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Abstract

Background: Bakanae is a seedborne disease caused by Fusarium fujikuroi. Rice seedlings emerging from infected
seeds can show diverse symptoms such as elongated and slender stem and leaves, pale coloring, a large leaf angle,
stunted growth and even death. Little is known about rice defense mechanisms at early stages of disease
development.

Results: This study focused on investigating early defenses against F. fujikuroi in a susceptible cultivar, Zerawchanica
karatals (ZK), and a resistant cultivar, Tainung 67 (TNG67). Quantitative PCR revealed that F. fujikuroi colonizes the
root and stem but not leaf tissues. Illumina sequencing was conducted to analyze the stem transcriptomes of F.
fujikuroi-inoculated and mock-inoculated ZK and TNG67 plants collected at 7 days post inoculation (dpi). More
differentially expressed genes (DEGs) were identified in ZK (n = 169) than TNG67 (n = 118), and gene ontology terms
related to transcription factor activity and phosphorylation were specifically enriched in ZK DEGs. Among the
complex phytohormone biosynthesis and signaling pathways, only DEGs involved in the jasmonic acid (JA)
signaling pathway were identified. Fourteen DEGs encoding pattern-recognition receptors, transcription factors, and
JA signaling pathway components were validated by performing quantitative reverse transcription PCR analysis of
individual plants. Significant repression of jasmonate ZIM-domain (JAZ) genes (OsJAZ9, OsJAZ10, and OsJAZ13) at 3
dpi and 7 dpi in both cultivars, indicated the activation of JA signaling during early interactions between rice and F.
fujikuroi. Differential expression was not detected for salicylic acid marker genes encoding phenylalanine ammonia-
lyase 1 and non-expressor of pathogenesis-related genes 1. Moreover, while MeJA did not affect the viability of F.
fujikuroi, MeJA treatment of rice seeds (prior to or after inoculation) alleviated and delayed bakanae disease
development in susceptible ZK.

Conclusions: Different from previous transcriptome studies, which analyzed the leaves of infected plants, this study
provides insights into defense-related gene expression patterns in F. fujikuroi–colonized rice stem tissues. Twelve
out of the 14 selected DEGs were for the first time shown to be associated with disease resistance, and JA-
mediated resistance was identified as a crucial component of rice defense against F. fujikuroi. Detailed mechanisms
underlying the JA-mediated bakanae resistance and the novel defense-related DEGs are worthy of further
investigation.
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Background
Bakanae disease, caused by the heterothallic ascomycete
fungus Fusarium fujikuroi Nirenberg, has become a threat
to rice quality and yield in recent years. Many studies from
Asian countries such as Bangladesh, India, South Korea,
Pakistan, and Taiwan have reported the increasing inci-
dence and severity of bakanae disease (Khan et al. 2000;
Chu et al. 2010; Haq et al. 2010; Gupta et al. 2015; Kim
et al. 2015). F. fujikuroi is a seed-borne pathogen that can
infect rice panicles at the flowering stage (Ou 1985). Rice
seedlings emerging from infected seeds can show diverse
symptoms such as elongated and slender stem and leaves,
pale coloring, a large leaf angle, stunted growth and even
death. The conventional disease management strategy for
bakanae disease is seed disinfection using fungicides.
However, F. fujikuroi isolates resistant to benzimidazole,
prochloraz, or tebuconazole have been reported (Chen
et al. 2014; Kim et al. 2010; Chen et al. 2016). Because
bakanae disease is becoming a serious threat to rice pro-
duction, it is crucial to develop new control measures
from different perspectives.
Bakanae resistance has been explored by large-scale

screening of rice germplasm and quantitative trait locus
(QTL) mapping. Research groups in India (Fiyaz et al.
2014), Korea (Kim et al. 2014), and Taiwan (Chen et al.
2019) used high-throughput inoculation methods to
screen for resistant materials from 92, 500, and 231 di-
verse rice varieties, respectively. A total of 28 QTLs for
bakanae resistance were mapped on rice chromosomes
1, 3, 4, 6, 8, 9, 10 and 11 (Volante et al. 2017; Fiyaz et al.
2016; Lee et al. 2018; Cheon et al. 2019; Ji et al. 2018a;
Hur et al. 2015; Lee et al. 2019; Kang et al. 2019; Yang
et al. 2006; Chen et al. 2019). Chromosome 1, where 13
QTLs are located, appears to be particularly important.
Using four different bi-parental populations and rice di-
versity panel 1 (RDP1) (Cheon et al. 2019; Ji et al. 2018a;
Hur et al. 2015; Lee et al. 2019; Fiyaz et al. 2016; Chen
et al. 2019), co-localized QTLs were fine-mapped to a
region (21.36–24.37Mb on chromosome 1) crucial for
bakanae resistance. Although QTLs have been associated
with mortality rate, disease incidence, disease severity,
and F. fujikuroi colonization, no causal genes have been
cloned and functionally characterized.
Rice responses to F. fujikuroi have been investigated in

two transcriptome analyses (Ji et al. 2016; Matić et al.
2016). Ji et al. (2016) examined the RNA from the leaves
of a moderately resistant cultivar, 93–11, and a susceptible
cultivar, Nipponbare, at 7 days after treatment. Upon in-
fection by F. fujikuroi, three WRKYs (OsWRKY107,
OsWRKY13 and OsWRKY71), a wall-associated kinase
(OsWAK112d), and two mitogen-activated protein kinase
kinase kinase (MAP3K.4 and MAP3K.5) genes were up-
regulated in resistant 93–11, and five pollen Ole e I (POEI)
genes (POEI11 to POEI15), which are known to be
involved in the response to abiotic stress, were greatly in-
duced in susceptible Nipponbare. It was also found that
gene ontology (GO) terms related to reactive oxygen spe-
cies generation and detoxification were enriched in both
93–11 and Nipponbare. Using another resistant cultivar,
Selenio, and susceptible cultivar, Dorella, Matić et al.
(2016) studied the transcriptomes of rice leaves at 7 and
21 days post inoculation (dpi). In general, F. fujikuroi in-
fection induced the expression of glycoside hydrolases,
MAPKs, and WRKYs in resistant Selenio, but caused up-
regulation of chitinases and down-regulation of MAPKs
and WRKYs in susceptible Dorella at 21 dpi.
Phytohormones and phytoalexins have been implicated

in bakanae resistance. In the study by Matić et al.
(2016), the GO term “jasmonic acid biosynthetic
process” was specifically enriched in genes differentially
expressed upon F. fujikuroi infection in resistant cultivar
Selenio, whereas the GO terms “response to salicylic
acid stimulus” and “gibberellin metabolic process” were
specifically enriched in genes differentially expressed in
susceptible Dorella at 21 dpi. By quantifying phytohor-
mones and phytoalexins in rice leaves and culms using
HPLC−MS/MS, Siciliano et al. (2015) found that inocu-
lation of F. fujikuroi induced the accumulation of gibber-
ellin (GA) and abscisic acid (ABA) and reduced the
amount of jasmonic acid (JA) in susceptible Dorella at 3
and 4 weeks after seed germination. Enhanced levels of
phytoalexins, mainly sakuranetin, were detected in F.
fujikuroi-inoculated resistant cultivar Selenio.
While Ji et al. (2016) and Matić et al. (2016) have re-

vealed abundant genes differentially expressed in the
leaves of F. fujikuroi-inoculated plants, their sampling
strategies may have led to the discovery of genes in-
volved in systemic rather than localized defensive re-
sponses. According to our previous evaluation of F.
fujikuroi colonization on eight rice cultivars at 21 dpi,
the average re-isolation frequencies of F. fujikuroi were
96%, 67%, 40%, 32%, and 25% from the stem segments
0–1 cm, 1–2 cm, 2–3 cm, 3–4 cm, and 4–5 cm above the
base of the infected seedlings, respectively (Chen et al.
2015). This suggested a localized but not systemic infec-
tion of F. fujikuroi at early stage of disease development.
In this study, to understand the early lines of defense

against F. fujikuroi in a susceptible cultivar, Zerawchanica
karatals (ZK), and a resistant cultivar, Tainung 67
(TNG67), we first clarified the initial extent of F. fujikuroi
colonization in different rice tissues by performing real-
time quantitative PCR (qPCR) assays. We found that the
stem serves as an initial colonization site so the stem tis-
sues at 7 dpi were selected as a target for transcriptome
analysis. A set of genes up- and down-regulated in re-
sponse to F. fujikuroi infection, including genes involved
in signal perception and transduction plant defense path-
ways, were identified and validated by real-time
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quantitative reverse transcription PCR (qRT-PCR) of indi-
vidual plant samples from additional independent trials.
To verify the involvement of JA signaling in rice resistance
against bakanae disease, the effects of exogenous JA on
rice and F. fujikuroi were also examined.

Materials and Methods
Plant Materials
A susceptible rice cultivar, ZK, and a resistant rice culti-
var, TNG67, were used in this study. These cultivars
were selected based on resistance screening of 231 di-
verse rice accessions from Rice Diversity Panel 1 (RDP1)
(Chen et al. 2019). ZK was moderately susceptible and
TNG67 was moderately resistant (Additional file 8: Fig.
S1). In repeated experiments, the two cultivars grew well
and showed consistent symptoms after F. fujikuroi in-
oculation under growth chamber conditions. Rice seeds
were provided by the Genetics Stocks Oryza (GSOR)
germplasm collection (Agricultural Research Service, US
Department of Agriculture) and multiplied in the field at
the Crop Science Division, Taiwan Agricultural Research
Institute.

Inoculation of F. fujikuroi
F. fujikuroi isolate Ff266 was cultured on 1/2 potato dex-
trose agar (PDA) for 4 days at 25 °C under a 12-h photo-
period. The conidia were collected using sterile dH2O
and a sterile tip, then adjusted to 1 × 105 spores/ml. Rice
seeds were surface sterilized in 60 °C sterile dH2O for
10 min then immersed in sterile dH2O for 2 days at
room temperature. The pre-germinated seeds were
soaked in the spore suspension (inoculated) or sterile
dH2O (mock) overnight, then sown in pots (L x W x
H = 3.5 × 4.5 × 5.5 cm) filled with Akadama soil (a granu-
lar volcanic clay-like mineral naturally occurring in
Japan). Plants were cultivated in the dark for the first 2
days and subsequently under a 12-h photoperiod in a
walk-in chamber set at a 32 °C day/28 °C night
temperature. Disease severity index (DSI) was calculated
based on visual ratings of individual plants at 21 dpi
using a 0–3 scale (Chen et al. 2016; Chen et al. 2019) as

follows: DSI ¼
P

Rating scale�No:of seedlings at the scale
Max:scale�Total No:of seedlings � 100%.

DNA Extraction and Quantification of F. fujikuroi in
Different Rice Tissues
qPCR was conducted to determine the sites colonized by
F. fujikuroi in rice. Inoculation of ZK and TNG67 with
F. fujikuroi Ff266 was conducted as described above in
two independent trials, with 6–8 plants per cultivar in
each trial. The aerial and root samples were collected at
3 dpi, and the leaf, stem, and root samples were col-
lected at 7 dpi. In this study, the stem was defined as the
aerial part between the base and the second node of a
seedling (Fig. 2 in the study of Chung et al. 2016). DNA
extraction and qPCR analysis were conducted on an in-
dividual plant basis. Genomic DNA was extracted from
different tissues of the inoculated and non-inoculated
healthy rice plants, and from 4-day-old F. fujikuroi col-
onies cultured on 1/2 PDA using a standard cetyltri-
methylammonium bromide (CTAB) extraction method
(Doyle and Doyle 1987). DNA concentration was mea-
sured with a NanoDrop® ND-1000 spectrophotometer
(Thermo Scientific, Wilmington, DE, USA). qPCR was
performed in three technical replicates with the ABI
Prism 7500 sequence detection system (Applied Biosys-
tems, Carlsbad, CA, USA). Each qPCR reaction con-
tained 5 μl SYBR Premix EX Taq II (Ti RNase H Plus)
(Takara Bio, Shiga, Japan), 0.5 μl of 10 μM forward pri-
mer, 0.5 μl of 10 μM reverse primer, 1 μl (100 ng) DNA,
and 3 μl ddH2O. The primers TqF2 (5′-GGCGCGTTTT
GCCCTTTCCT-3′) and TqR (5′-AGCGGCTTCCTA
TTGTCGAA-3′) (Carneiro et al. 2017) specifically tar-
geting the translation elongation factor 1-α gene in F.
fujikuroi were used. Standard curves were generated for
different rice tissues by mixing a serial dilution of F. fuji-
kuroi DNA (10 ng, 2 ng, 400 pg, 80 pg, and 16 pg) and
healthy rice DNA (90 ng, 98 ng, 100 ng, 100 ng, and 100
ng of DNA from different tissues of ZK and TNG67).

RNA Extraction and cDNA Preparation
Total RNA was extracted using TRIzol® Reagent (Invi-
trogen™ Life Technology, Carlsbad, CA, USA) following
the manufacturer’s instructions. The TURBO DNA-free™
Kit (Invitrogen™ Life Technology, Carlsbad, CA, USA)
was used to remove potentially contaminating DNA.
RNA concentration was measured using a NanoDrop®
ND-1000 spectrophotometer (Thermo Scientific, Wil-
mington, DE, USA). cDNA was synthesized using the
PrimeScript™ RT Reagent Kit (Takara Bio, Shiga, Japan)
following the manufacturer’s instructions.

Transcriptome Analysis
Total RNA samples were extracted from the stem tissues
of F. fujikuroi-inoculated and dH2O-treated ZK and
TNG67 seedlings collected at 7 dpi from two independ-
ent inoculation trials (carried out in August and Decem-
ber, 2015). The stem tissues were cut with scissors and
snap-frozen in liquid nitrogen. Each RNA sample was
extracted from stem tissues pooled from 40 individual
plants per cultivar per treatment per trial. In each trial,
to ensure that the inoculation was successful, we kept
another set of plants for continuous observation of
symptom development until 21 dpi. Eight RNA samples
[two cultivars, two treatments (inoculated and mock),
and two biological replicates (each containing 40 plants
from an independent inoculation trail)] were used for
strand-specific RNA sequencing (insert size 150–180 bp;
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2 × 150 bp paired-end reads) on the Illumina HiSeq®
2500 Sequencing System at Sequencing Technology
Company Limited (Taipei, Taiwan). The quality of RNA
and the libraries were inspected using an Agilent 2100
bioanalyzer (Agilent Technologies, Palo Alto, CA, USA).
Transcriptome data were analyzed using the Contig-

Views web server (www.contigviews.bioagri.ntu.edu.tw)
(Liu et al. 2014). Bowtie 2 (Langmead and Salzberg
2012) was used for calculation of gene expression and
reference based mapping (default parameters). Rice Os-
Nipponbare-Reference-IRGSP-1.0 [from Ensembl Ge-
nomes (Kersey et al. 2017)] was used as a reference for
read mapping and gene annotation. RNA-seq data were
deposited in the NCBI Sequence Read Archive database
under the accession numbers SAMN13972374 to
SAMN13972381.
Principal component analysis (PCA) was conducted to

determine the relatedness of different samples. The PCA
plot was generated using the DESeq package version
1.36.0 in R with the plotPCA function (Anders and Huber
2010). For each cultivar, differential gene expression be-
tween F. fujikuroi-inoculated and control seedlings was
analyzed using the DESeq package version 1.36.0 in R with
the “pooled-CR” method and a “maximum” sharing mode
(Anders and Huber 2010). Genes with p value ≦ 0.05, log2
fold change (log2FC) ≧ |1|, and Fragments Per Kilobase of
transcript per Million mapped reads (FPKM) ≧ 1 were
recognized as significantly differentially expressed genes
(DEGs). DEGs were subject to GO term enrichment ana-
lysis [false discovery rate (FDR) (Hochberg) ≦ 0.1] using
AgriGO v.2 (Du et al. 2010; Tian et al. 2017). Mapman
3.6.0 (Thimm et al. 2004) was used to analyze the DEGs
in the biotic stress and pattern-recognition receptor (PRR)
categories. DEGs were also input into Reactome (Croft
et al. 2013; Fabregat et al. 2017) for molecular pathway
analysis. Plant Transcription Factor Database v4.0
(PlantTFDB) (Jin et al. 2017; Jin et al. 2015; Jin et al. 2013)
was used for prediction and classification of transcription
factors (TFs).

qRT-PCR Analysis
To validate the expression of candidate genes, an additional
two independent inoculation trials were conducted. The
stem tissues were collected at 3 dpi and 7 dpi from six to
eight individual plants per cultivar per treatment per trial.
RNA extraction and cDNA synthesis were conducted as
described above. Relative gene expression was measured
(on an individual plant basis) in three technical replicates
with the ABI Prism 7500 sequence detection system (Ap-
plied Biosystems, Carlsbad, CA, USA). Each qRT-PCR reac-
tion contained 5 μl SYBR Premix EX Taq II (Ti RNase H
Plus) (Takara Bio, Shiga, Japan), 0.5 μl of 10 μM forward
primer, 0.5 μl of 10 μM reverse primer, 1 μl cDNA, and 3 μl
ddH2O. Primer sequences for qRT-PCR are listed in
Additional file 1: Table S1 (Jain et al. 2017; Li et al. 2016;
Sathe et al. 2019; Manosalva et al. 2009; Zhang et al. 2009).
Primers were designed using Primer 3 Plus (Version 2.4.1)
(Untergasser et al. 2012). To avoid nonspecific binding,
candidate primers were further analyzed using prfect-
BLAST (Santiago-Sotelo and Ramirez-Prado 2012) to per-
form searches against the rice genome. qRT-PCR was
performed using the following thermal cycling parameters:
95 °C for 30 s followed by 40 cycles of 5 s at 95 °C and 34 s
at 60 °C. The rice gene Elongation factor 1-alpha (OsEF1α)
was used as an internal control for normalization of the
cycle threshold (Ct) values in different samples (Manosalva
et al. 2009). The relative gene expression levels were calcu-
lated by the comparative Ct (2-△△Ct) method (Livak and
Schmittgen 2001).

MeJA Treatment
Rice seeds were soaked in 0.1 mM or 0.01 mM methyl
jasmonate (MeJA) (Sigma–Aldrich, St. Louis, MO, USA)
or ddH2O (control) for 8 h at 25 °C before or after F.
fujikuroi inoculation. The MeJA solutions and ddH2O
were adjusted to pH = 5. The concentrations of MeJA
were chosen according to previous studies on the effects
of exogenous JA on disease resistance in rice (Ji et al.
2015; Chen et al. 2018). The inoculation of F. fujikuroi
and rating of disease severity at 14 dpi and 21 dpi were
conducted as described above. The experiment was per-
formed in two independent trials, each with 12–15 indi-
vidual plants per treatment per cultivar.
The effects of MeJA on F. fujikuroi were also assessed.

For the spore germination test, 10 μl of F. fujikuroi spore
suspension (5 × 104 spores/ml in 1/2 potato dextrose broth)
mixed with an equal volume of MeJA (final concentration:
0.1mM or 0.01mM) or ddH2O (pH adjusted to 5) was
placed on a glass slide. After incubation in a moist chamber
for 12 h at 25 °C, 100 spores on each glass slide were
inspected for germination under the microscope. A spore
with a protruding germ tube two times longer than its lar-
gest diameter was considered germinated (Chen et al.
2016). The experiment was performed in two independent
trials, each with three glass slides per treatment. For the
colony growth test, 100 μl of F. fujikuroi spores (1 × 105

spores/ml in ddH2O) was mixed with an equal volume of
MeJA (final concentration: 0.1mM or 0.01mM) or ddH2O
(pH adjusted to 5). After incubation for 8 h at 25 °C, 10 μl
of the spore suspension was transferred to a 1/2 PDA plate.
Colony diameters were measured after 7 and 10 days of in-
cubation at 25 °C under a 12-h photoperiod. The experi-
ment was performed in two independent trials, each with
three to five plates per treatment.

Statistical Analysis
A two-tailed unpaired Student’s t-test was conducted to
analyze the differences between the DSIs of ZK and

http://www.contigviews.bioagri.ntu.edu.tw
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TNG67 at p < 0.05. Differences among multiple treat-
ments were analyzed by one-way analysis of variance
(ANOVA) with Tukey’s multiple comparison test at p <
0.05. Statistical analyses and graphing were performed
using GraphPad Prism version 7.04 (GraphPad Software,
La Jolla California USA).

Results
Disease Symptoms of F. fujikuroi-Inoculated ZK and
TNG67
The symptoms of ZK and TNG67 inoculated with F.
fujikuroi Ff266 are shown in Fig. 1 and Additional file 9:
Fig. S2. ZK started to exhibit mild symptoms at 7–10
dpi and showed typical bakanae disease symptoms such
as abnormal stem elongation, a slender stem, and a large
Fig. 1 Symptoms of Zerawchanica karatals (ZK) and Tainung 67 (TNG67) af
days post inoculation (dpi)
leaf angle after 14 dpi. On the contrary, TNG67 showed
no or only one type of bakanae symptoms at 7, 14, and
21 dpi. The DSIs at 21 dpi were 56.2 ± 3.4% (mean ± SE)
for ZK and 11.0 ± 1.9% for TNG67 (p < 0.0001). To clar-
ify the early responses of the two cultivars before full de-
velopment of disease symptoms, we chose 7 dpi as the
time point for subsequent transcriptome analysis.

Quantification of F. fujikuroi in Different Rice Tissues
Focusing on the early stages of disease development,
qPCR was conducted to determine the levels of F. fuji-
kuroi colonization in different parts of rice seedlings at 3
and 7 dpi. In our qPCR assays, the coefficient of deter-
mination (R2) values for the standard curves based on
different rice tissues were all > 0.99 (Additional file 10:
ter dH2O (mock) or Fusarium fujikuroi (Ff) inoculation at 7, 14, and 21
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Fig. S3). Similar amounts of F. fujikuroi were detected in
the roots and aerial parts of both cultivars at 3 dpi. For
both cultivars at 7 dpi, F. fujikuroi colonization was de-
tected in the root and stem but not in the leaf tissues
(Fig. 2). No significant differences were detected between
the root and stem tissues or between the two cultivars.
Transcriptome Profiling and Identification of Differentially
Expressed Genes
RNA sequencing was conducted to reveal gene expres-
sion patterns in the stem tissues of ZK and TNG67 at 7
dpi. The number of reads and mapping rates for the
eight RNA libraries are shown in Additional file 2: Table
S2. An average of 7.5 Gb raw reads (40–62 million se-
quences, 150 bp in length) was generated for each sam-
ple, and 79.13%–82.95% of clean reads were mapped to
the reference exon regions. The total numbers of tran-
scripts identified were 35,683 in ZK and 35,926 in
TNG67. The expression levels of all transcripts are pro-
vided in Additional file 3: Table S3. PCA was conducted
to assess transcriptional variation among cultivars, treat-
ments, and trials (Additional file 11: Fig. S4a). A distinct
separation between ZK and TNG67 was observed along
PC1. PC2 showed that the same trial-cultivar combin-
ation clustered more closely together, suggesting that
Fig. 2 Quantification of Fusarium fujikuroi in different tissues of Zerawchan
inoculation (dpi). Data are mean ± SEM (n = 2 independent trials with six to
significant difference based on Tukey’s multiple comparison test at p < 0.05
the variability between treatments were smaller than be-
tween different trials.
By comparing F. fujikuroi-inoculated libraries with the

mock libraries, 169 and 118 DEGs were identified in ZK
and TNG67 (Additional file 11: Fig. S4b and Add-
itional file 4: Table S4), respectively. The expression pro-
files of the DEGs in ZK and TNG67 are shown in
Additional file 11: Fig. S4c. There were 40 up-regulated
DEGs in ZK and 87 in TNG67, and 129 down-regulated
DEGs in ZK and 31 in TNG67. ZK and TNG67 only
shared two DEGs: OsWRKY71 (Os02g0181300; down-
regulated in both cultivars) and OsDBH (DEAD-Box
Helicase, Os04g0486800; down-regulated in ZK and up-
regulated in TNG67).
GO Enrichment Analysis
DEGs were classified into three major GO categories:
biological process, molecular function, and cellular com-
ponent. For ZK and TNG67, 63 and 22 enriched GO
terms were identified, respectively (Fig. 3). TNG67
showed no enriched GO terms in the cellular compo-
nent category. Moreover, most of the GO terms
enriched in TNG67 DEGs [all terms except for “trans-
membrane transport” (GO:0055085), “transport” (GO:
0006810), “establishment of localization” (GO:0051234),
ica karatals (ZK) and Tainung 67 (TNG67) at 3 and 7 days post
eight plants per treatment per trial). Different letters indicate



Fig. 3 Gene ontology (GO) enrichment analyses of the genes differentially expressed in Zerawchanica karatals (ZK) and Tainung 67 (TNG67) after
the inoculation of Fusarium fujikuroi. Enriched GO terms were filtered using an FDR cutoff of 0.1. X-axis indicates the enrichment p values. Blue
bars: Zerawchanica karatals (ZK); red bars: Tainung 67 (TNG67)

Cheng et al. Rice           (2020) 13:65 Page 7 of 15
and “localization” (GO:0051179)] were also enriched in
ZK DEGs. Some GO terms were specific to ZK, includ-
ing “transcription factor activity” (GO:0003700), “post-
translational protein modification” (GO:0043687), and
four GO terms associated with phosphorylation [i.e.,
“phosphorus metabolic process” (GO:0006793), “phos-
phate metabolic process” (GO:0006796), “phosphoryl-
ation” (GO:0016310), and “protein amino acid
phosphorylation” (GO:0006468)]. GO terms associated
with plant responses to biotic stresses were not enriched
in TNG67 or ZK DEGs.
DEGs Related to Biotic Stress and Pattern Recognition
Receptors
Mapman analysis identified 57 DEGs (37 in ZK and 21
in TNG67, with 1 DEG in both cultivars) in the biotic
stress category (Additional file 4: Table S4). These in-
cluded 9 PRRs and 17 TFs. While a large proportion of
biotic stress-related genes were down-regulated in sus-
ceptible ZK, more up-regulated genes were found in re-
sistant TNG67 (ZK: 31 down- and 6 up-regulated biotic
stress DEGs; TNG67: 12 up- and 9 down-regulated bi-
otic stress DEGs).



Cheng et al. Rice           (2020) 13:65 Page 8 of 15
Plants deploy membrane-associated receptor-like kinases
and receptor-like proteins as PRRs to detect a wide range of
pathogen- or damage-associated molecular patterns (PAMPs
or DAMPs). PAMP-PRR pairs function as multi-protein
complexes to activate defense signaling pathways and re-
sponses, known as pattern-triggered immunity (Monaghan
and Zipfel 2012; Zipfel 2014). This study identified 10 differ-
entially expressed PRRs, six in ZK [Os03g0297800,
Os04g0576900 (XIAO), Os05g0207700, Os07g0628700,
Os08g0117700, Os08g0501700 (OsWAK76)] and four in
TNG67 [Os06g0134700, Os07g0550900, Os09g0110100,
Os12g0145900] (Additional file 4: Table S4). Notably, in ZK,
all except OsWAK76 were down-regulated; but in TNG67,
all except Os07g0550900 were up-regulated.

DEGs Annotated as TFs
TFs regulate the transcription of target genes by binding
to specific DNA regions (Latchman 1997). TFs and their
transcriptional regulatory networks play crucial roles in
plant development and stress responses. Twenty-three
out of 169 (13.6%) DEGs in ZK and 14 out of 118
(11.9%) DEGs in TNG67 were annotated as TFs (Add-
itional file 4: Table S4). These included five WRKYs and
seven ethylene response factors (ERFs). WRKY proteins
bind to W-box elements in the promoter regions of
many defense-related genes (Chen and Ronald 2011;
Dong et al. 2003). The five differentially expressed
WRKYs [OsWRKY21 (Os01g0821600) and OsWRKY24
(Os01g0826400) in ZK; OsWRKY1 (Os01g0246700) and
OsWRKY28 (Os06g0649000) in TNG67, and OsWRKY71
(Os02g0181300) in both ZK and TNG67] were all
down-regulated. ERFs have been reported to be involved
in biotic and abiotic responses, hormone signaling trans-
duction, and development (Nakano et al. 2006). ERFs
bind to promoter regions containing AGCCGCC motifs
(GCC box) to trigger stress-responsive gene expression
(Müller and Munné-Bosch 2015; Ku et al. 2018). Seven
down-regulated ERFs [OsERF53 (Os01g0224100),
OsERF54 (Os01g0657400), OsERF25 (Os02g0677300),
OsERF30 (Os04g0572400), OsERF26 (Os06g0127100),
OsERF104 (Os08g0474000), OsERF133 (Os09g0522100)]
were identified in ZK. None of the ERFs in resistant
TNG67 were identified as DEGs.

DEGs Involved in the JA Signaling Pathway
The expression of genes involved in JA, ethylene, sali-
cylic acid (SA), and GA biosynthesis and signaling path-
ways are shown in Additional file 5: Table S5.
Differential expression was not observed for all genes
participating in biosynthesis pathways. Among the genes
involved in various phytohormone signaling pathways,
only four associated with JA signaling were identified as
DEGs in ZK: three down-regulated jasmonate ZIM-
domain (JAZ) genes [OsJAZ9 (Os03g0180800), OsJAZ10
(Os03g0181100), and OsJAZ13 (Os10g0391400)] and an
up-regulated histone deacetylase (HDA) gene, HDA703
(Os02g0214900; log2FC = 3.02). JAZ proteins can directly
bind to the basic helix-loop-helix TFs MYCs, resulting
in inhibition of the expression of JA-responsive genes
(Cheng et al. 2011; Fernández-Calvo et al. 2011). HDAs
can be recruited by the transcription co-repressor TOP-
LESS, which leads to chromatin remodeling and sup-
pression of JA-responsive gene expression (Long et al.
2006; Wu et al. 2008).

qRT-PCR Analysis
qRT-PCR was conducted to quantify the expression levels of
11 genes at 7 dpi and 5 genes at 3 dpi and 7 dpi (Fig. 4 and
Fig. 5 show the results from one of two independent trials in
which similar trends were observed; log2FC values from two
trials are in Additional file 6: Table S6). These genes were
chosen because of their potential functions in disease resist-
ance and their significant induction or repression in response
to F. fujikuroi. They included four PRRs (Os03g0297800,
XIAO, Os08g0117700, Os09g0110100), four WRKYs
(OsWRKY21, OsWRKY24, OsWRKY28, and OsWRKY71),
three ERFs (OsERF53, OsERF54, and OsERF133), three JAZs
(OsJAZ9, OsJAZ10, and OsJAZ13), and two SA marker genes
[phenylalanine ammonia-lyase (OsPAL1, Os02g0626100)
and non-expressor of pathogenesis-related (OsNPR1,
Os01g0194300)]. All of the selected genes except for the two
SA marker genes are DEGs identified from the transcrip-
tome analysis. All 14 selected DEGs were confirmed to be
significantly up- or down-regulated in F. fujikuroi-inoculated
ZK and/or TNG67 (Fig. 4 and Additional file 6: Table S6).
The qRT-PCR results were generally consistent with the
transcriptome data. The only exceptions were OsWRKY71
and OsERF53 in ZK (they were found to be down-
regulated at 7 dpi in ZK according to the transcriptome
analysis; however, no significant difference was detected
by qRT-PCR; on the other hand, the down-regulation of
OsWRKY71 and up-regulation of OsERF53 in TNG67
were confirmed by qRT-PCR).
Five genes functioning in JA- and SA-related pathways

were tested for their expression at 7 dpi and an earlier
stage (3 dpi) (Fig. 5 and Additional file 6: Table S6). The
JA signaling pathway genes OsJAZ9, OsJAZ10, and
OsJAZ13 were significantly down-regulated at 7 dpi in
ZK and TNG67 (log2FC = − 1.44 to − 5.69). Down-
regulation was also observed at 3 dpi, but to a smaller
extent (log2FC = − 0.53 to − 3.59). At 3 dpi, significant
down-regulation of OsJAZ9 in TNG67 and OsJAZ10 and
OsJAZ13 in ZK was observed; a slight decrease (not sig-
nificant) was observed for OsJAZ9 in ZK and OsJAZ10
and OsJAZ13 in TNG67. For OsPAL1, which encodes a
key enzyme that catalyzes the biosynthesis of SA and
phenolic compounds (Lee et al. 1995; D'Maris Amick
Dempsey et al. 2011), no differential expression was



Fig. 4 Expression profiling of pattern-recognition receptor (PRR), WRKY, and ethylene response factor (ERF) genes in Zerawchanica karatals (ZK)
and Tainung 67 (TNG67) after dH2O (mock) or Fusarium fujikuroi (Ff) inoculation by real-time quantitative RT-PCR. Samples were collected at 7
days post inoculation. The relative expression level is expressed as the fold change compared with the internal control (OsEF1α). Data are mean ±
SEM (n = six to eight plants per treatment). Different letters indicate significant difference based on Tukey’s multiple comparison test at p < 0.05
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found between the inoculated and mock samples at 3
and 7 dpi in both cultivars. For OsNPR1, which encodes
a positive regulator controlling SA-mediated defense re-
sponses and systemic acquired resistance (Yuan et al.
2007; Dong 2004), we detected no significant difference
at 3 dpi in both cultivars, but significant up-regulation at
7 dpi in ZK (log2FC = 0.93).

MeJA-Induced Resistance to F. fujikuroi
To understand whether JA mediates resistance to F. fuji-
kuroi in rice, the effects of MeJA treatment (before or
after F. fujikuroi inoculation) on disease severity at 14
dpi and 21 dpi were investigated (Fig. 6). For susceptible
ZK, as compared with ddH2O treatment, MeJA treat-
ment of rice seeds significantly alleviated and delayed
the development of bakanae symptoms. No significant
difference was observed between the 0.01 mM and 0.1
mM MeJA treatments; however, MeJA treatment before
F. fujikuroi inoculation more effectively enhanced resist-
ance than MeJA treatment after the inoculation. When
treated with MeJA before inoculation, ZK plants showed
a ~ 0.5- and ~ 0.8-fold reduction in DSI compared with
the control at 14 and 21 dpi, respectively. MeJA treat-
ment after inoculation caused a ~ 0.7-fold reduction and
no significant reduction compared with the control at 14
and 21 dpi, respectively. Under all treatments, TNG67
exhibited similar levels of high resistance at 14 and 21
dpi (average DSI = 0%–11.1%).

Effect of MeJA on the Viability of F. fujikuroi
To ensure that the observed JA-induced bakanae resist-
ance was not due to the inhibitory effect of JA on the
pathogen, F. fujikuroi spores were treated with MeJA or
ddH2O then evaluated for germination rate and colony
growth. More than 99.5% of the spores germinated
within 12 h, and the colony diameters were ~ 4 cm after
7 days and ~ 5.8 cm after 10 days of growth on 1/2 PDA
(Additional file 7: Table S7). No significant differences
were observed between the ddH2O, 0.01 mM MeJA, and
0.1 mM MeJA treatments.

Discussion
While rice defenses against leaf pathogens such as Mag-
naporthe oryzae and Xanthomonas oryzae pv. oryzae
have been extensively explored and elucidated (Azizi
et al. 2016; Nasir et al. 2018; Liu et al. 2013; Ji et al.
2018b; White and Yang 2009), the modulation of im-
munity responses during interaction with the seed-borne
pathogen F. fujikuroi remains largely unknown. Profiling
of F. fujikuroi-induced gene expression in rice has



Fig. 5 Expression profiling of jasmonate ZIM-domain (JAZ) genes and salicylic acid (SA) marker genes in Zerawchanica karatals (ZK) and Tainung
67 (TNG67) after dH2O (mock) or Fusarium fujikuroi (Ff) inoculation by real-time quantitative RT-PCR. Samples were collected at 3 and 7 days post
inoculation (dpi). The relative expression level is expressed as the fold change compared with the internal control (OsEF1α). Data are mean ± SEM
(n = six to eight plants per treatment). Different letters indicate significant difference based on Tukey’s multiple comparison test at p < 0.05
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previously involved analyses of rice leaves at 7 and 21
dpi (Ji et al. 2016; Matić et al. 2016). Although F. fuji-
kuroi infection can cause abnormal growth of the whole
rice seedling, our qPCR analysis revealed that F. fujikuroi
colonizes the stem and roots, but not the leaves. Aiming
to uncover the defense mechanisms at an early stage of
pathogenesis, we sequenced the total RNA of F. fuji-
kuroi-colonized rice stem tissues at 7 dpi at a higher
coverage and with longer reads [in comparison with 87.2
million reads of 50 bp per read generated by Ji et al.
2016 and 17 million reads of 51 bp per read generated
by Matić et al. 2016, we generated 40–62 million reads
of 150 bp per read for each sample]. Our qRT-PCR ana-
lysis of 14 DEGs and two SA marker genes, using RNA
samples isolated from individual plants from two add-
itional inoculation trials, validated the expression pattern
of up- and down-regulated defense-related genes.
In this study, DEGs associated with plant defense were

mainly classified in three categories: PRRs, TFs, and JA
signaling pathway-related genes. Fewer DEGs were found
in resistant TNG67 (n = 118) than susceptible ZK (n =
169), which is consistent with the finding of Matić et al.
(2016): the numbers of DEGs in resistant Selenio and sus-
ceptible Dorella were 80 and 1285 at 7 dpi, and 3119 and
5095 at 21 dpi, respectively (the criteria for calling DEGs
were FDR≦0.05 and |fold change|≧2). The DEGs and
enriched GO terms identified in this study were largely
different from those identified in the previous two tran-
scriptome studies (Ji et al. 2016; Matić et al. 2016), per-
haps reflecting the difference between systemic resistance
in leaves versus local defense in stem tissues. It also sug-
gests complex and variable mechanisms governing resist-
ance or susceptibility to F. fujikuroi infection in different
cultivars. Notably, Ji et al. (2019) recently analyzed the
proteomics of F. fujikuroi-infected plants at 7 dpi. The
protein encoded by a DEG we identified in TNG67, lim-
onene synthase (Os04g0340300; LOC4335518), was found
to be up-regulated in both the resistant cultivar 93–11
and the susceptible cultivar Nipponbare by Ji et al. (2019).
Limonene has antifungal and antibacterial activities; an-
other limonene synthase gene OsTPS19 in rice was found
to be induced upon M. oryzae infection, and



Fig. 6 Effect of methyl jasmonate (MeJA) on disease severity indexes of Zerawchanica karatals (ZK) and Tainung 67 (TNG67) at 14 and 21 days
post inoculation (dpi). Rice seeds were treated with ddH2O, 0.01 mM MeJA, or 0.1 mM MeJA before or after the inoculation of Fusarium fujikuroi
(Ff). Data are mean ± SEM (n = 2 independent trials with 12–15 plants per treatment per trial). Different letters indicate significant difference based
on Tukey’s multiple comparison test at p < 0.05
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overexpression of OsTPS19 enhanced resistance to M. ory-
zae (Chen et al. 2018).
In agreement with previous observations, we found

that genes involved in phytohormone biosynthesis were
not differentially expressed at 7 dpi. At 1 and 2 weeks
post inoculation (wpi) with F. fujikuroi, similar quantities
of JA, SA, GA, and ABA accumulated in inoculated and
non-inoculated seedlings of both resistant and suscep-
tible cultivars (Siciliano et al. 2015). At 3 wpi but not 1
wpi, genes associated with JA biosynthetic process were
up-regulated in resistant Selenio and down-regulated in
susceptible Dorella, and genes related to GA metabolic
process were up-regulated in susceptible Dorella and
down-regulated in resistant Selenio (Matić et al. 2016).
JA has been shown to mediate plant defense against

wounding, insect herbivores, and necrotrophic, hemibio-
trophic, and biotrophic pathogens (Zhang et al. 2017).
Contrasting roles of the JA pathway in response to Fusar-
ium pathogens have been reported. In Arabidopsis, JA sig-
naling has been negatively and positively associated with
resistance against Fusarium graminearum (Makandar
et al. 2010), and this pathway can be hijacked by Fusarium
oxysporum to promote disease development (Thatcher
et al. 2009). In the tomato - F. oxysporum f. sp. lycopersici
(Thaler et al. 2004), date palm - F. oxysporum f. sp. albedi-
nis (Jaiti et al. 2009), banana - F. oxysporum f. sp. cubense
(Sun et al. 2013), and cotton - F. oxysporum f. sp. vasinfec-
tum (Konan et al. 2014) pathosystems, exogenous JA
treatment induced host resistance by enhancing produc-
tion of defense-related phytoalexins (Konan et al. 2014)
and enzymes [e.g., polyphenoloxidase and peroxidase (Jaiti
et al. 2009)]. In this study, while no differential expression
of genes in SA- and GA-related signaling pathways was
observed, we detected a significant decrease in OsJAZ9,
OsJAZ10, and OsJAZ13 transcripts in both ZK and
TNG67 at 3 and 7 days after F. fujikuroi inoculation. Be-
cause JAZ is a key repressor of JA signaling, the results
suggested the activation of JA signaling upon F. fujikuroi
infection. We did not observe differential expression of
JA- or SA-regulated downstream defense genes (e.g.,
OsPR1a, OsPR1b, OsWRKY45, OsJAmyb) (Agrawal et al.
2001; Shimono et al. 2007; Agrawal et al. 2000; Lee et al.
2001) in the transcriptome data, perhaps because the stem
samples included both F. fujikuroi-colonized and non-
colonized tissues, and 7 dpi may be too early to detect sys-
temic induction of the whole defense network.
JA signaling appears to play a crucial role in mediating

early-stage defense responses against F. fujikuroi in rice.
Exogenous JA treatment of rice seeds, prior to or after F.
fujikuroi inoculation, provided enhanced resistance as
evidenced by alleviated bakanae symptoms in susceptible
ZK. Previous studies showed that exogenous application
of MeJA to rice plants induced resistance to the rice
blast pathogen M. oryzae (Han and Kahmann 2019), the
root knot nematode Meloidogyne graminicola (Nahar
et al. 2011; Kyndt et al. 2017), and Rice ragged stunt
virus (RRSV) (Zhang et al. 2016). During initial stage of
M. oryze infection, a fungal secreted monooxygenase
may be employed to convert endogenous free JA to
12OH-JA, thus preventing the induction of rice
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immunity by fungal and host-derived JA (Patkar et al.
2015). RRSV infection in rice was found to induce the
production of miR319, which suppressed JA-mediated
defense and promoted disease development (Zhang et al.
2016). F. fujikuroi behaves like a necrotroph in suscep-
tible rice genotypes (Ma et al. 2013; Matić et al. 2016),
and effectors from necrotrophic pathogens were found
to activate the SA pathway while suppressing the JA
pathway (Tanaka et al. 2015) [e.g., the exopolysaccharide
effector from Botrytis cinerea in tomato (El Oirdi et al.
2011)]. In this study, OsNPR1 was up-regulated in sus-
ceptible ZK but not in resistant TNG67 at 7 dpi, sug-
gesting the modulation of antagonistic crosstalk between
the SA and JA pathways in ZK. GAs produced by F. fuji-
kuroi and the host plant could also participate in the
regulation of JA signaling through the degradation of
DELLA proteins (the repressors of JAZs) (Navarro et al.
2008; De Vleesschauwer et al. 2016). It will be intriguing
to elucidate how F. fujikuroi manipulates the phytohor-
mone balance in susceptible rice cultivars to its benefit.
PRRs, WRKYs, and ERFs have been reported to be in-

volved in signal perception and transduction pathways in
plant defense and development (Macho and Zipfel 2014;
Phukan et al. 2016; Müller and Munné-Bosch 2015). In
this study, we identified four PRRs (Os03g0297800, XIAO,
Os08g0117700, and Os09g0110100), four WRKYs
(OsWRKY21, OsWRKY24, OsWRKY28, and OsWRKY71),
and three ERFs (OsERF53, OsERF54, and OsERF133) that
exhibited consistent differential expression patterns in
both transcriptome and qRT-PCR analyses (contradictory
results were only observed for the PRR gene
Os08g0117700 in TNG67 and OsERF53 in ZK). Except for
OsWRKY28 and OsWRKY71, these selected DEGs were
shown for the first time to be associated with disease re-
sistance. Among the four PRRs encoding LRR receptor-
like kinases, XIAO was previously found to participate in
the regulation of brassinosteroid signaling and cell cycling
in rice (Jiang et al. 2012). The xiao mutant displays dwarf-
ism, smaller leaves, flower organs and seeds, and erect
leaves (Jiang et al. 2012). At 7 dpi of F. fujikuroi, XIAO
was up-regulated in resistant TNG67 and down-regulated
in susceptible ZK, indicating a role of brassinosteroids in
modulating rice responses to F. fujikuroi.
The four OsWRKY genes we identified were signifi-

cantly down-regulated in ZK (WRKY21 and WRKY24)
or TNG67 (WRKY71 and WRKY28) at 7 dpi. In Nippon-
bare, OsWRKY28 is a negative regulator of basal defense
responses against M. oryzae (Chujo et al. 2013).
OsWRKY71 was annotated as a TF involved in plant
defense response (Liu et al. 2007). OsWRKY71 was in-
duced as early as 0.5 h after treatment with SA, MeJA,
or 1-aminocyclo-propane-1-carboxylic acid (ACC; the
precursor of ethylene), wounding, or X. oryzae pv. oryzae
infection, and overexpression of OsWRKY71 activated
OsNPR1 and OsPR1b (Liu et al. 2007). Notably, Ji et al.
(2016) showed that OsWRKY71 was up-regulated at 7
dpi in the moderately resistant cultivar 93–11. The op-
posite expression patterns of OsWRKY71 in 93–11 and
TNG67 implies different regulation of OsWRKY71 in the
two resistant cultivars. The three ERF genes we identi-
fied were significantly up- or down-regulated in ZK or
TNG67 at 7 dpi, suggesting that they function differently
in regulating rice resistance to F. fujikuroi. Contrasting
roles in disease resistance have been observed for differ-
ent ERF genes. For example, OsERF922 and OsERF83
were found negatively and positively regulate rice resist-
ance to M. oryzae in rice cultivars Zhonghua 17 and
Yukihikari, respectively (Liu et al. 2012; Tezuka et al.
2019).
Conclusions
This study focused on investigating the early lines of
defense against F. fujikuroi in rice seedlings. By compar-
ing the transcriptomes of F. fujikuroi-infected and
healthy stem tissues from plants at 7 dpi, we identified
169 DEGs in a susceptible cultivar, ZK, and 118 DEGs
in a resistant cultivar, TNG67. qRT-PCR analysis on an
individual plant basis enabled precise quantification and
validation of 14 DEGs, most of which [12 DEGs, i.e.,
Os03g0297800, XIAO, Os08g0117700, Os09g0110100,
OsWRKY21, OsWRKY24, OsERF53, OsERF54, OsERF133,
OsJAZ9, OsJAZ10, and OsJAZ13] had never been associ-
ated with disease resistance. Interestingly, among com-
plex phytohormone biosynthesis and signaling pathways,
only JA signaling pathway genes were identified as
DEGs. Significant repression of OsJAZ9, OsJAZ10, and
OsJAZ13 at 3 dpi and 7 dpi in both cultivars, indicated
the activation of JA signaling during early interactions
between rice and F. fujikuroi. Exogenous MeJA treat-
ment of rice seeds could delay bakanae disease develop-
ment in susceptible ZK, which also demonstrates the
pivotal role of JA in rice resistance against F. fujikuroi.
Detailed mechanisms underlying JA-mediated bakanae
resistance and the novel defense-related DEGs are
worthy of further investigation. Moreover, to have com-
prehensive knowledge on rice defenses in response to F.
fujikuroi colonization, root transcriptome profiles also
deserve to be explored.
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