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Abstract

Rice (Oryza sativa L.) is a staple food crop, feeding more than 50% of the world’s population. Diseases caused by
bacterial, fungal, and viral pathogens constantly threaten the rice production and lead to enormous yield losses.
Bacterial blight (BB) and bacterial leaf streak (BLS), caused respectively by gram-negative bacteria Xanthomonas
oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), are two important diseases affecting rice
production worldwide. Due to the economic importance, extensive genetic and genomic studies have been
conducted to elucidate the molecular mechanism of rice response to Xoo and Xoc in the last two decades. A series
of resistance (R) genes and their cognate avirulence and virulence effector genes have been characterized. Here, we
summarize the recent advances in studies on interactions between rice and the two pathogens through these R
genes or their products and effectors. Breeding strategies to develop varieties with durable and broad-spectrum
resistance to Xanthomonas oryzae based on the published studies are also discussed.
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Background
Plants are always attacked by diverse and widespread po-
tential pathogens, which cause numerous diseases. These
diseases lead to 16% of global crop yield losses (Oerke
2006). Plants have evolved sophisticated innate ability of
each cell to fend off the attack (Spoel and Dong 2012).
There are two-layered system involved in plant immune
response. The first layer is governed by cell surface-
localized pattern recognition receptors (PRRs) that de-
tect pathogen-associated molecular patterns (PAMPs),
such as bacterial flagellin or fungal chitin, which are
highly conserved molecules essential for the pathogen’s
life cycle, and trigger a relatively weak immunity (PTI).
PTI comprises a wide array of responses, including the
production of reactive oxygen species (ROS), increases

in intracellular calcium concentration, callose deposition
in cell wall, antimicrobial compounds called phyto-
alexins and the activation of mitogen-activated protein
kinases (MAPKs) (Leach et al. 2014). It is a broad-
spectrum resistance that wards off most invading organ-
isms. To counter PTI, the pathogens evolved mecha-
nisms to secret and deliver highly variable effectors into
host cells to suppress PTI, which is called effector-
triggered susceptibility (ETS). The second layer of plant
defense acts largely inside the cell and is based on highly
polymorphic resistance proteins which directly or indir-
ectly recognize specific virulence effectors secreted
within host cells by pathogens, inducing the effector-
triggered immunity (ETI). ETI is a rapid and stronger re-
sistance response, usually associated with programmed
cell death at sites of infection, termed the hypersensitive
response (HR). Other defense responses include the pro-
duction of ROS, enhancement of cell walls, accumula-
tion of toxic metabolites or proteins, and altered levels
of hormone (Leach et al. 2014).
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The ancient domesticated crop, rice (Oryza sativa L.) is
the most important staple food for humans and is one of
the most widely cultivated crops all over the world (Ains-
worth 2008). Though rice production has been almost
doubled over the recent decades due to the introduction
of the semi-dwarf gene sd1, hybrids, and improvements in
cultivation management practices, it needs to significantly
increase in order to meet the projected demand from the
ever-expanding human population (Khush 2005; Skam-
nioti and Gurr 2009). However, the increase is challenged
by farmland availability, water, soil fertility, climate
change, insects and diseases. Rice is vulnerable to a num-
ber of diseases caused by bacteria, viruses, or fungi (Dai
et al. 2010). Rice bacterial blight (BB) and bacterial leaf
streak (BLS) are caused by gram negative bacteria Xantho-
monas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae
pv. oryzicola (Xoc), respectively. BB is one of the most dev-
astating rice diseases, which can cause severe yield loss of
up to 50% depending on the rice variety, growth stage, the
geographic location and environmental conditions (Liu
et al. 2014). Losses due to the kresek syndrome of BB can
reach as much as 75% (Ou 1985). BLS is another devastat-
ing rice disease which could spread rapidly under
favourable conditions and cause tremendous damage.
Yield losses due to BLS range from 8%–32% (Liu et al.
2014). It is becoming more and more important, especially
in Asia and Africa. In China, quarantine regulations are
now in force for BLS (Li and Wang 2013). In this updated
review, we provide an overview of these two diseases and
summarize the advances in studies on the Xoo/Xoc-rice
interaction. We also discuss strategies for breeding broad-
spectrum and durable disease-resistant rice varieties.

Overview of the Pathogens and Diseases
BB is one of the oldest recorded rice diseases, which was
first found by a farmer in the Fukuoka area of southern
Japan in 1884 (Nino-Liu et al. 2006). Since then, it was
observed in other regions of Japan and gradually spread
to all the rice-growing areas of this country. In China,
rice BB was observed as early as 1930s and it spread
throughout ten provinces in the south of China by the
end of 1950s. However, rice BB was not a severe disease
until the 1970s (Zhang 2009). Damage caused by this
disease was significantly increased due to the widespread
cultivation of semi-dwarf and hybrid rice varieties, as
well as massive input of nitrogen fertilizer. It was preva-
lent in other Asian countries during this period, includ-
ing India, Philippines, Nepal, Indonesia and Sri Lanka.
After that, its incidence was reported in Australia,
America and West Africa. To date, rice BB is widely dis-
tributed in almost all the rice-growing countries in the
world (Naqvi 2019).
BLS was first observed in Philippines in 1918. Since

then, the occurrence of BLS in the tropical and

subtropical Asia, northern Australia and West Africa
was also reported. In China, it was first observed in
Guangdong Province, and has recently become one of
the major diseases in South China (Tang et al. 2000;
Xie et al. 2014).
Though Xoc and Xoo are highly related bacterial spe-

cies, they infect rice in different ways. Xoo enters leaf
through the hydathodes or wounds, multiplies in the
intercellular spaces of the underlying epitheme, and
propagate to reach the xylem vessels. The bacteria move
through the veins of leaves and spread into the plant.
Water-soaked spots at the leaf tips and margins were
first observed. Then, the leaves become chlorotic and
necrotic along the leaf veins (Lee et al. 2011) (Fig. 1a).
Xoc penetrates the leaf mainly through stomata or
wounds, multiplies in the substomatal cavity and then
colonizes the intercellular spaces of the parenchyma.
Different from BB, small, water-soaked lesions anywhere
along the leaf between the veins were observed during
the early stage of BLS infection, resulting in translucent
and yellow streaks (Fig. 1b). The infected leaves turn
greyish white and die later on (Nino-Liu et al. 2006).
Diverse effector proteins with virulence, avirulence

functions or both are secreted by Xanthomonas oryzae.
Among them, transcription activator like (TAL) effector
proteins are a structurally and functionally distinct class
of proteins secreted into plant cells by a type III secre-
tion (T3S) system. TAL effectors (also termed as TALEs)
import in the nucleus and bind to TALE-specific DNA,
which is termed as effector binding elements (EBEs).
The recognition transcriptionally activates host target
genes, resulting in susceptibility or resistance (Bogda-
nove et al. 2010; Bogdanove and Voytas 2011).

Disease Resistance Genes and the Interactions
Deployment of gene-conferred host plant resistance pro-
vides an economical, effective, environment friendly ap-
proach to control plant diseases and minimize the
losses. Extensive genetic studies on rice resistance to BB
have been conducted over the last 20 years. To date,
more than 40 resistance (R) genes conferring host resist-
ance to various strains of Xoo have been identified and
11 of them were cloned, namely Xa1, Xa3/Xa26, Xa4,
xa5, Xa10, xa13, Xa21, Xa23, xa25, Xa27, and xa41
(Table 1) (Ji et al. 2018). These R genes can be classified
into four groups based on their encoding proteins, in-
cluding receptor-like kinase (RLK) genes (Xa21, Xa3/
Xa26 and Xa4), sugar will eventually be exported trans-
porter (SWEET) genes (xa13, xa25 and xa41), executor
genes (Xa10, Xa23 and Xa27) and other types of genes
(Xa1 and xa5). Some of these isolated R genes are widely
employed in rice breeding programs to control BB, such
as Xa3/Xa26 and Xa4, which played an important role
in controlling the disease in Asia since 1970s. Nearly all
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Fig. 1 Symptoms of (a) bacterial light caused by Xanthomonas oryzae pv. oryzae and (b) bacterial leaf streak caused by Xanthomonas oryzae
pv. oryzicola

Table 1 Summary of the cloned rice R genes and the cognate Xanthomonas oryzae Avr genes

R genes Cognate Avr genes Reference

Gene Encoding protein Gene Encoding
protein

Xa3/Xa26 LRR-RLK AvrXa3 Unknown (Sun et al. 2004; Li et al. 2004; Xiang et al. 2006)

Xa21 LRR-RLK RaxX Unknown (Song et al. 1995; Pruitt et al. 2015)

Xa4 Wall-associated kinase/
RLK

Not determined Unknown (Hu et al. 2017)

xa13
(OsSWEET11)

SWEET-type protein PthXo1 TAL effector (Chu et al. 2006; Yang et al. 2006; Yuan et a. 2012)

xa25
(OsSWEET13)

SWEET-type protein PthXo2 TAL effector (Liu et al. 2011; Zhou et al. 2015)

xa41
(OsSWEET14)

SWEET-type protein AvrXa7/PthXo3/TalC/
Tal5

TAL effector (Antony et al. 2010; Yu et al. 2011; Streubel et al. 2013; Hutin
et al. 2015)

Xa10 Executor R protein AvrXa10 TAL effector (Tian et al. 2014)

Xa23 Executor R protein AvrXa23 TAL effector (Wang et al. 2014; Wang et al. 2015)

Xa27 Executor R protein AvrXa27 TAL effector (Gu et al. 2005)

Xa1 NLR PthXo1/Tal4/Tal9d TAL effector (Yoshimura et al. 1998; Ji et al. 2016a)

xa5 TFIIA transcription
factor

Avrxa5/PthXo7 TAL effector (Jiang et al. 2006; Zou et al. 2010; Sugio et al. 2007)

Rxo1 NLR AvrRxo1 TAL effector (Zhao et al. 2004a; Zhao et al. 2004b)

NLR nucleotide-binding domain and leucine-rich repeat, LRR-RLK leucine-rich repeat receptor-like kinase, TFIIA transcription factor IIA, SWEET sugar will eventually
be exported transporter, TAL transcription activator like
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the commercial indica hybrid rice varieties in China are
known to contain Xa4, and Xa3/Xa26 is widely distrib-
uted in both indica and japonica varieties in China
(Deng et al. 2018; Hu et al. 2017). The cognate aviru-
lence (Avr) genes to all the R genes except Xa4 have
been reported (Table 1).
In contrast to BB, no native major R gene controlling

resistance to BLS has been identified in rice and only a
few of quantitative resistance loci have been mapped.
Interestingly, one of them, qBlsr5a, with relatively large
effect, was mainly controlled by xa5 (Xie et al. 2014). A
non-host R gene, Rxo1, was isolated from maize, and the
transgenic rice with Rxo1 has been proved to confer high
level resistance to BLS (Zhao et al. 2005).
In addition, some defense-related or susceptible genes

in rice were reported to be involved in the interaction
with Xoc (Shen et al. 2010; Tao et al. 2009). Here, we
focus on the recent advances in identification of the R
genes or their products and the cognate pathogen effec-
tors. The underlying molecular mechanisms of the inter-
action between rice and Xoo or Xoc are discussed.
Additionally, two genes, Xa7 and Xo1, which have not
been cloned yet, are also discussed due to their potential
value in rice breeding programmes and special features.
To date, most of the cloned plant R genes encode
nucleotide-binding and leucine-rich repeat domain
(NLR) proteins (Li et al. 2015).
However, only one encodes NLR protein among the

11 cloned Xa genes (Yoshimura et al. 1998). These Xa
genes are classified into four groups based on the
encoded protein types including RLK (receptor-like kin-
ase), SWEET (sugar will eventually be exported trans-
porter), executor R proteins and other proteins.

Receptor-Like Kinase (RLK) Genes
In plants, PRRs, which can recognize diverse pathogen-
associated molecular patterns are a key component of
the innate immune system. All the known plant PRRs
are either transmembrane receptor-like kinases (RLKs)
or transmembrane receptor-like proteins (RLPs) (Anto-
lín-Llovera et al. 2012). There are over 1100 candidate
RLKs/RLPs in rice genome (Shiu et al. 2004). RLKs typ-
ically contain an extracellular domain, a single-pass
transmembrane domain, and an intracellular kinase do-
mains, whereas RLPs lack the kinase domain (Monaghan
and Zipfel 2012). Leucine-rich repeat receptor-like ki-
nases (LRR-RLKs) represent the largest subfamily of
plant RLKs (Afzal et al. 2008).
The LRR-RLK gene Xa21, originated from the wild

rice species Oryza longistaminata, was the first cloned R
gene in rice (Song et al. 1995). Xa21 have been proved
to confer broad-spectrum resistance to Xoo. However,
Xa21-mediated resistance progressively increases from
the susceptible juvenile two-leaf stage through later

stages, with full resistance only at the adult stage (Cen-
tury et al. 1999; Wang et al. 1996). Overexpression of
Xa21 gene can enable plants with resistance at both
seedling and adult stages (Park et al. 2010a). The regula-
tion of Xa21-mediated immunity has been extensively
and comprehensively studied. Several XA21 binding pro-
teins (XBs) with diverse functions have been character-
ized (Table 2, Fig. 2). The phosphorylation state of
XA21 is important for its function. In the absence of in-
fection, the ATPase XB24 physically associates with the
XA21 juxtamembrane domain and promote phosphoryl-
ation of specific serine and threonine residues to main-
tain the inactive state of the XA21 protein. On
recognition of pathogen invasion, the XA21 kinase disas-
sociates from XB24 and triggers downstream defense re-
sponses (Chen et al. 2010b). After activation, XB15, a
PP2C phosphatase, acts on XA21 and dephosphorylates
the autophosphorylated XA21 (Park et al. 2008). The
Xoo tyrosine-sulfated and type I-secreted protein RaxX
is the ligand to induce the XA21-mediated immunity
(Pruitt et al. 2015). The sulfated RaxX directly binds
XA21 with high affinity (Luu et al. 2019). More details
are shown in Table 2 and Fig. 2.
Another LRR-RLK gene Xa26, was originally identified

from indica variety Minghui 63, an elite restorer line of
hybrid rice in China (Sun et al. 2004). Further study dem-
onstrated Xa3, identified in a japonica variety Wase Aai-
koku 3, is the same gene as Xa26 (Xiang et al. 2006).
OsSERK2 and OsTPI1.1 interact with XA3/XA26 and are
involved in XA3/XA26-mediated resistance (Chen et al.
2014; Liu et al. 2018). OsTPI1.1 encoding a triosepho-
sphate isomerase (TPI) catalyzes the reversible intercon-
version of dihydroxyacetone phosphate to glyceraldehyde-
3-phosphate. Reduced expression of OsTPI1.1 largely
compromises XA3/XA26-mediated resistance. OsTPI1.1
participates in the defense response through TPI which is
significantly enhanced by binding with XA3/XA26 (Liu
et al. 2018). As well as XA21, XA3/XA26-mediated resist-
ance is positively regulated by OsSERK2 (Chen et al.
2014). AvrXa3, the cognate avirulence gene to XA3/Xa26,
has been isolated, but how it initiates XA3/XA26-medi-
taed resistance remains unclear (Li et al. 2004).
Xa4, encoding a cell wall-associated kinase, confers a

race-specific resistance to Xoo at all stages of rice growth
(Leach et al. 2001; Sun et al. 2003; Hu et al. 2017). Wall-
associated kinases (WAKs) are also a subfamily of RLKs
that physically link the cell wall with the plasma mem-
brane to transmit extracellular signals to the cytoplasm
(Anderson et al. 2001). Xa4 was first introgressed into
commercial rice varieties in the early 1970s. It is one of
the most widely employed resistance genes in breeding
programs. Nearly all the indica hybrid rice cultivars in
China carry Xa4 (Leach et al. 2001). XA4 prevents the
invasion of Xoo through reinforcing the cell wall (Hu
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Table 2 Summary of XA21-binding proteins

Interacting
protein

Gene Locus Gene product Subcelluar
localization

Role Function Reference

XB3 LOC_
Os05g02130

RING finger-containing E3
ubiquitin ligase

Not determined + Maintains the stability of XA21 (Wang et al. 2006)

XB10 LOC_
Os09g25070

Transcription factor Partially localize
to the nucleus

– Suppresses the activation of defense-related
genes

(Peng et al. 2008)

XB15 LOC_
Os03g60650

Protein phosphatase 2C Plasma
membrane

– Dephosphorylates XA21 and attenuates
XA21-mediated immune responses

(Park et al. 2008)

XB21 LOC_
Os12g36180

Auxilin-like protein Not determined + May function as clathrin uncoating factor to
mediate XA21 endocytosis

(Park et al. 2017)

XB24 LOC_
Os01g56470

ATPase Not determined – Promotes XA21 autophosphorylation and
keep it in a biologically inactive state

(Chen et al. 2010b)

XB25 LOC_
Os09g33810

Plant-specific ankyrin-
repeat (PANK) protein

Plasma
membrane

+ Maintains the stability of XA21 (Jiang et al. 2013;
Zhang et al. 2010)

BiP3 LOC_
Os02g02410

Heat shock protein (HSP)
70

Endoplasmic
reticulum

– Serves as a XA21 chaperone and regulates
XA21 processing

(Park et al. 2010b)

SDF2 LOC_
Os08g17680

Stromal-derived factor 2 Endoplasmic
reticulum

+ Serves as a XA21 chaperone and regulates
XA21 processing

(Park et al. 2013)

LOC_
Os08g34190

Not determined

OsSERK2 LOC_
Os04g38480

Rice somatic
embryogenesis receptor
kinase 2

Plasma
membrane

+ Forms a constitutive complex with XA21 and
phosphorylate one another

(Chen et al. 2014)

+, positive impact on XA21-mediated resistance; −, negative impact on XA21-mediated resistance

Fig. 2 Xa21-mediated immune signaling pathways triggered by Xanthomonas oryzae. Sulphated RaxX is recognized by XA21 and activate XA21-
mediated resistance. Several XA21 binding proteins, including OsSERK2, XB3, XB10, XB15, XB21, XB24, XB25, Bip3 and SDF2 are involved in
regulating XA21-mediated resistance. XA21 is processed in endoplasmic reticulum, which is negatively and positively regulated by the ER
chaperones BiP3 and SDF2, respectively. OsSERK2 positively regulates the immunity by forming a constitutive complex with XA21 and
transphosphorylating XA21. XB24 binds to XA21 and promotes autophosphorylation of XA21 to keep it in an inactive state. During Xoo infection,
XB24 dissociates from XA21. XB3 and XB25 are required for XA21 accumulation. XB15 dephosphorylates the autophosphorylated XA21 and
attenuates the XA21-mediated resistance. XB21 functions as an auxilin to positively regulate XA21-mediated immunity. The transcription factor
XB10/OsWRKY62 acts as a negative regulator XA21-mediated immunity

Jiang et al. Rice            (2020) 13:3 Page 5 of 12



et al. 2017). The accumulation of the two phytoalexins,
sakuranetin and momilactone A, which are likely to sup-
press Xoo in plant, is proved to be associated with Xa4-
mediated resistance. In addition to conferring durable
resistance to Xoo, Xa4 increases the mechanical strength
of the culm and reduces the plant height slightly, and
thus may enhance the lodging resistance (Hu et al.
2017). The multiple favorable agronomic traits related
with Xa4 may explain why it is widely used.

Sugar Will Eventually be Exported Transporter (SWEET)
Genes
Three recessive R genes, xa13, xa25 and xa41, encodes
clade III SWEET proteins. SWEET, a unique family of
sugar efflux transporters, play a vital role in various bio-
logical processes, including pollen nutrition, senescence,
seed filling and plant-pathogen interactions (Chen et al.
2012; Guan et al. 2008; Quirino et al. 1999; Streubel et al.
2013). SWEETs are grouped into a four-clade phylogenetic
tree in plants (Eom et al. 2015). There are 17 and 22
SWEET genes in Arabidopsis and rice genomes, respect-
ively (Chen et al. 2010a). Over the last 10 years, several
studies have suggested sugar exporting into the apoplast via
clade III SWEETs is hijacked by TAL effectors of pathogen,
which is essential for pathogen growth and virulence (Eom
et al. 2015). The xa13 (also known as Os8N3 and OsS-
WEET11) confers specific resistance to Xoo race 6, which
was originally identified in cultivar BJ1 (Chu et al. 2006). It

was isolated through different strategies by two groups
(Chu et al. 2006; Yang et al. 2006). The TAL effector
PthXo1 from Xoo directly targets to the EBEs, in the pro-
moter of dominant Xa13 but not xa13 alleles to induce its
expression, which is critical for susceptibility (Fig. 3)
(Römer et al. 2010; Yuan et al. 2009). Further studies
showed that the XA13 protein cooperates with two copper
transporters, COPT1 and COPT5, to participate in copper
redistribution. Copper is widely used as an important elem-
ent for pesticides in agriculture. XA13, COPT1 and COPT5
are employed by TAL effectors of Xoo and remove toxic
Cu from xylem vessels, where pathogen multiplies and
spreads to cause disease (Yuan et al. 2010). Interestingly,
knock-out of OsSWEET11 showed increased resistance to
Rhizoctonia solani, which causes sheath blight disease. It
suggests that OsSWEET11 may also be employed by the
fungal pathogen Rhizoctonia solani (Gao et al. 2018). In
addition, Xa13 was found to be required for pollen develop-
ment. The Xa13-silenced plants had low fertility, and most
pollen grains were defective in comparison with normal
pollen grains (Chu et al. 2006).
As well as Xa3/Xa26, xa25 (also known as OsS-

WEET13) was identified from Minghui 63 (Chen et al.
2002). It confers race-specific resistance to Xoo strain
PXO339 at both seedling and adult stages. Similar to
xa13, the expression of dominant Xa25 but not reces-
sive xa25 was rapidly induced by PXO339 (Liu et al.
2011). Another type of recessive xa25 alleles was

Fig. 3 The SWEET gene xa13 and the executor gene Xa23 mediated immune signaling pathways triggered by Xanthomonas oryzae. The TALEs
are secreted into the cytoplasm of plant cells through the type III secretion system, enter the nucleus, bind to the specific promoter elements
and induce the expression of Xa13. XA13 is hijacked by TALEs to export sucrose to the apoplast, which provides nutrition to the pathogen. XA13
is also employed together with COPT1 and COPT5 by TALEs to remove toxic Cu from xylem vessels. The resistant allele xa13 with mutations in
the EBEs disrupt the binding of TALEs, leading to disease resistance. Like SWEET genes, the executor R gene Xa23 is transcriptionally activated by
TALEs, triggering host defense responses
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identified in japonica rice varieties Nipponbare and
Kitaake (Zhou et al. 2015). Further studies showed that
OsSWEET13 as the disease-susceptibility gene is dir-
ectly targeted by PthXo2. In a very recent study, two
types of PthXo2-like TALEs were found to bind with
different EBE sequences in the OsSWEET13 promoter
and activate its expression (Xu et al. 2019).
Xa41 (also known as Os11N3 and OsSWEET14) was

found to be targeted as a susceptibility gene by different
TAL effectors from numerous Xoo strains, including
AvrXa7, PthXo3, TalC and Tal5 (Antony et al. 2010;
Hutin et al. 2015; Streubel et al. 2013; Yu et al. 2011). A
germplasm screening for polymorphisms in the OsS-
WEET14 promoter uncovers a natural candidate plant dis-
ease resistance gene from African wild and cultivated rice
species O. barthii and O. glaberrima (Hutin et al. 2015).
An allele of OsSWEET14 was identified to carry an 18-bp
deletion at 8 bp downstream of the predicted TATA box,
and could prevent OsSWEET14 induction by AvrXa7 and
Tal5. The xa41 confers broad-spectrum resistance to 50%
of the tested strains representing genetically distant
groups isolated from different countries in Asia and Africa
(Hutin et al. 2015). In another study, in silico mining of
OsSWEET13 and OsSWEET14 promoter polymorphisms
in a diversity germplasm panel containing 3000 rice gen-
ome sequences and the Pakistani aromatic germplasm col-
lection was conducted (Zaka et al. 2018). Novel variations
in the EBEs of OsSWEET13 and OsSWEET14 promoter
regions were identified (Zaka et al. 2018).

Executor Genes
Xa27, Xa10 and Xa23 are three executor genes with
multiple potential transmembrane domains function-
ing as a promoter trap, which are transcriptionally
activated by TAL effectors and trigger defense re-
sponses (Gu et al. 2005; Tian et al. 2014; Wang
et al. 2015). Xa27 originated from wild rice O. min-
uta Acc. 101,141 and confers broad-spectrum resist-
ance to Xoo strains from different countries (Gu
et al. 2005). Xa27-mediated resistance is also affected
by developmental stage like Xa21 and Xa3/26. Chal-
lenged by Xoo containing AvrXa27, Xa27 was specif-
ically induced and secreted to the apoplast, leading
to inhibition of bacterial growth. However, the allele
from the susceptible variety IR24 was not induced.
Increased expression of Xa27 showed thickened vas-
cular bundle elements, even in the absence of Xoo
infection. Further study showed that localization of
XA27 to the apoplast depending on the N-terminal
signal-anchor-like sequence is important for its re-
sistance to Xoo (Wu et al. 2008). Rice lines with
both AvrXa27 and Xa27 showed enhanced resistance
when inoculated with compatible strains of Xoo and
Xoc (Tian and Yin 2009).

Xa10, which confers resistance to some Philippine races
of Xoo, was first identified from rice cultivar Cas 209 (Gu
et al. 2008; Lee et al. 2003). AvrXa10 specifically induces
Xa10 expression through direct binding Xa10 promoter.
Rice plants with constitutive but weak expression of Xa10
showed lesion mimic phenotype. Further study has re-
vealed that XA10 forms hexamers and locate in the ER
membrane of plant and HeLa cells, which mediates the
disruption of the ER, cellular Ca2+ homeostasis and trig-
gers programmed cell death (Tian et al. 2014).
Another executor gene Xa23 isolated from a wild rice

species of O. rufipogon, confers an extremely broad
spectrum of resistance to Xoo strains isolated from dif-
ferent regions at all growth stages of rice. Similar to
Xa27, Xa23 shares identical ORF with the susceptible
xa23 allele, and a 7-bp polymorphism in the promoter
regions leads to induction of Xa23, but not xa23, by
AvrXa23. Transient expression analysis indicated that
XA23 triggers HR in N. benthamiana and tomato
(Wang et al. 2015). AvrXa23 was found to be highly con-
served in all the tested Xoo isolates (Wang et al. 2014). It
is possible that AvrXa23 contributes to the virulence of
Xoo for infection or growth in host plants. The preva-
lence of AvrXa23 in natural Xoo strains explains why
Xa23 shows the broad-spectrum resistance.

Other Genes
In rice genome, 480 nucleotide-binding domain and
leucine-rich repeat (NLR) genes have been revealed, but
only a single one, Xa1, conferring resistance to Xoo, was
isolated (Yoshimura et al. 1998). Xa1 was isolated from
japonica cultivar Kogyoku and its expression was in-
duced by bacterial infection and wounding (Yoshimura
et al. 1996). Xa1 confers resistance against Xoo by recog-
nizing several TAL effectors including PthXo1, Tal4 and
Tal9d, but truncated interfering TAL effectors (also
termed as iTALEs). The iTALEs may function as decoys
interfering with the recognition of intact TALEs by XA1
and block its function (Ji et al. 2016a).
The recessive gene xa5 confers broad resistance

spectrum to Xoo and is most commonly found in the
Aus-Boro varieties from Bangladesh. The xa5 is a nat-
ural allele of Xa5 for the transcription factor IIA gamma
subunit 5 (TFIIAγ5), contains a mutation in the 39th
residue, in which the valine (V) residue is replaced with
glutamine (E) (V39E) (Jiang et al. 2006). TFIIA is a basal
transcription factor of eukaryotes and it is essential for
polymerase II-dependent transcription (Høiby et al.
2007). TFIIAγ5 is hijacked by TAL effectors by direct
physical interaction with a transcription factor binding
(TFB) region of TALEs and attenuate the TALE-
associated transcription of host S or R genes (Yuan et al.
2016). The induction of susceptibility genes, such as
OsSWEET11 and OsSWEET14 by TALEs are almost
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abolished in xa5 background or TFIIAγ5-RNAi trans-
genic plants, which leads to the improvement of BB re-
sistance. TFIIAγ5 is also necessary for TALE-associated
transcription of R genes, including Xa27 and Xa23, to
defend against disease (Yuan et al. 2016). Xa27 and
Xa23-mediated BB resistance are attenuated in the xa5
background (Gu et al. 2009; Yuan et al. 2016). In the ab-
sence TFIIAγ5, the other OsTFIIAγ gene in rice, OsT-
FIIAγ1 plays a compensatory role. Its expression is
activated by TALE PthXo7, which increases expression
of the host genes (Ma et al. 2018). Interestingly, TFIIAγ5
is also employed by Xoc TALEs to cause disease (Yuan
et al. 2016). Mutation and suppression of TFIIAγ5 can
also improve BLS resistance. In another study, xa5 was
found through genetic mapping as a quantitative trait
locus with a relatively large effect for resistance to Xoc
(Xie et al. 2014).
The non-host resistance gene, Rxo1 encoding a NLR

protein, confers high level resistance to Xoc in rice. It
also controls resistance to the pathogen Burkholderia
andropogonis, which causes bacterial stripe of sorghum
and maize. Transgenic lines with Rxo1 also showed HR
when inoculated with avrRxo1 containing Xoc strain
(Zhao et al. 2004a; Zhao et al. 2004b; Zhou et al. 2010).
It exhibits the characteristics consistent with those medi-
ated by host resistance genes, activating multiple defen-
sive pathways related to HR. A microarray analysis
showed that Rxo1 functions in the early stage of rice-Xoc
interaction and involved in signaling pathways leading to
HR and some basal defensive pathways such as SA and
ET pathways (Zhou et al. 2010).
In addition to the cloned genes above, the dominant

R gene Xa7, which has not been isolated yet, is
known for its durable resistance and potential value
in rice breeding programmes (Vera Cruz et al. 2000).
Xa7 was originally identified in rice cultivar DV85
and fine mapped to an interval of approximately
118.5 kb on chromosome 6 (Chen et al. 2008). The
durable resistance of Xa7 is due to a fitness penalty
in Xoo associated with adaptation to Xa7 (Vera Cruz
et al. 2000; Bai et al. 2000). Mutations occurred spe-
cifically at the avrXa7 gene in the adapted strains,
which displayed reduced aggressiveness on susceptible
rice cultivars (Vera Cruz et al. 2000; Bai et al. 2000).
Additionally, Xa7 are more effective at high tempera-
tures, whereas other R genes are less effective (Webb
et al. 2010). Another yet uncharacterized gene Xo1,
was identified in the American heirloom rice variety
Carolina Gold Select, and confers resistance to the
tested African strains of Xoc, but not Asian strains
(Triplett et al. 2016). Like Xa1, Xo1-mediated recog-
nition of full-length TALEs can also be blocked by
truncated TALEs (Read et al. 2016). Interestingly, Xa1
and Xo1 are located in the same region (Triplett

et al. 2016). Further studies are needed to determine
whether Xo1 is controlled by Xa1 or another gene.

Breeding Strategies to Develop Broad-Spectrum and
Durable Resistance to Xoo and Xoc
Use of host plant resistance is generally the most favor-
able tactic to control diseases due to economic and en-
vironmental reasons. Marker-assisted selection (MAS)
and genetic transformation are the two major ap-
proaches for R gene deployment in plant breeding pro-
grams. However, controversy on food safety and
constraints on regulatory in some countries have serious
plagued the application of genetically modified varieties.
MAS, free of political issues and social problems, is
more widely used by breeders. Pyramiding R genes re-
sistant to different races of the pathogen through
marker-assisted breeding strategies, is a very effective
way to achieve durable and broad-spectrum resistance,
while employment of a single R gene and adaption of
the pathogen often lead to resistance breakdown in a
short period.
Based on the previous reports, xa5, Xa7, xa13, Xa21

and Xa23 are more frequently used by rice breeders due
to the comparatively broader spectra of resistance. Xu
et al. (2012) transferred Xa7 and Xa21 into Yihui 1577, an
elite hybrid rice restorer line. The pyramiding lines and
their derived hybrids displayed resistance to all the seven
Xoo strains, while the lines containing single Xa7 or Xa21
were resistant to six of them. Two Basmati rice varieties
PB1121 and PB6 were improved for resistance to BB
(xa13 and Xa21) through MAS (Ellur et al. 2016). In an-
other study, three genes, xa5, xa13 and Xa21 were trans-
ferred into Lalat, a popular indica variety in Eastern India
but susceptible to bacterial blight (Dokku et al. 2013). The
improved lines showed significant enhanced resistance.

Because Xa23 displays broadest resistance, it is often
used alone, or along with R genes against rice blast dis-
ease or/and brown planthopper (Zhou et al. 2011;
Huang et al. 2012; Ni et al. 2015; Jiang et al. 2015; Ji
et al. 2016b; Xiao et al. 2016). In addition, some gene
combinations are ineffective, such as, xa5 + Xa23,
xa5 + Xa27 (Gu et al. 2009; Yuan et al. 2016). Therefore,
deep understanding the underlying molecular mecha-
nisms of R gene-mediated resistance is important for its
effective application. It is noteworthy that no native
major R gene effective against Xoc has been discovered
so far in rice. The recessive xa5 confers quantitative re-
sistance to BLS, and should be used in combination with
other resistance QTL or genes. Fine mapping of previ-
ously identified resistance loci with large effect, includ-
ing the dominant locus Xo1 and the recessive locus bls1,
will facilitate employment of them in rice breeding pro-
grammes (Triplett et al. 2016; He et al. 2012).
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In our breeding practice, we introgressed Xa7 +Xa21
into an elite restorer line R900 of hybrid rice through
marker-assisted backcrossing (MABC) scheme in less than
3 years, which is much more efficient than the conventional
breeding method. The improved lines recovered more than
99% genome background of the recurrent parent R900, and
showed a broad-spectrum resistance to Xoo without any
significant difference in main agronomic traits in both the
growth chambers and paddy fields (unpublished data). In
addition, the R genes can be used separately in time and
space. Development of near-isogenic lines and rotation of
the R genes could reduce the selection pressure on patho-
gens and maximize the life span of R genes. Multi-lines
containing different R genes also has the potential to pro-
vide broad-spectrum and durable disease resistance.
In recent years, the emerging genome-editing technolo-

gies, including zinc-finger nucleases (ZFNs), TAL effector
nucleases (TALENs) and clustered regularly interspaced
short palindromic repeats (CRISPR)/Cas9 (CRISPR-asso-
ciated protein-9 nuclease), have revolutionized biology by
enabling targeted modifications of genomes (Christian
et al. 2010; Jinek et al. 2012; Kim et al. 1996). These tech-
nologies have been successfully applied in model species
Arabidopsis thaliana, Nicotiana benthamiana and mul-
tiple crops including rice, wheat, maize, barley, soyben, to-
mato, potato, citrus, and sorghum (Shah et al. 2018). The
powerful tools have great potential in improving the plant
disease resistance. Elimination of EBEs in promoters of
susceptibility genes or adding EBEs to promoters of ex-
ecutor R genes through genome editing, could enhance
the resistance to BLB. For example, the EBEs of AvrXa7
and PthXo3 in the OsSWEET14 promoter were precisely
edited by TALENs, which prevents the induction by
TALEs. The mutated lines showed strong resistance to
both AvrXa7- and PthXo3-dependent Xoo strains (Li et al.
2012). Similarly, the promoter of Xa13 (OsSWEET11) was
targeted by CRISPR/Cas9-based disruption, leading to en-
hanced resistance without affecting rice fertility (Li et al.
2019). In a very recent study, EBEs in the promoters of
OsSWEET11, OsSWEET13 and OsSWEET14 were edited
simultaneously by CRISPR/Cas9 technology and rice lines
conferring broad-spectrum resistance to Xoo were created
(Xu et al. 2019). In another study, six EBEs corresponding
three TALEs from Xoo and three from Xoc, were added to
the Xa27 promoter, resulting in broad-spectrum resist-
ance to both Xoo and Xoc (Hummel et al. 2012). It sug-
gests that engineering of EBEs upstream of rice executor
R genes through genome-editing technologies is a poten-
tial strategy to generate germplasms with broad-spectrum
resistance to Xoo, Xoc and other bacterial pathogens.

Conclusions
Rice-Xanthomonas oryzae patho-system is a powerful
model for research toward solutions in disease control.

Although tremendous progress has been made in the
past decades, there are still many queries and challenges.
For example, whether there is any major R gene in rice
against BLS? The xa5 confers resistance to both Xoo and
Xoc, does any other identified Xa genes have the same
effect? The ligand from Xoo mediating Xa4 resistance is
still not determined. The partners and/or components
associated with R proteins remain largely unknown in
rice. It will be interesting to understand how R genes ac-
tivate downstream signaling components and trigger
plant defense response system. TAL effectors injected
into plant cells have to be translocated into nucleus to
bind to the target S or R genes for virulence or plant im-
munity. However, the underlying mechanism needs to
be further elucidated. Altogether, a comprehensive un-
derstanding of the molecular interactions between rice
and Xanthomonas oryzae is the pivotal for more efficient
and durable disease control.
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