativa
germplasm accessions stored in our lab (Chen et al
2014, Zhou et al. 2017). The XI lines were further di-
vided into two groups, XI I and XI II, as described in
Zhou et al. (2017). The majority of XI I lines has germ-
plasm of South China origin, while almost all of XI II
lines are from IRRI or have parentage of IRRI varieties
(Xie et al. 2015). Information about the accessions in-
cluding names, countries of origin, geographical location,
and subpopulation classification is listed in Additional
file 1: Table S1.

Crosses were made between each line of the paternal
parent population and the two maternal parents indi-
vidually, and two F; populations with CMS-WA and
CMS-HL background respectively were produced (Add-
itional file 1: Figure S1). The two F; populations and
maternal parents were grown in a completely random-
ized design at the experimental farm of Huazhong Agri-
cultural University in Wuhan, Hubei, during 2013 and
2014 growing seasons. Six plants per line were trans-
planted in a row with 16.5 cm between plants and 20.0
cm between rows. The 2 years were treated as two repli-
cations. Field management followed standard agricul-
tural practice.

Fertility Evaluation

Three traits were used to evaluate the fertility of each F;
line, which were pollen fertility, seed-setting rate of
bagged panicles (BSS) and seed-setting rate of natural
panicles (NSS).

Pollen fertility evaluation: At the flowering stage, five
glumes with mature anther were randomly sampled
from each plant and five plants from each line. Pollen
grains from each plant were mixed, stained with 1% I,-
KI solution, and observed under an optical microscope.
The ratio of dark-blue (stainable) pollen grains to total
pollen grains was counted for each plant, and the aver-
age value of five plants of each line was termed as the
pollen fertility of each line.

Seed-setting rate evaluation: At the flowering stage,
five plants from each line and a panicle from each plant
were bagged. At the maturity stage, the ratio of seed-
setting glumes to total glumes on the bagged panicle
was counted, and the average value of five plants of each
line was termed as the BSS of each line. Similarly, the ra-
tio of seed-setting glumes to total glumes on a natural
panicle was counted, and the average value of five plants
of each line was termed as the NSS of each line.
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Genome-Wide Association Analysis

SNP data for the 337 Oryza sativa accessions was re-
ported in a previous study (Zhao et al. 2015) and the
data is available at RiceVarMap v2.0 (http://ricevarmap.
ncpgr.cn/v2/). Only SNPs with a minor allele frequency
(MAF) > 5% and a missing rate < 20% were selected for
association analysis. Finally, 2.7 million SNPs were used
for GWAS.

GWAS on pollen fertility, BSS and NSS were respect-
ively performed on the entire population using linear
mixed models, as described in Zhou et al. (2017). The cal-
culated genome-wide significance threshold was P = 8.7 x
10°% based on a nominal level of 0.05. Phenotypic
variation of each trait explained by multiple SNPs was cal-
culated using R package “MLMM” (Segura et al. 2012).
The physical locations of SNPs were identified based on
the Rice Annotation version of 7.0 of variety Nipponbare
from Michigan State University (http://rice.plantbiology.
msu.edu/cgi-bin/gbrowse/rice/). Considering that the LD
decay distance in XI accessions is about 100kb (Zhou
et al. 2017), significant SNPs located to a region of less
than 100 kb were treated as one locus.

Haplotype Analysis
For the three well-known genes conferring fertility res-
toration of CMS-WA or CMS-HL, Rf4, Rf5 and Rf6, a
pair of primers were designed to amplify the full-length
ORF individually. For each CMS, 50 representative pa-
ternal accessions were selected according to the three
fertility-related traits, and the full-length ORF of the cor-
responding Rf gene was amplified using the high-fidelity
DNA polymerase KOD FX (https://www.toyobo-global.
com/) and subjected to Sanger sequencing. The full-
length sequence of each gene was assembled from se-
quence reads using the software LaserGene (https://
www.dnastar.com/software/lasergene/). Primary haplo-
type classification of each gene was conducted with re-
sults of multiple sequence alignment using the software
MEGA 7 (Kumar et al. 2016). According to the results
of primary haplotype classification of each gene, the
region covering rich SNPs to differentiate different hap-
lotypes was identified, and a pair of primers were devel-
oped to amplify and sequence the target region of the
remaining paternal accessions. The haplotypes of every
gene were further classified based on the primary results
of 50 accessions and the following sequencing results of
the remaining accessions.

The haplotypes of each gene were displayed using soft-
ware IBS1.1 (Fig. 5, Liu et al. 2015). All the primers used
are listed in Additional file 2: Table S2.

Statistical Analysis
Pearson’s correlation coefficients among fertility-related
traits in each F; population were calculated with a two-
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sided ¢-test using cor function in R, and displayed using
the R package “corrplot”. Variance analyses and multiple
comparisons of the effects of different haplotypes of
genes were computed using the R package “multcomp”
with the method of Tukey test.

Conclusions

In this study, our results demonstrated that Rf4 and Rf5
are the two major genes for fertility restoration of CMS-
WA and CMS-HL respectively in the X7 accessions of rice.
Haplotype analysis revealed that four main haplotypes for
Rf4 display different subgroup preferences, and the func-
tional type of Rf5 is carried by the majority of paternal ac-
cessions. Sequence variations of Rf4, Rf5 and Rf6 identified
in this study could be of great use in marker-aided selec-
tion of corresponding genes in rice breeding. Besides, fer-
tility evaluation of 337 accessions under the background
of CMS could provide material resources for development
of maintainer lines and restorers.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
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