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Abstract

Background: The chloroplast signal recognition particle 54 (cpSRP54) is known for targeting the light-harvesting
complex proteins to thylakoids and plays a critical role for chloroplast development in Arabidopsis, but little is known
in rice. Here, we reported two homologous cpSRP54s that affect chloroplast development and plant survival in rice.

Results: Two rice cpSRP54 homologues, OscpSRP54a and OscpSRP54b, were identified in present study. The defective
OscpSRP54a (LOC_Os11g05552) was responsible for the pale green leaf phenotype of the viable pale green leaf 14
(pgl14) mutant. A single nucleotide substitution from G to A at the position 278, the first intron splicing site, was
detected in LOC_Os11g05552 in pgl14. The wild type allele could rescue the mutant phenotype. Knockout lines of
OscpSRP54b (LOC_Os11g05556) exhibited similar pale green phenotype to pgl14 with reduced chlorophyll contents and
impaired chloroplast development, but showed apparently arrested-growth and died within 3 weeks. Both OscpSRP54a
and OscpSRP54b were constitutively expressed mainly in shoots and leaves at the vegetative growth stage. Subcellular

location indicated that both OscpSRP54a and OscpSRP54b were chloroplast-localized. Both OscpSRP54a and
OscpSRP54b were able to interact with OscpSRP43, respectively. The transcript level of OscpSRP43 was significantly
reduced while the transcript level of OscpSRP54b was apparently increased in pgli4. In contrast, the transcript levels of
OscpSRP54a, OscpSRP43 and OscpSRP54b were all significantly decreased in OscpSRP54b knockout lines.

Conclusion: Our study demonstrated that both OscpSRP54a and OscpSRP54b were essential for normal chloroplast
development by interacting with OscpSRP43 in rice. OscpSRP54a and OscpSRP54b might play distinct roles in
transporting different chloroplast proteins into thylakoids through cpSRP-mediated pathway.
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Background

Chloroplasts are the site for photosynthesis and other
important metabolic processes such as fatty acid and
amino acid biosynthesis (Nelson and Ben-Shem 2004;
Lopez-Juez and Pyke 2005). The organelle contains up
to several thousands of proteins, the majority of which
are encoded in the nucleus with only a small fraction
encoded in the plastid genome both in Arabidopsis and
rice (Abdallah et al. 2000; Richly and Leister 2004). The
nucleus-encoded chloroplast proteins are thus required
to be transferred into the chloroplasts usually depending
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on the Toc/Tic complexes on the inner and outer
chloroplast membranes (Jarvis and Robinson 2004;
Schwenkert et al. 2011). Once these proteins enter into
the chloroplast stroma, they may take on the final form,
or further transport into the thylakoids through four
distinct transport pathways namely, cpSec, ApH/Tat,
cpSRP and spontaneous pathways (Schiinemann 2007;
Jarvis 2008).

The chloroplast signal recognition particle (cpSRP)
and its receptor (cpFtsY) are involved in transporting of
chloroplast proteins such as mature light-harvesting
chlorophyll a/b binding proteins (LHCPs) to thylakoid
membranes (Akopian et al. 2013). Defective or deficient
in cpSRP and cpFtsY would impair the biogenesis of
chloroplasts, leading to chlorophyll degeneration and
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chlorotic leaves in plants (Amin et al. 1999; Klimyuk
et al. 1999; Asakura et al. 2004; Rutschow et al. 2008; Lv
et al. 2015). In Arabidopsis, two null mutants of
¢pSRP54, ffc1-1 and ffc1-2, produce yellow first true
leaves that become green subsequently. The levels of re-
action center proteins are significantly lower in the
young ffcI-2 leaves but recover to the normal protein
level in adult plants grown on agar plates (Amin et al.
1999). However, the ffc1-2 plants are pale green with a
fewer number of leaves and reduced rosette diameter
grown under soil conditions (Rutschow et al. 2008). The
null mutant of Arabidopsis cpSRP43, chaos, exhibits pale
green leaves including the first true leaves in the whole
lifecycle, with elevated chlorophyll a/b ratio, but a nor-
mal level of reaction center proteins (Amin et al. 1999;
Klimyuk et al. 1999). The double mutant ffc¢/chaos ex-
hibits pale yellow leaves at all growth stages with drastic-
ally reduced levels of LHCPs except Lhcb4 (Hutin et al.
2002). Similarly, the chlorophyll synthesis and chloro-
plast development are impaired in company with altered
expression of chlorophyll synthesis-associated genes in
rice OscpSRP43 mutants, w67 and pgi/3, both of them
show pale green leaves at all growth stages (Lv et al.
2015; Ye et al. 2018). Furthermore, high temperatures
inhibit plant growth and facilitate the progression of leaf
senescence in pgl3 (Ye et al. 2018). The maize cpFtsY
mutant csri—1 exhibits a pale yellow-green phenotype
while ¢sr1-3 shows a slight pale green phenotype
(Asakura et al. 2004). Interestingly, both c¢sri—I and
csrl-2 are seedling lethal, similar to the Arabidopsis mu-
tants cpFtsY-1 and cpFtsY-2, with completely arrested-
growth at the cotyledon or the first true leaf stage under
photoautotrophic conditions (Asakura et al. 2004;
Asakura et al. 2008). It has been shown that the
mutation lines of cpSRP pathway genes are able to accu-
mulate truncated light-harvesting chlorophyll antenna
(TLA) and enhance energy conversion efficiency in high-
density cultures under bright sunlight conditions in
Chlamydomonas reinhardtii (Kirst and Melis 2014;
Jeong et al. 2017). Similar phenomena have been ob-
served in tobacco, the ¢cpSRP43 knockdown plants show
lower chlorophyll contents in the RNAi canopy leaves
with increased leaf-to-stem ratio, improved photosyn-
thetic productivity and canopy biomass accumulation
under high-density cultivation conditions (Kirst et al.
2018).

We previously identified a stable-inherited rice pale
green leaf 14 (pgli4) mutant (originally termed HM14)
at the vegetative stage (Shi et al. 2013). In this study, we
isolated PGLI14 that encoded for cpSRP54 (hereafter
cpSRP54a). A single base substitution in the mutant
allele resulting in an altered mRNA splicing is respon-
sible for the pale green phenotype confirmed by genetic
complementation. We also isolated a homologue of
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PGLI14, LOC_Os11g05556 (hereafter cpSRP54b). Al-
though the knockout lines of c¢pSRP54b displayed a
similar pale green leaf phenotype to pg/14 with reduced
chlorophyll levels, impaired chloroplast structures and
down-regulated expression of chlorophyll synthesis/de-
velopment related genes, they were seedling lethal. Both
cpSRP54a and cpSRP54b were chloroplast-localized and
could interact with OscpSRP43, respectively. Our results
indicated that both of them are required for chloroplast
development by interacting with cpSRP43 to potentially
participate in protein transport into thylakoids in rice.

Results

Map-Based Isolation of PGL14

We previously identified a chlorophyll-deficient mutant
pgl14 exhibiting pale green leaf phenotype from the first
leaf to the flag leaf under natural conditions and mapped
the recessive mutation to a 299kb region in chromo-
some 11 (Shi et al. 2013). To fine map the mutation, a
total of 1008 mutant-type F, individuals derived from
the cross pgli4/Moroberekan were used for genotyping.
The PGL14 locus was further narrowed down to a 39.5
kb genomic region between RM26076 and RM26079,
covering the BAC clones AC116949 and AC138169
(Fig. 1a). Seven open reading frames (ORFs) were anno-
tated within this region in the database of Rice Genome
annotation Project (http://rice.plantbiology.msu.edu/cgi-
bin/gbrowse/rice/), two of which (LOC_Os11g05552 and
LOC_0Os11g05556) were both annotated as hypothetical
loci encoding for cpSRP54. Sequence analysis showed
that a single nucleotide substitution from G to A at pos-
ition 278 was detected in LOC_Os11g05552 in pgli4,
and the mutation localized to the predicted splicing site
on the last nucleotide of the first intron. RT-PCR
analysis showed that the transcript in pgli4 was longer
than that of WT, confirming the presence of the altered
splicing transcript in the mutant (Fig. 1b). Sequence
analysis also showed that the first intron of 119 bp was
maintained in the mutant transcript which had a frame
shift starting from valine at position 54 and terminating
prematurely at position 131 (Fig. 2, Genbank accession
MN105082). Therefore, LOC_Os11g05552 was most
likely the candidate gene of PGLI4.

OscpSRP54a Rescues the Pale Green Phenotype

To verify the function of PGLI14, the complementation vec-
tor cPGL carrying the entire coding region of PGL14, a 3.6
kb of upstream sequence and a 1.5kb of downstream se-
quence was transformed into the rice calli induced from
pgl14 mature embryo through Agrobacterium tumefaciens-
mediated transformation. Five independent transgenic lines
were obtained and showed the normal green phenotype
similar to WT (Fig. 3a). Sequence characterization of these
transgenic plants indicated that the complementary plants
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Fig. 1 Map-based cloning of PGL14. a PGL14 localizes to the short arm on chromosome 11 between RM26076 and RM26079, and is narrowed
down to a 39.5 kb region covering the bacterial artificial chromosome clones AC116949 and AC138196. The 39.5 kb region contains 7 putative
ORFs, the black box indicates LOC_Os11g05552, gray boxes indicate the other ORFs. LOC_QOs11g05552 consists of 15 exons and 14 introns
indicated as blank boxes and lines, respectively. The black arrow indicates the point mutation (G278A) at 1st intron splicing site. PTsF and PTsR
are the forward and reverse primers for PCR analysis in (b). F and R are forward and reverse primers for gRT-PCR analysis; b RT-PCR shows
different transcripts from WT and pg/14. The genomic DNA was used as a control

displayed a double peak (A and G) while pgli4 and WT
presented a single peak, respectively (Fig. 3b), indicating
that the wild-type allele has been incorporated into the
mutant genome. Furthermore, RT-PCR analysis confirmed
that both transcripts were presented in the transgenic
plants (Fig. 3c). For the pigment levels, pgli4 showed ap-
parently lowered Chl a, Chl b, carotenoid (Caro) and total
chlorophyll (Chls) contents with significantly elevated Chl
a/b ratio compared with WT, and all these parameters re-
covered to WT levels in complementary lines (Fig. 3d).. In

addition, the chloroplast ultrastructure of complementary
line C-pgli4 was similar to that of WT, displaying normal
thylakoid membranes and stacked grana (Fig. 3e-g). Taken
together, PGL14 was indeed the target gene responsible for
the pale green leaf phenotype in pgli4, hereafter PGL14 is
termed OscpSRP54a.

cpSRP54s are Conserved in Plants
The cpSRP54 is widely present in photoautotrophic or-
ganisms. To simplify the phylogenetic analysis, we chose
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Fig. 2 Alignment of the amino acid sequences of LOC_Os11g05552 in WT and pgli4. pgl14 is the predicted amino acid sequence deduced from
abnormal transcript detected in pgl74. Frame shift in pgl14 is indicated by the red box. Blue arrow indicates the premature termination in pgl14

11 OscpSRP54a homologues representing 10 species in-
cluding the monocot, dicot and algae. Blastp analysis
showed that OscpSRP54a shared 47-86% identity at the
amino acid level with various cpSRP54 from Chlamydo-
monas reinhardtii (47%), Arabidopsis thaliana (70%),
Glycine max (75%), Nicotiana tobacum (79%), Triticum
urartu (81%), Zea mays (85%), Sorghum bicolor (86%),
Chlorella sorokiniana (57%) and Spirulina subsalsa
(55%) respectively (Fig. 4a). In addition, OscpSRP54a has
78% amino acid identity to OscpSRP54b which possess
47-78% amino acid identity with cpSRP54 from the
other species. Apparently, the more closer relationship,
the higher the amino acid identity shows in various
cpSRP54s in which the function required for chloroplast
development has been extensively elaborated in
Arabidopsis and C. reinhardtii (Li et al. 1995; Yu et al.
2012; Jeong et al. 2017). The results indicated that
cpSRPs were highly conserved in plant species.

To reveal the evolutionary relationship of the cpSRP54
homologues, a phylogenetic tree was constructed. The
results showed that cpSRP54 homologues in the higher
plants could be classified into two groups as the
monocot and dicot (Fig. 4b). Both OscpSRP54a and
OscpSRP54b are clustered in the monocot group, how-
ever, OscpSRP54a is more closely related to TucpSRP54,
ZmcpSRP54 and SbcpSRP54 than OscpSRP54b, prob-
ably indicating that OscpSRP54a and OscpSRP54b were
likely originated differently.

OscpSRP54b is Essential for Chloroplast Development

To verify whether OscpSRP54b functions similar to
OscpSRP54a, we introduced the CRISPR/Cas9 vectors crl
and cr2 into Kitaake-derived embryogenic calli to edit the

two specific target sites in exon 2 and exon 5, respectively
(Fig. 5a). A total of 7 and 5 independent T, transgenic
lines were obtained from construct crl and cr2, respect-
ively. Two (crl-2 and cr1-5) out 7 Ty lines from con-
struct crl were homozygous and exhibited pale green
phenotype similar to pgli4 (Fig. 5b). Sequence analysis
confirmed that there was one base deletion at the target
site in cr1-2 and crl-5, respectively (Fig. 5a). One (cr2-3)
out of 5 T lines from construct cr2 was homozygous and
showed pale green leaf phenotype similar to pgli4 (Fig.
5b), and sequence analysis showed that cr2—3 had a single
nucleotide deletion at the target site (Fig. 5a). We then
further characterized the performance of crl-2 and cr2—
3. Firstly, we determined the levels of photosynthetic pig-
ments, and found that the contents of Chl a, Chl b, total
Chls and carotenoid in cr1-2 and cr2—3 were significantly
lower than those of Kitaake, and the Chl a/b ratio of both
knockout mutants were much lower than in the WT (Fig.
5c). Then we observed the chloroplast ultrastructure by
transmission electron microscopic analysis. The results
showed that both cr1-2 and cr2-3 possessed a large num-
ber of hollow vesicles, reduced number of grana, irregular
grana thylakoids, and destroyed stromal lamella compared
with Kitaake (Fig. 5d-f). Moreover, crl-2, cr2—3 as well as
crl-5 showed apparently arrested-growth and died within
3 weeks at the seedling stage. These results suggested that
OscpSRP54b was essential for the chloroplast development
and plant survival in rice.

Rice cpSRPs are Mainly Expressed in Shoots and Leaves
and cpSRPs Localize to Chloroplasts

To examine the expression pattern of OscpSRP54a
and OscpSRP54b, qRT-PCR was carried out using
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Fig. 3 Functional complementation of OscpSRP54a. a Phenotype of WT, pgl14 and complementary line C-pgl/74. Bar = 20 cm; b Sequence analysis
of the mutation site (red arrow) in WT, pgl14 and C-pgl14; ¢ OscpSRP54a transcripts in WT, pgl14 and C-pgl14; d Pigment contents in WT, pgl14
and C-pgl14 in 8-week-old leaves. Data are means + SD (n = 3). Means with different letters indicate significant differences according to One-way
ANOVA and Duncan’s test (p < 0.01). Chloroplast ultrastructure of WT (e), pgl14 (f) and C-pgl14 (g) at the tillering stage. G, grana thylakoid; S,

starch granule

samples from various tissues at the germination, til-
lering and heading stages. The results showed that
the expressions of OscpSRP54a and OscpSRP54b were
detected in all tissues tested with the highest expres-
sion levels of OscpSRP54a and OscpSRP54b in the
leaves at the tillering stage, followed by the shoots at
the germination stage (Fig. 6). Our results indicated
that the expression patterns were similar between the
two genes which were mainly expressed in above
ground parts of the plants.

To determine the subcellular location, we first
predicted their physical locations using the ChloroP pro-
gram (http://www.cbs.dtu.dk/services/ChloroP) and the
results showed that both OscpSRP54a and OscpSRP54b
were located in chloroplasts (Supplementary Fig. 1). The
subcellular localization of OscpSRP54a and OscpSRP54b
were then confirmed by expressing the constructs

PAN580-OscpSRP54a and PAN580-OscpSRP54b in pro-
toplasts. The green fluorescence signals of OscpSRP54a:
GFP fusion protein and OscpSRP54b:GFP fusion protein
overlapped with the chlorophyll autofluorescence signal
whereas the free GFP signal was observed in the
cytoplasm and nucleus (Fig. 7). These results demon-
strated that both OscpSRP54a and OscpSRP54b were
chloroplast-targeted proteins.

Down-Regulated Expression of OscpSRP43 in pgl14 and
cr1-2

It has been shown that cpSRP43 interacts with cpSRP54
and is critical for chloroplast development by transporting
proteins to thylakoids (Schiinemann 2007; Akopian et al.
2013). To investigate whether the expression of ¢pSRP43
was affected in pg/14 and crl-2, we measured the tran-
script levels of OscpSRP43, OscpSRP54a and OscpSRP54b
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Fig. 4 Sequence comparison and phylogenetic tree of OscpSRP54a homologues. a Amino acid sequence comparison of OscpSRP54a
homologues. Amino acid residues that are identical or similar are shaded in black and gray, respectively; b Phylogenetic tree of OscpSRP54a
homologues including ZmcpSRP54 (Zea mays, XP_008679417), TucpSRP54 (Triticum urartu, EMS61888), GmcpSRP54 (Glycine max, XP_003521470),
AtcpSRP54 (Arabidopsis thaliana, AAC64139), CrcpSRP54 (Chlamydomonas reinhardtii, AAK12834), NtcpSRP54 (Nicotiana tabacum, XP_016448785),
SbcpSRP54 (Sorghum bicolor, KXG27759), OscpSRP54b (Oryza sativa |, ABG22368), CscpSRP54 (Chlorella sorokiniana, PRW50902), SscpSRP54

(Spirulina subsalsa, WP_017306040)

by qRT-PCR. The results showed that the transcript level
of OscpSRP43 was significantly decreased in pgli4 com-
pared with WT, in contrast, the expression level of
OscpSRP54b was significantly increased in pgll4 com-
pared with WT, whereas the expression level of
OscpSRP54a was similar between pgl14 and WT (Fig. 8a).
In addition, the transcript levels of OscpSRP43, OscpS
RP54a and OscpSRP54b were all notably reduced in cr1-2
compared with Kitaake (Fig. 8b). The results suggested

that both mutations of ¢pSRP54a and cpSRP54b resulted
in down-regulated expression of cpSRP43 in rice.

The expression of genes associated with chlorophyll
biosynthesis and chloroplast development was exam-
ined in pgll14 and cr1-2. The results showed that ex-
pression profile of most genes (such as PsbA, YGLI
and ChiD) was altered between the mutant and its
wild type (Supplementary Fig. 2). These results fur-
ther indicated that both OscpSRP54a and OscpSRP54b

OscpSRP54b 5

+229 +253
TTTGGGCAGCTCACGACCGGGCTGG

crl-2 TTTGGGCAGCTCACGACCG—-GCTGG
crl-5 TTTGGGCAGCTCACGACCG-GCTGG

Fig. 5 Functional verification of OscpSRP54b for chloroplast development. a Deletion mutation at the target site in three representative knockout
lines generated by the CRISPR/Cas9-mediated editing. cr1-2, cr1-5 and cr2-3 are homozygous mutants carrying 1-bp deletion on both
homochromosomes. Black boxes indicate exons and lines indicate introns of OscpSRP54b. The sgRNA target sequence is underlined in blue and
the PAM motif is highlighted in red letters, F and R are the forward and reverse primers for gRT-PCR analysis; b Phenotype of Kitaake and
OscpSRP54b knockout mutants. Bar =2 cm; ¢ Pigment contents in 1 week-old leaves of Kitaake, cr1-2 and cr2-3. Different letters indicate
significant differences according to One-way ANOVA and Duncan’s test (p < 0.01); Chloroplast ultrastructure of Kitaake (d), cr1-2 (e) and cr2-3 (f).
G, grana thylakoid; S, starch granule; OG, osmiophilic plastoglobuli; SL, stroma lamellae; HV, hollow vesicle
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Fig. 6 Spatial and temporal expression of OscpSRP54a and OscpSRP54b. a Relative expression levels of OscpSRP54a in various tissues of IR64 at
different growth stages; b Relative expression levels of OscpSRP54b in various tissues of Kitaake at different growth stages. Different letters
indicate significant differences according to One-way ANOVA and Duncan’s test (p < 0.01)

played an important role for normal development of
chloroplasts in rice.

Both OscpSRP54a and OscpSRP54b Interact with cpSRP43
In Vivo

It has been shown that AtcpSRP54 interacts with
AtcpSRP43 to form the heterodimer which binds to the
L18 sequence of LHCPs to form the cpSRP-LHCPs com-
plex for transporting LHCPs to thylakoids (Groves et al.
2001; Goforth et al. 2004). To verify whether OscpSRP
54a and OscpSRP54b interact with OscpSRP43, the full
length CDS of OscpSRP54a and OscpSRP54b were fused
to C-terminal CFP respectively, and the full length CDS of
OscpSRP43  was fused to N-terminal Venus. Co-
expression of the OscpSRP54a-cCFP and OscpSRP43-
nVenus fusion proteins in rice green tissue protoplasts
produced obvious YFP signals overlapped with the auto

fluorescence of chloroplasts (Fig. 9). The similar result
was obtained by co-expression of OscpSRP54b-cCFP and
OscpSRP43-nVenus fusion proteins. In contrast, co-
expression of OscpSRP54a-cCFP and OsCSP41b-nVenus,
or OscpSRP54b-cCFP and OsCSP41b-nVenus did not
show the BiFC fluorescence (Fig. 9). Similarly, co-
expression of OscpSRP54a-nVenus and OsCSP41b-cCFP,
or OscpSRP54b-nVenus and OsCSP41b-cCFP did not
show the BiFC fluorescence (Fig. 9). These results clearly
demonstrated that both OscpSRP54a and OscpSRP54b
interacted with OscpSRP43, respectively.

Discussion

Deficient chlorophyll contents shown by Arabidopsis
cpSRP mutants indicate that cpSRP subunits play im-
portant roles for chloroplast development (Pilgrim et al.
1998; Amin et al. 1999; Hutin et al. 2002; Walter et al.
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2015). Further studies on cpSRP43 and cpSRP54 defect-
ive mutants in Chlamydomonas and Arabidopsis suggest
that the cpSRP43/SRP54 complex are able to recognize
and bind to the hydrophobic LHCPs during passing
through the stroma, thus, the dysfunctional cpSRP43
and/or cpSRP54 disrupt their assembly with LHCPs in
thylakoids, leading to impaired chloroplast development
(Amin et al. 1999; Hutin et al. 2002; Jeong et al. 2017).
In the present study, we identified a chlorophyll-
deficient mutant pgl14, which possessed a single nucleo-
tide substitution at the splicing site of OscpSRP54a,
leading to altered splicing transcripts and terminated
prematurely. Complementation by the wild type allele
could restore the pgli4 phenotype. OscpSRP54a is a
homologue of Arabidopsis cpSRP54 with 70% identity at
the amino acid level. The ffc mutants defective in
AtcpSRP54 show severely yellow true leaves that subse-
quently become green (Amin et al. 1999). Unlike the ffc
mutants, pgll4 exhibited pale green leaf phenotype in
the whole life period. It is noticed that the rice mutant
ygl138 has an 18 bp deletion in OscpSRP54 and shows a
similar phenotype to pgli4, suggesting that ygl138(¢) is
allelic to PGL14 (Zhang et al. 2013). Unlike Arabidopsis
which possesses only one copy of ¢pSRP54, the rice
genome possesses two copies of ¢pSRP54s, OscpSRP54a
and OscpSRP54b, which are physically adjacent and
share 78% identity at the protein level. Independent
knockout plants of OscpSRP54b were seedling lethal but
showed pale green leaf phenotype and severely decreased
chlorophyll content, resembling to pgli4. These results
suggest that both OscpSRP54a and OscpSRP54b are in-
directly associated with chlorophyll metabolism probably
resulting from the impaired chloroplast development in
the mutants.

It has been shown that AtcpSRP54 proteins are equally
distributed between thylakoids and stroma by immuno-
localization (Hutin et al. 2002). In the present study, we
demonstrated that both OscpSRP54a and OscpSRP54b
localized to chloroplasts, similar to OscpSRP43 (Lv et al.
2015). The thylakoid membranes in pgli4 seem to be
disrupted, and the grana stacks were thinner than those
of the wild-type at the tillering stage (Fig. 3e-g). Never-
theless, pgli4 is viable and capable of seeding at maturity
(Shi et al. 2013). However, more severely destroyed
stroma and a large number of hollow vesicles were
found in the chloroplasts of the OscpSRP54b-knockout
lines. The severe and irreversible chloroplast destruction
could be the reason for the lethality of OscpSRP54b-
knockout mutants. These results implicate that func-
tional OscpSRP54b, but not OscpSRP544a, is necessary
for rice survival.

Biochemical and genetic studies have indicated that
cpSRP54 and cpSRP43 are able to form the heterodi-
meric complex to participate in localizing LHCPs to
thylakoid membranes post-translationally (Hutin et al.
2002; Goforth et al. 2004; Diinschede et al. 2015). Our
results suggested that both OscpSRP54a and OscpSRP
54b could interact with OscpSRP43, respectively; indi-
cating that OscpSRP54a and OscpSRP54b both func-
tioned similarly as AtcpSRP54 for cpSRP-mediated
protein transportation (Amin et al. 1999; Yu et al. 2012).
Nevertheless, the existence of an alternative pathway has
been confirmed in Arabidopsis that the targeting of
LHCPs to thylakoids can be done when cpSRP54 is
absent and unable to form the cpSRP-LHCP transit
complex (Tzvetkova-Chevolleau et al. 2007). It has been
shown that Glutamyl-tRNA reductase (GIuTR) is the ini-
tial and rate-limiting enzyme for 5-aminolevolinic acid
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synthesis. Recent studies have demonstrated that cpSRP43
directly binds to GIuTR and prevents aggregation of
GIuTR, thereby enhancing the stability of active GIuTR
(Wang et al. 2018). In pgli4 and crl-2, the transcription
levels of OscpSRP43 were significantly lower than those of
the wild types, we speculated that downregulation of
cpSRP43 in the mutants could lead to the decrease of sta-
bility and catalytic activity of GIuTR, thus inhibiting the
chlorophyll biosynthesis and ultimately leading to a de-
creased level of chlorophyll in the mutants. Interestingly,
OscpSRP54b  was significantly upregulated in pgli4,
whereas OscpSRP54a was notably downregulated in cr1-2
mutant (Fig. 8). We speculate that OscpSRP54b might par-
tially compensate for the defect of OscpSRP54a in pgli4,
however, the severe destruction of chloroplasts in cr1-2
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inhibited the transportation of LHCPs to thylakoids,
resulting in the significantly down-regulation of both
OscpSRP54a and OscpSRP54b.

It has been shown that the downregulation of genes
involving in chlorophyll biosynthesis, photosynthesis and
chloroplast development could be an indirect response
to chlorophyll-deficient mutants (Yu et al. 2012; Lv et al.
2015; Qiu et al. 2018). For example, AtcpSRP54 muta-
tions lead to decreased expression of AtGLKI1, AtGLK2
and GUN4 which are related to plastid-to nucleus retro-
grade signaling (Lopez-Juez and Pyke 2005). In our
study, the expression level of CHLH was significantly
decreased in pgli4 and cr1-2. CHLH, a Mg-chelatase H
subunit, is a multi-functional protein involved in plastid-
to nucleus retrograde signaling and chlorophyll synthesis
(Mochizuki et al. 2001; Jung et al. 2003; Wu et al. 2009;
Tsuzuki et al. 2011). AtCpSRP54 is found to be associ-
ated with chloroplast ribosomes in the stroma, interacts
with chloroplast synthesized thylakoid membrane pro-
teins D1 and cytochrome bg to perform its conserved
role in co-translational targeting (Nilsson et al. 1999;
Nilsson and vanWijk 2002; Piskozub et al. 2015). Simi-
larly, PsbA encoding chloroplast D1 protein is signifi-
cantly downregulated in pgli4 compared with the wild
type. In contrast, the knockout mutant of OscpSRP54b
induced a notable upregulation in PsbA transcription
level. Studies in Synechocystis sp PCC 6803 have demon-
strated that chlorophyll synthase/HliD complex binding
with the Ycf39 protein and YidC/Alb3 insertase is in-
volved in the photosystem II assembly, suggesting a link
between chlorophyll biosynthesis and the Sec/YidC-
dependent cotranslational insertion of nascent photo-
system polypeptides into membranes (Chidgey et al.
2014; Knoppova et al. 2014). In our study, the expression
level of YGLI, the homologue of Synechocystis sp PCC
6803 chlorophyll synthase in rice, was significantly
downregulated in pgli4, but was significantly upregu-
lated in cr1-2, these results implied that OscpSRP54b
and OscpSRP54a might play distinct roles in transport-
ing different chloroplast proteins into thylakoids through
cpSRP-mediated pathway although the mechanism re-
quires to be furthered studied.

Methods

Plant Materials

The pale green leaf 14 (pgl14) mutant was obtained from
ethane methyl sulfonate (EMS) mutagenesis of the wild-
type (WT) cultivar IR64 (Wu et al. 2005). The pale green
phenotype is controlled by a single recessive nuclear
gene (Shi et al. 2013). Normal green leaf cultivar Moro-
berekan was used as the male parent to cross with pgli4
for construction of an F, fine mapping population. The
parents and the population were grown under natural
summer conditions in the paddy field at the China
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Fig. 9 BiFC assay for interaction between OscpSRP54a, OscpSRP54b and OscpSRP43 in rice protoplasts. Green fluorescence indicates GFP signal,
red fluorescence indicates chloroplast autofluorescence, and yellow fluorescence indicates the merged signal of green and red fluorescences

National Rice Research Institute (CNRRI), Hangzhou,
China. The transgenic plants and WT were grown in the
greenhouse at 30°C and humidity of ca.70 with 16h
light/8 h dark cycle at CNRRL

Measurement of Pigment Content

The total chlorophylls (Chl) were extracted from 10 mg
fresh leaves with 95% alcohol in darkness for 48 h. The
extracts were measured spectrophotometrically at 470
nm, 645 nm and 663 nm with a SpectraMax i3x Multi-
Mode Microplate Reader (Molecular Devices, USA).
Total Chl contents were determined according to the
method of Arnon (Arnon 1949), and total carotenoid
contents were determined as described by Wellburn
(Wellburn 1994). All experiments were carried out with

three biological replicates. Student’s t-test was
conducted using EXCEL2013 and Duncan’s test was
conducted by SAS 9.0. Means from three replicates were
used for analysis.

Transmission Electron Microscopy Analysis

Full expanded leaves of pgli4, WT and C-pgli4 were
collected at the seedling stage, while full expanded leaves
of Kitaake, cpSRP54b knockout plants cr1l-2 and cr2-3
were collected 1 week after transplanting. Leaf sections
were fixed with 2.5% glutaraldehyde in phosphate buffer
(pH 7.2) for 16 h at 4 °C, followed by rinsing, dewatering,
embedding, and staining according to the method de-
scribed by Lv et al. (2015). The chloroplast ultrastructure
was observed by a Tecnai G* F20 S-TWIN transmission
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electron microscope at Zhejiang University, Hangzhou,
China.

Map-Based Cloning of PGL74 and Complementation Assay
The mutation was previously mapped to a 299 kb region
in chromosome 11 (Shi et al. 2013). A total of 1008
mutant type F, individuals derived from the cross pgli4/
Moroberekan were used for fine mapping using simple
sequence repeat (SSR) markers (Supplementary Table
S1).

The genomic DNA was extracted following the minipre-
paration method (Lu and Zheng 1992). The genomic
DNA fragments of the candidate gene were amplified
from WT and pgli4, then sequenced and compared using
DNASTAR software. RT-PCR analysis was used to
confirm the splicing site in WT and pgli4 using the
primers PTs (Supplementary Table S2). The sequences of
the genomic DNA fragments and the transcripts were de-
termined at Shanghai Invitrogen Inc. (Shanghai, China).

For functional complementation, a 9.6 kb WT genomic
fragment containing a 4.5 kb entire open reading frame
(ORF) of PGL14, a 3.6 kb upstream region, and a 1.5 kb
downstream region was amplified using the specific
primers PQf (Supplementary Table S2). The PCR
products were double-digested with BamH 1 and Kpn 1,
and the fragments were recovered using the Axygen
DNA gel extraction kit (Axygen scientific, USA). Then,
the fragments were cloned into the binary vector
pCAMBIA1300 to form a new transformation construct,
cPGL. The new construct was introduced into the em-
bryogenic calli generated from the mature seed embryos
of pgli4 using Agrobacterium-mediated transformation
method (Hiei and Komari 2008).

CRISPR/Cas9-Mediated Editing

To generate OscpSRP54b knockout mutants, two target
sequences (TGGGCAGCTCACGACCGGGC, CCAACA
GTTATCCTATTGG) were designed using CRISPR-P
(Lei et al. 2014). The guide sequences were inserted into
commercial gRNA expression vector VK005-01 respect-
ively to create two new CRISPR/Cas9 vectors crl and
cr2 (Supplementary Fig. 3) following the manufacture’s
instruction (ViewSolid Biotech, Beijing). The crl and cr2
constructs were respectively introduced into Kitaake ma-
ture embryo-induced calli by Agrobacterium-mediated
transformation (Hiei and Komari 2008).

Sequence Alignment and Phylogenetic Analysis

BlastP (https://www.ncbi.nlm.nih.gov/) was used to search
homologous protein sequences of OscpSRP54a. The
homologous sequences were aligned using the BioEdit
software. The neighbor-joining phylogenetic tree was con-
structed using MEGA 5.1. 1000 bootstrap replicates were
used for statistical support for the node values.
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Quantitative Reverse Transcription PCR

Total RNA was extracted using the TRIzol method
following the manufacture’s instruction (Invitrogen,
USA). For RNA isolation, the roots and shoots of WT
and Kitaake were collected from 10 day-old seedlings,
the top full expanded leaves, leaf sheaths, roots, root
stems, nodes and internodes of WT and Kitaake were
collected from 10 week-old plants, roots, basals, nodes,
internodes, flag leaves, flag leaf sheaths and panicles of
WT and Kitaake were collected at the grain filling stage.
For quantitative reverse transcription (qQRT-PCR) ana-
lysis of genes associated with chlorophyll biosynthesis
and chloroplast development, total RNA was extracted
from the top full expanded leaves of pgli4 and WT at 3
weeks after sowing. Total RNA was extracted from 1
week-old leaves of cr1-2 and Kitaake. The first-strand
¢DNA was synthesized using the First Strand cDNA
synthesis kit following the manufacturer’s protocol
(TOYOBO Biotech, Japan). qRT-PCR was performed in
a total volume of 20uL qRT-PCR reaction buffer
containing 2 pL reverse-transcribed product, 0.2 uM of
each primer, and 2 x PowerUp SYBR Green PCR Master
Mix (ThermoFisher Scientific, USA), on a Thermal
Cycle Dice TM Real Time System II (Takara Biotech,
Japan) with a cycling program of 2m at 50°C, 2m at
95 °C, followed by 40 cycles of 15s at 95°C, 155 at 55 °C,
and 60 s at 72 °C. The ubiquitin gene (LOC_Os03g13170,
Ubq) was used as an internal control. Primers used for
qRT-PCR are listed in Supplementary Table S3. The
means from three biological replicates were used for
analysis by Student’s t-test and Duncan’s test by
EXCEL2013 and SAS 9.0, respectively. The 2744¢T
method was used to determine the relative transcript
levels in gene expression.

Subcellular Localization and Bimolecular Fluorescence
Complementation Assay

To determine the subcellular localization of OscpSRP54a
and OscpSRP54b, their full length CDSs were amplified
using the specific primers SLPGL14 and SLCr1, respect-
ively (Supplement Table S2). The PCR products were
double-digested with Xba 1 and BamH I, and the frag-
ments were inserted into the 5'-terminal of GFP driven
by the CaMV 35S promoter in the transient expression
vector PAN580 to form the new constructs, PAN580-
OscpSRP54a and PANS580-OscpSRP54b, respectively.
For BiFC assay, the full length CDSs of OscpSRP54a and
OscpSRP54b were amplified using the specific primers
BiPGL14, and BiCrl. The full length CDS of OsCSP41b,
which encodes for a chloroplast-localized protein (Mei
et al. 2017), was amplified using the primer BiCSP41b
and fused with cCFP and nVenus fragment as a control.
The PCR products were double-digested with Kpn I and
BamH 1, and the fragments were inserted to the 5'-
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terminal of cCFP driven by the CaMV 35S promoter in
the expression vector pE3449 to form three new con-
structs, OscpSRP54a-cCFP, OscpSRP54b-cCFP and
OsCSP41b-cCFP, respectively. These fragments were
inserted to the 5'-terminal of nVenus in pE3308 to form
OscpSRP54a-nVenus, OscpSRP54b-nVenus and
OsCSP41b-nVenus constructs. The full length CDS of
OscpSRP43 was amplified using the primers BiW67
(Supplemental Table S2), and double-digested with Kpn
I and Sma 1, then the fragments were inserted to the 5'-
terminal of nVenus driven by the 35S promoter in
pE3308 to generate a new construct OscpSRP43-
nVenus. The constructs were transformed into rice pro-
toplasts according to the protocol described previously
(Zhang et al. 2011).

Conclusions

OscpSRP54a and OscpSRP54b encode two homologous
chloroplast signal recognition particles and their loss of
function led to pale green leaves. Both OscpSRP54a and
OscpSRP54b localize to the chloroplast and are able to
interact with OscpSRP43, respectively. These results will
facilitate efforts to further uncover the molecular mech-
anism of chloroplast protein transporting in monocots.
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