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Abstract

Background: Grain size affects not only rice yield but is also an important element in quality of appearance.
However, the mechanism for inheritance of grain size is unclear.

Results: A rice chromosome segment substitution line 21392, which harbors three substitution segments and
produces grains of increased length, was identified. The three chromosome segments were located on
chromosomes 1, 5, and 6, and the average length of the substitution segment was 3.17 Mb. Cytological analysis
indicates that the predominant cause of increased grain length in 21392 could be cell expansion in the glumes.
Seven quantitative trait loci (QTLs) for grain size related traits were identified using the secondary F, population
produced by Nipponbare/Z1392. The inheritance of grain length in Z1392 was mainly controlled by two major
QTLs, gGL-5 and gGL-6. qGL-6 was localized on a 1.26 Mb region on chromosome 6, and OsARF19 may be its
candidate gene. Based on QTL mapping, three single-segment substitution lines (S1, S2, and S3) and two double-
segment substitution lines (D1 and D2) were selected, and the mapping accuracy for gGL-5 and qGL-6 was further
verified using three single-segment substitution lines. Analysis of QTL additive and epistatic effects revealed that the
additive effect of alleles gGL-5 and gGL-6 from Xihui 18" was estimated to increase grain length of 21392 by 0.22
and 0.15 mm, respectively. In addition, a positive epistatic interaction between gGL-5 and gGL-6 was detected,
which indicates that the pyramiding of gGL-5 and gGL-6 for grain length produces a novel genotype with longer
grains.

Conclusions: Inheritance of grain length in the triple-segment substitution line Z1392 is mainly controlled by two
major QTLs, gGL-5 and gGL-6. qGL-6 was found to be located in a 1.26 Mb region on chromosome 6, and OsARF19
may be its candidate gene. A positive epistatic interaction between gGL-5 and gGL-6 results in longer grains. The

present results can be used to facilitate cloning of the gGL-5 and gGL-6 genes and contribute to improvement of
grain yield in rice.
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Background
Rice (Oryza sativa L.) is an important cereal crop
throughout Asia. On the basis of the length: width ratio,
rice grains are divided into three size classes, namely
long, medium, and short grain, for which the ratios
range from greater than 3.0, 2.1-2.9, and less than 2, re-
spectively (Bai et al. 2010). Improvements in grain size
are directly associated with yield, therefore grain size
and yield-related traits are an important focus in re-
search on rice. Chromosome segment substitution lines
(CSSLs) are invaluable material in quantitative trait locus
(QTL) research for the separation and localization of
specific traits (Kubo and Yoshimura 2002). Quantitative
traits, such as grain size, plant height, heading stage, and
grain filling, are controlled by multiple genes. The con-
struction of CSSLs has formed a strong foundation on
which to base further research on quantitative traits.
Rice grain size is controlled by a combination of grain
length, grain width, and grain thickness. Previous studies
have shown that the development of grain size is
dependent on multiple pathways. The mitogen-activated
protein kinases (MAPK) pathway contains three cascade
reactions, which play an important role in regulation of
grain size (Li and Li 2016). SMGI encod es Mitogen Ac-
tivated Protein Kinase Kinase 4 (OsMKK4), which is in-
volved in the MAPK signaling pathway. The smgl
mutant produces small and light grains due to a de-
creased cell number (Duan et al. 2014). OsMAPK6 may
be a downstream effector of OsMAKK4. Mutation of
OsMAPKES6 also causes small-grain and dwarf phenotypes
as a result of limited cell proliferation (Liu et al. 2015b).
GRAIN SIZE AND NUMBER 1 (GSNI) is a negative
regulator of the SMALL GRAIN 2 (OsMKKK10)-SMALL
GRAIN 1 (OsMKK4)-OsMPK6 cascade reaction, and
regulates cell differentiation and proliferation through
the GSNI-MAPK pathway, thus regulating the number
and length of grains (Guo et al. 2018). Guanine
nucleotide-binding proteins (G proteins) consist of three
subunits (a, B, and y), and G protein-coupled receptors
are also involved in the transduction of signaling path-
ways in rice (Liu et al. 2018). gLGY3 encodes a variable
splicing protein, OsMADS1'®", which is a crucial ef-
fector downstream of the G protein By dimer (Liu et al.
2018). The Gy subunit LONG KERNEL 3 (GS3) interacts
with DENSE AND ERECT PANICLE 1 (DEP1) and
MADS-domain transcription factors, and participates in
the G-protein regulation pathway as a cofactor in the
regulation of grain size. Concurrent expression of an al-
lele of the grain size gene OsMADSI'®?, GS3, and pan-
icle DEPI may result in traits that enhance yield and
quality (Liu et al. 2018). Several recent studies have
demonstrated that the ubiquitin—proteasome pathway
may also regulate the development of grain size in rice.
GRAIN WEIGHT 2 (GW?2) encodes a RING-type protein
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with E3 ubiquitin ligase activity, which regulates prote-
olysis by targeting substrate binding to the proteasome,
thereby negatively regulating cell proliferation and play-
ing a role in the degradation of the ubiquitin—prote-
asome pathway. Loss of GW2 increases cell number,
which results in broader glumes and an accelerated rate
of grain filling, thus increasing grain width, weight, and
yield (Song et al. 2007). Epigenetic modification also reg-
ulates the development of grain size. RELATED TO
ABSCISIC ACID INSENSITIVE 3 (ABI3)/VIVIPAROUS 1
(VP1) 6 (RAV6) encodes a B3 DNA-binding protein,
which affects the brassinosteroid (BR) pathway by con-
trolling the degree of promoter methylation, thereby
regulating the leaf angle and grain size (Zhang et al
2015b). GW6a encodes a novel GANT-like protein with
histone acetyltransferase activity, which regulates rice
grain size and yield by regulating the overall acetylation
level of histone H4 (Song et al. 2015). In addition, many
phytohormone-regulated pathways in rice control the
proliferation and longitudinal growth of cells. Multiple
genes are involved in the BR signaling pathway, for ex-
ample, DWARF EBISU (D2/SMGI1I) encodes cyto-
chrome P450, which regulates grain size by controlling
cell elongation (Fang et al. 2016). Several genes are in-
volved in auxin regulation, such as BIG GRAIN 1 (BGI),
which encodes a novel membrane-localized protein.
Overexpression of BGI leads to a significant increase in
grain size, with clearly perturbed gravitropism in severe
cases, by changing the auxin basipetal transport and al-
tered auxin distribution; this suggests that BGI plays a
role in the auxin regulatory pathway (Liu et al. 2015a).
Genes involved in the cytokinin regulatory pathway,
such as REGULATOR OF AWN ELONGATION 2
(GADI), which encodes an epidermal pattern factor,
regulate the content of endogenous cytokinins by inter-
acting with GRAIN NUMBER 1A (OsCKX2) and
DROUGHT AND SALT TOLERANCE (DST) to regu-
late grain size (Jin et al. 2016). In general, many of the
modes that regulate rice grain size remain unexplained
and require further study, owing to the complex regula-
tory modes within and among the pathways.

In this study, a novel rice CSSL with long grains
71392 and carrying three substitution segments was de-
rived from a cross between ‘Nipponbare’ as the recipient
parent and the indica restorer line Xihui 18 as the
donor parent. We performed QTL mapping of grain size
traits using a secondary F, population derived from the
cross between ‘Nipponbare’ and Z1392. gGL-6 was local-
ized on a 126 Mb region on chromosome 6, and
OsARF19 may be its candidate gene. On the basis of the
QTL mapping results, we selected single-segment
(SSSL), double-segment (DSSL), and triple-segment sub-
stitution lines (TSSL) for each QTL in the F; generation
using marker-assisted selection (MAS). We also carried



Zhang et al. Rice (2020) 13:40

out analysis of the additive and epistatic effects of QTLs
on grain length. The results in the present study will be
helpful in cloning of QTLs for grain length and their
breeding application in the future.

Results

Identification of Substitution Segments in Z1392

Three substitution segments of Z1392 originating in
Xihui 18 were located on chromosomes 1, 5, and 6. The
substitution segment on chromosome 1 was the the
short arm--RM3426--RM1167 and its estimated length
was 2.1 Mb. The substitution segment on chromosome 5
was RM3345--nSSR505-RM18119-RM289--RM6082
and it had an estimated length of 3.9 Mb. The substitu-
tion segment on chromosome 6 was RM5371--
RM7412-RM494--long arm and its estimated length was
3.5 Mb. The total substitution length was 9.5 Mb and the
mean length was 3.17 Mb (Fig. 1).

Grain Size Related Traits Analysis of Z1392

71392 has similar plant type with the recipient Nippon-
bare (Fig. 2 A, B). However, Compared with Nipponbare,
71392 showed a grain length that was increased by
18.43%, a grain width decreased by 13.49% and a ratio of
length to width increased by 36.41% (p <0.01 for each
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trait) (Fig. 2 C-I). There was no difference for 1000-grain
weight between Z1392 and Nipponbare (Fig. 2j).

Cytological Analysis of Glumes in Z1392 and Nipponbare
To examine the factors responsible for the increase in
grain length of the substitution line Z1392, scanning
electron microscopy was used to observe the cell morph-
ology of glumes in Nipponbare and Z1392 at the head-
ing stage. We measured cell size in the inner epidermis
of the glumes of mature grains. The glume cell length in
71932 was 25.93 um longer than that of Nipponbare,
whereas the cell width was narrower by 4.42 pm on aver-
age (Fig. 3a, b, d, e, g, h). No significant difference in
total cell number in the outer epidermis of the glume
along the longitudinal axis was observed between Nip-
ponbare and Z1392 (Fig. 3¢, f, i). These findings suggest
that the increase in grain length of Z1392 might have re-
sulted predominantly from cell expansion, and not from
an increase in cell number.

Genetic Analysis of Grain Size Related Traits of Z1392

The grain size in Nipponbare displayed a short and
broad phenotype, whereas the grain was long and nar-
row in Xihui 18 and Z1392. The grain size in F; individ-
uals derived from the cross between Nipponbare and
71392 was long and narrow, which indicates that the
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Fig. 1 Substitution segments harbored in the CSSL Z1392 and position of grain size related QTLs. Physical distance (Mb) is specified on the left of
each chromosome (based on the Nipponbare reference genome) and markers are specified on the right. The solid black segment is the
substitution fragment region from the donor Xihui 18 and the identified QTLs are listed on the left of each chromosome in italics. gGL, QTL for
grain length; gGW, QTL for grain width; gRLW, QTL for ratio of length to width; gkWT, QTL for 1000-grain weight
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Fig. 2 Phenotype of Nipponbare and Z1392. a, Plant type of Nipponbare (left) and 21392 (right). b, Main panicle of Nipponbare (left) and 21392
(right). ¢, d, Grains of Nipponbare (c) and 21392 (d). e, f, Brown grains of Nipponbare (e) and 21392 (f). g-j, Grain length (g), grain width (h), ratia
of length to width(i) and 1000-grain weigth(j) of Nipponbare and Z1392. Bars in A and B, 10 cm; C-F, 2 mm
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long grain trait exhibited dominance over the short grain
phenotype. In the F, population of 216 individuals, the
traits related to grain size, including grain length, grain
width, ratio of length to width and 1000-grain weight
showed basically a normal distribution, which indicates
that these traits in Z1392 were still controlled by mul-
tiple genes (Fig. 4).

QTL Mapping for Grain Size Related Traits in the

Secondary F, Population of Nipponbare /21392

Seven quantitative trait loci for grain size related traits
were identified in the secondary F, population obtained
from the cross between Nipponbare and Z1392. The in-
heritance of grain length in Z1392 was controlled by two
major QTLs, gGL-5 and gGL-6. The additive effect of al-
leles of gGL-5 and gGL-6 inherited from Xihui 18 was
estimated to increase the grain length by 0.22 mm and
0.15mm in Z1392, implying contribution rates of
32.25% and 15.07%, respectively. The grain width of
71392 was controlled by the negative effect of gGW-5,
which could reduce grain width in Z1392 by 0.09 mm
per grain, and its contribution rate was 73.38%. Simi-
larly, the ratio of length to width of Z1392 was con-
trolled by two QTLs, gRLW-5 and gRLW-6, and the
contribution rates were 19.01% and 13.52%, respectively.
Two QTLs (gKWT-5 and gKWT-6) showed negative and
positive effects on 1000-grain weight, and the

contribution rates were 20.12% and 21.81%, respectively
(Table 1).

Fine Mapping of Putative gGL-6 and Sequence Analysis of
Candidate Genes

On the basis of QTL mapping, 241 recessive individuals
with short grains excluding those with bands of Nippon-
bare in the gGL-5 locus of the F, population were used
for fine mapping of gGL-6. The grain length was 7.40
mm in the 241 recombinant types, which shows no real
difference from that (7.0mm) seen in Nipponbare
(Fig. 5b). This enabled gGL-6 to be fine-mapped be-
tween RM439 and RM103 on chromosome 6, with a
physical distance of 1.26 Mb (Fig. 5a). Through gene pre-
diction and sequencing, the auxin response factor
OsARF19 was identified as a candidate gene of gGL-6,
and this highlighted a number of differences in the DNA
sequence of OsARFI9 between Nipponbare and Z1392.
Firstly, there are 6 CAGs in the CAG repeat region after
the 1803rd bases in Nipponbare, but only 5 CAGs in
71392, and the CAG encodes glutamine. Thus, a glu-
tamine of the OsARFI9 protein in Z1392 is reduced
compared to Nipponbare. Secondly, a base in the 1830th
and 1833rd bases in Nipponbare was changed to G base
in Z1392. Thus the CAA in Nipponbare was changed to
the CAG in Z1392, but both of these encoded glutamine,
and did not cause amino acid changes (Fig. 5c).
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Fig. 3 Scanning electron microscopic observation and analysis of the glume. a—c, Scanning electron micrograph of the lemma (a, d), and inner
epidermis (b, ) and outer epidermis (c, f) of the glume of Nipponbare (a-c) and 21392 (d-f). g-h, Cell length and cell width in the inner
epidermis of the lemma of Nipponbare and Z1392. i, Total cell number in the outer epidermis of the lemma along the longitudinal axis of
Nipponbare and Z1392. Bars in A and B, T mm; B, C, E and F, 100 um. * and ** indicate a significant difference between the two parents at P <
0.05 and P <001, respectively
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Analysis of Additive and Epistatic Effects of QTLs on Grain  F; lines were obtained from each individual. Ten individ-
Length uals for each F3 line were sampled for further molecular
On the basis of the QTL mapping results, eight individ- marker selection using heterozygous markers in the se-
uals were selected from the F, population by MAS, and lected plant lines. Ultimately, three SSSLs (S1, S2, and
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S3) and two DSSLs (D1 and D2) were selected. S1 car-
ried the substitution fragment of chromosome 1 and
lacked the QTLs for grain length and grain width. S2
carried the substitution fragment of chromosome 5,
which included the grain length QTL gGL-5, for which
the additive effect was estimated to be an increased grain
length of S2 by 0.3 mm. S3 carried the chromosome 6
substitution fragment containing the grain length QTL
qGL-6, for which the additive effect was estimated to be
an increased grain length of S3 by 0.13mm (Fig. 6).
These QTLs were repeatedly detected in different years
(QGL'S. A2017 = 0.22, P= 0.0012; A2018 = 0.22, P= 0.0012;
qGL-6: ag7=0.15, P=0.028; agg=0.22, P=0.0012),
which indicates that the QTLs were mapped accurately,

and differences in the additive effect of the QTLs were
detected in comparison with the previous season, which
suggests that different environments have interactive ef-
fects on grain length.

The DSSL D1 carried the substitution fragments of
chromosomes 1 and 6. The substitution fragment of
chromosome 1 lacked a grain length QTL, whereas the
substitution fragment of chromosome 6 contained gGL-
6. The additive effect of gGL-6 was 0.13 mm, and an epi-
static effect between the two substitution segments of
0.41 mm was observed. The DSSL D2 carried substitu-
tion fragments of chromosomes 5 and 6. The substitu-
tion fragment of chromosome 5 contained gGL-5, for
which the additive effect was 0.3 mm, the substitution

Table 1 QTL mapping for grain size related traits in the secondary F, population of Nipponbare /21392

Traits QrTL Chr. Linked marker Estimated Var% P-value
effect + SE
Grain length qGL-5 5 RM18119 0.22 £ 0.07 3225 0.0012
Grain length qGL-6 6 RM7412 0.15 + 0.07 15.07 0.0282
Grain width qGW-5 5 nSSR505 -0.09 + 0.02 7338 <0.0001
Ratio of length to width gRLW-5 5 nSSR505 0.06 £ 0.02 19.01 0.0016
Ratio of length to width gRLW-6 6 RM7412 0.05 + 0.02 13.52 0.0278
1000-grain weight gKWT-5 5 nSSR505 -1.08 £ 033 20.12 0.0015
1000-grain weight gkWT-6 6 RM7412 112 £ 042 21.81 0.0075
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fragment of chromosome 6 contained gGL-6, which
showed an additive effect of 0.13 mm, and an epistatic
effect between the two substitution fragments of 0.31
mm was observed. The TSSL T3 (Z1392) carried the
three substitution fragments. As indicated in the preced-
ing discussion, the substitution fragment of chromosome
1 lacked grain length QTL, whereas those of chromo-
somes 5 and 6 contained gGL-5 and gGL-6, respectively.
An epistatic effect among the three substitution frag-
ments of 0.26 mm was observed. Therefore, the theoret-
ical genetic effects on grain length of D1, D2, and T3
were 044 mm, 0.74mm, and 0.69 mm, respectively.
Given that the grain length of the recipient parent Nip-
ponbare was 7.2 mm, the grain length of D1, D2, and T3
was predicted to be 8.15 mm, 8.29 mm, and 8.24 mm, re-
spectively. However, the actual average grain length of
D1, D2, and T3 was 8.45mm, 8.67 mm, and 8.58 mm,
which may be the result of errors or environmental ef-
fects between individuals (Fig. 6). Taken together, the
combination of gGL-5 and gGL-6 resulted in the devel-
opment of a longer grain.

Discussion

In this study, the rice CSSL Z1392 was identified,
having been derived from a cross between Nippon-
bare as the recipient parent and the indica restorer
line Xihui 18 as the donor parent. Z1392 carried
three substitution segments and exhibited a long-
grain phenotype. The major QTLs carried by Z1392,
qGL-5 and qGL-6, contributed to grain length, which
affords the opportunity for future research on the
molecular mechanisms underlying the development
and regulation of grain length. In addition, we ana-
lyzed two SSSLs that carried gGL-5 or gGL-6, which
positively affected grain length, and one DSSL that
carried gGL-5 and ¢GL-6. Interaction of gGL-5 and
qGL-6 resulted in positive epistatic effects in the
DSSL, with longer grain length compared with the
single long-grain SSSL. Thus, combination of major
QTLs that positively affect grain length resulted in a
further increase in grain length. However, a previous
study showed that combination of two QTLs, gGL3
and gGL4-b, which each have positive effects on grain
length, resulted in negative epistatic effects in the
DSSL and thus did not result in a longer grain (Zhao
et al. 2011). Nevertheless, these results are not
contradictory, but rather verify the finding that QTLs
with different effects on grain length will produce dif-
ferent interactive effects when combined, and only
when the epistatic effect is in the same direction as
the additive effect of the target gene can any signifi-
cant improvement in grain length be achieved. To
achieve the desired effect of the target gene, it is first
necessary to predict whether two genes interact with
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each other, and the effect of that interaction. There-
fore, given that Z1392 harbors gGL-5 and gGL-6, this
line is an important resource for molecular breeding
of rice.

Senven QTLs for grain size related traits were iden-
tified in Z1392. Compared with the reported QTLs,
the grain size QTLs gGW-5 and gKWT-5 are located
in the same chromosomal region as GWS5, which par-
ticipates in the ubiquitin—proteasome pathway to
regulate cell division during seed development (Weng
et al. 2008). The grain length QTL ¢gGL-6 was fine-
mapped on chromosome 6, with a physical distance
of 1.26 Mb, and 3-bp Indel (CAG) occurred in the
coding region of OsARFI9, which encodes an auxin
response factor. The null mutant osarfl9 (isolated
from a T-DNA) and RNAi lines of OsARFI9 dis-
played enlarged organs and plant architecture caused
by cell elongation (Zhang et al. 2015a, 2015b). Simi-
larly, mutation of gGL-6 showing increased grain
length and plant height in Z1392 might also result
predominantly from cell expansion. We therefore sup-
pose that OsARFI9 is the candidate for gGL-6. The
localization interval for the grain length QTL gGL-5
may contain five genes associated with the develop-
ment of grain size, and which encode a Serine/Threo-
nine protein phosphatase, a rapid alkalization factor
(RALF) family protein precursor, a GSK3/SHAGGY-
Like kinase, a protein kinase, and an expressed pro-
tein containing a PPR repeat sequence. Although
these genes that control different traits are located in
the same chromosomal interval as the QTLs identi-
fied in the present study, further sequencing and
functional complementation are still needed to deter-
mine whether the genes are alleles of the identified
QTLs. Therefore, the present results lay the founda-
tions for additional fine localization of the QTLs,
cloning of the candidate genes, and functional re-
search on grain size.

Conclusions

The rice TSSL line Z1392 was identified, which exhibited
increased grain length. The chromosomal substitution
fragments were located on chromosomes 1, 5, and 6, and
the average substitution length was 3.17 Mb. The in-
creased grain length in Z1392 might be caused predomin-
antly by cell expansion in the glumes. Inheritance of the
long-grain phenotype in Z1392 is mainly controlled by
two major QTLs, gGL-5 and qGL-6. gGL-6 was localized
to a 1.26 Mb region on chromosome 6, and OsARFI9 may
be its candidate gene. On the basis of QTL mapping, three
SSSLs and two DSSLs were selected. Epistatic effect ana-
lysis revealed a positive epistatic interaction between gGL-
5 and qGL-6, which indicates that pyramiding of ¢GL-5
and gGL-6 enhances the long-grain phenotype.
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Materials and Methods

Plant Materials

The rice CSSL Z1392 was developed using the rice culti-
vars ‘Nipponbare’ as the recipient parent and excellent
indica restore line Xihui 18’ as the donor parent. After
continuous backcrossing and selfing, in combination
with phenotype-based selection and simple sequence re-
peat (SSR) marker selection, a genetically stable CSSL
with three substitution segments was identified and des-
ignated Z1392.

The plant material used for QTL mapping was a sec-
ondary F, population derived from a cross between
Nipponbare and Z1392.

On the basis of QTL mapping results obtained in
2017, eight individual plants were selected by MAS and
planted in 2018. Ten individual plants were selected
from each line to allow further selection of molecular
markers for hybrid markers, and homozygous single-
fragment substitution lines and double-fragment substi-
tution lines were then selected.

Material Planting Method

In June 2016, the F; was generated at the experimental
station of Southwest University in Chongqing, China, by
crossing Nipponbare with Z1392. In August, hybrid
seeds were planted in LingShui, Hainan Province. All 30
F; seeds and seeds of the parents were planted at the ex-
perimental station of Southwest University in Chongqing
on March 10, 2017. In March 2018, on the basis of QTL
mapping results in 2017, 30 seeds of eight individual
plants were used for breeding of secondary substitution
fragment lines, and the parents were planted in the same
experimental field. On April 15, 2018, all plants were
transplanted to the same experimental field. The spacing
between hills was 16.67 cm and the spacing between
rows was 26.67 cm. Conventional field management
practices were applied.

Identification of Substitution Segments in Z1392

A set of 263 markers polymorphic between Nipponbare
and Xihui 18 were selected from 429 markers that cov-
ered the entire rice genome. The long-grain substitution
line Z1392, harboring three substitution segments, was
selected from the BC3F, generation by selection of
molecular marker and phenotype. The identification of
substitution segments was performed as described previ-
ously (Zhao et al. 2016), and the estimated length of the
substitution segments was calculated following an estab-
lished method (Paterson et al. 1991). The distance of the
substitution markers from the donor plus half of the dis-
tance between the boundary markers from Nipponbare
and the substitution markers was taken to be the esti-
mated substitution length. Mapchart 2.2 was used to
draw a chromosome substitution fragment map.
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Grain Size Related Traits Assessment

At maturity, 10 plants on the third to seventh hills of
the central two rows of the Nipponbare and Z1392 plots,
and 10 plants of selected SSSLs and DSSLs, and 216 in-
dividuals were harvested for QTL mapping. For each
plant, grain length, grain width, ratio of length to width,
and 1000-grain weight, were measured. A Student’s ¢-
test was conducted for each trait to assess the signifi-
cance of differences between Nipponbare and 71392,
and descriptive statistics such as skewness and kurtosis
were obtained for the F, population using the statistical
functions in Microsoft Excel 2010.

Scanning Electron Microscopy

At the completion of the booting stage and before the
heading period, the phenotypic characteristics of the
inner and outer epidermal cells of the glume in Nippon-
bare and Z1392 were investigated using a Hitachi
SU3500 scanning electron microscope (Hitachi, Tokyo,
Japan) with a frozen stage (- 40 °C) under a low-vacuum
environment.

QTL Mapping

Total genomic DNA of Nipponbare, Xihui 18, 21392, and
the 216 plants from the F, population was extracted using
the cetyltrimethylammonium bromide method (Mccouch
et al. 1988). PCR amplification, non-denaturing polyacryl-
amide gel electrophoresis, and rapid silver staining were
performed as described previously (Zhao et al. 2016).
Nipponbare bands were scored as “— 1”7, Z1392 bands were
scored as “1”, heterozygous bands were scored as “0”, and
the absence of marker bands was scored as “.”. The
marker assignments of all six SSR markers on the substi-
tution segments of Z1392, together with the phenotypic
values of each individual in the F, population, were used
for QTL mapping. QTL mapping was performed using
the restricted maximum likelihood method by mixed lin-
ear models (MLM) implemented in the HPMIXED pro-
cedure of SAS (SAS Institute Inc., Cary, NC, USA), with
significance determined at o = 0.05 (Hu and Xu 2009; Cui
et al. 2017; Spilke et al. 2005).

Development of SSSLs and DSSLs, and Additive and
Epistatic Effect Analysis

On the basis of the QTL mapping results obtained in
2017, eight plants were selected using a MAS method
and were planted in 2018. Ten plants from each line
were selected for further molecular marker assisted se-
lection. Ultimately, homozygous SSSLs and DSSLs were
selected. At the maturity stage, 10 plants from each
SSSL, DSSL, and TSSL (Z1392) were sampled and the
grain length and grain width of each plant were mea-
sured, with three replicate measurements per plant re-
corded. Additive and epistasis effects of unlinked QTLs
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for grain length and grain width were calculated follow-
ing the descriptions of Eshed and Zamir (Eshed and
Zamir 1996). The additive effect was taken as half the
difference between each SSSL and the recipient Nippon-
bare at P<0.01 according to the student t-test. QTL
interaction in each DSSL was determined by comparing
the difference between the effect of DSSL and its corre-
sponding SSSL pairs (SSSLa and SSSLb) at P<0.01.
QTL interaction in TSSL was determined by comparing
the difference between the effect of (TSSL+ Nipponbare
+Nipponbare) and its corresponding SSSL pairs (SSSLa+
SSSLb + SSSLc) at P<0.01 by student t-test. The epi-
static effect in DSSL was estimated using phenotypic
values according to the value of half [DSPL + Nippon-
bare) - (SSSLa + SSSLb)]. The epistatic effect in TSSL
was estimated using phenotypic values according to the
value of half [(TSSL + Nipponbare+ Nipponbare) -
(SSSLa + SSSLb+ SSSLc)]. Then, a t-test was used to
validate QTLs for all traits between each SSSL and
Nipponbare. The additive effect of a QTL is half the dif-
ference between each SSSL and Nipponbare, and the
threshold probability value for a QTL is less than 0.05
(Eshed and Zamir 1996).
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