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Abstract

Background: Stigma exsertion rate (SER) is a key determinant of outcrossing in hybrid rice seed production. A
quantitative trait locus (QTL) for stigma exsertion rate in rice, gSER-7, has previously been detected on chromosome 7
by using a F, population derived from two indica cytoplasmic male sterility (CMS) maintainers, Huhan 1B and II-32B.

Results: The chromosomal location of gSER-7 was precisely delimited by fine-scale mapping. Near-isogenic lines (NILs)
were established, one of which isolated the locus in the gSER-7">?% line, which contains an introgressed segment of II-
32B in the Huhan 1B genetic background, and exhibits a significantly higher stigma exsertion rate than that of the
recurrent parent. Using 3192 individuals from the BC4F, segregation population, the QTL gSER-7 was narrowed down
to a 284-kb region between the markers RM3859 and Indel4373 on chromosome 7. According to the rice genome
annotation database, three genes were predicted within the target region. Real-time PCR analysis showed significantly
higher expression levels of LOC_0s07g15370 and LOC_0Os07g15390 in 11-32B than in Huhan 1B. LOC_Os07g15370(0sNRAMP5)
was a previously reported gene for Mn and Cd transporter. The stigma exertion rates of OsNRAMPS-overexpressing plants
were significantly higher than that of wild type plants, in contrast, a T-DNA insertion mutant osnramp5 showed a lower
stigma exertion rate.

Conclusions: In the present study, the QTL gSER-7 was isolated to a region between the markers RM3859 and Indel4373.
Two candidate genes were selected based on the expression difference between the two parents, which can facilitate the
further cloning of the gene underlying the quantitative trait associated with gSER-7 as well as the marker-assisted transfer of
desirable genes for stigma exsertion rate improvement in rice.
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Background

Rice (Oryza sativa L.) is a major cereal crop that feeds
most of the world’s population. By 2030, rice production
must increase at least 40% in order to satisfy demands of
the ever-growing human population (Khush 2005). Accord-
ingly, it is inevitable that rice production will have a direct
effect on global food security and social stability. The
commercialization of hybrid rice initiated in China in the
1970s has greatly contributed to the increase in rice yield
(Stuber 1994; Yuan 2004). The basis of utilizing heterosis
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in rice is to use male sterile lines (cytoplasmic male sterility
lines or thermo-sensitive genic male sterile lines) as the fe-
male parents. However, despite continuous improvements
in cultivation techniques for F; seed production over the
last 10 years, the yield of hybrid rice seed production has
stagnated at 2.5 tons per hectare (Xie 2009). The low
outcrossing rate of the maternal parent is the main factor
limiting further increases in the F; seed production yields
in rice because it is a typically self-pollinated crop (Kato
and Nimai 1987). The rice flowers receive pollen on their
stigmas, and exserted stigmas extend past the floral organ
known as a glume; rice stigmas remain receptive for ap-
proximately 4 days, and thus exserted stigmas have more
opportunities to trap pollen from other rice genotypes,
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thereby improving cross-pollination rates(Long and Shu
2000; Tian et al. 2004). The stigma exsertion rate is a major
factor that contributes to the efficient improvement of hy-
brid seed production.

Many studies have shown that stigma exsertion in rice
is a complex quantitative trait governed by polygenetic
inheritance. In the past two decades, with the develop-
ment of genomics and molecular markers, a QTLs for
stigma exsertion in rice have been mapped by using dif-
ferent segregating populations such as F, populations
(Xiong et al. 1999; Yue et al. 2009; Deng et al. 2010;
Feng et al. 2010; Li et al. 2010; Deng et al. 2011; Chen et
al. 2011; Li et al. 2017); recombinant inbred lines (Uga
et al. 2003; Yamamoto et al. 2003; Shen et al. 2006; Yu et
al. 2006; Yin et al. 2014; Li et al. 2014; Rahman et al.
2016); doubled haploid lines (Hittalmani et al. 2002; Li
et al. 2003); backcrossing populations (Li et al. 2001;
Miyata et al. 2007; Qiao et al. 2007; Qiao et al. 2008);
and chromosome segment substitution lines (Liu et al.
2015; Rahman et al. 2017a; Rahman et al. 2017b).
Genome-wide association studies (GWAS) have more
recently been employed to identify loci associated with
stigma exsertion (Yan et al. 2009; Huang et al. 2012;
Dang et al. 2016; Zhou et al. 2017; Guo et al. 2017). The
QTLs that affect stigma exsertion were distributed
across all 12 rice chromosomes. Nevertheless, only a
small handful of QTLs explained more than 10% of the
phenotypic variation. And a small proportion of these
QTLs have been fine mapped or cloned. The major QTL
qES3 was repeatedly identified and co-located with the
grain size gene GS3 (Yamamoto et al. 2003; Miyata et al.
2007). Takano-Kai et al. (2011) confirmed that GS3 con-
trols both stigma length and exsertion. They also dem-
onstrated that a nonsense mutation in the second exon
of GS3 increased cell number in the stigma, resulting in
elongation and exsertion of the stigma. Liu et al. (2015)
fine mapped the QTL ¢STL3, which is associated with
stigma length, to a 19.8-kb region in the middle of the
short arm of chromosome 3 and validated LOC_
0s03¢14850 as a candidate gene associated with gSTL3.
They also developed a gene-specific marker for improv-
ing the stigma length of the maternal parent, thereby in-
creasing the outcrossing rate of the maternal parent in
japonica hybrid seed production. Rahman et al. (2017a)
dissected a major QTL (¢SE1I) and narrowed its loca-
tion to a 350.7-kb region on rice chromosome 11. Des-
pite so many QTLs having been identified, the genetic
mechanism underlying stigma exsertion rate is poorly
understood and requires further investigation.

In our previous study, the main effect QTL gSER-7
was localized to the rice chromosome 7 region flanked
by markers RM3859 and RM5436 using a F, population
derived from two indica CMS maintainers, Huhan 1B
and II-32B. The positive effect of gSER-7 was from the
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high stigma exsertion rate parent II-32B improved both
single stigma exsertion and total stigma exsertion rates,
explaining 8.12% and 8.15% phenotypic variation,
respectively(Yue et al. 2009).

In the present study, we performed fine-linkage map-
ping of gSER-7 by using a BC4F, segregation population
derived from Huhan 1B and II-32B. Ultimately, the loca-
tion of ¢gSER-7 was narrowed down to a 28.4-kb region
on rice chromosome 7 flanked by the RM3859 and
Indel4373 markers. We also analyzed key candidate
genes in that region that may be the target gene related
to stigma exsertion. These results will be useful for fa-
cilitating the development of male sterile lines with high
stigma exsertion rates, which would be of great value in
hybrid rice seed production.

Results

Development of the near isogenic line for gSER-7

Based on previous research, gSER-7 was mapped to be-
tween markers RM3859 and RM5436 (Yue et al. 2009).
Substitution mapping was used to isolate gSER-7 and
one line from the F, population was selected for four
rounds of backcrossing with Huhan 1B (Fig. 1). The sim-
ple sequence repeat (SSR) markers RM3859 and
RM5436 were used in marker-assisted selection for seg-
regating the progenies carrying the II-32B gSER-7 allele
during each backcross generation. After continuous
backcrossing for four generations and selfing, the genetic
background became relatively similar to that of the re-
current parent Huhan 1B except for the substituted tar-
get segments, for which the BC,F, plants were scanned
with a set of 102 SSR markers that were uniformly dis-
tributed across a previous linkage map (Additional file 1:
Table S1). The individual plant exhibiting the maximum
recurrent parent genome recovery (94.11%) was selected,
ie., NIL (gSER-7"*®), which carried a homozygous
introgression from II-32B across the entire gSER-7 re-
gion in the Huhan1B genetic background (Fig. 2).

Phenotypic and genetic analysis
The stigma exsertion rate of the recurrent parent Huhan
1B was 27.93% (single stigma exsertion rate, SSE), 9.08%
(dual stigma exsertion rate, DSE), and 37.01% (total stigma
exsertion rate, TSE), whereas the NIL (gSER-7"3?®) pheno-
typic traits were higher (43.84%, 17.26%, and 61.10%,
respectively). Thus, the NIL (gSER-7"**") had increased
exsertion rates of 15.91%, 8.25% and 24.09% (SSE, DSE,
and TSE, respectively), compared to the recurrent parent
Huhan 1B (Table 1, Fig. 3). This result indicates that gSER-
7 is responsible for the high stigma exsertion rate in NIL
(gSER-7"3%%),

Among the random selection of 120 individuals in the
BC,F, population, the marker RM3859 was used to val-
idate the effect of gSER-7. The result of a Chi-squared



Liu et al. Rice (2019) 12:46 Page 3 of 10

11-32B(Donor) |

.

| F,(190plnts) |

|Huhan 1B(Recipient) |

-«— X

|Huhan 1B |

Ve | MAS for target region

QTL analysis of
gSER-7 (Yue et

x

'

Huhan 1B
MAS

al,2009) [ BCF, | x  |Huhan1B
| MAS
BC;F, x Huhan 1B
| MAS
BCF, Hetergzyous plant
selection
| Selfing
e N
. Non-r i
Recombiant plants 1101(1)11:) lecgﬁlsbl?;tl t
selection Zyeows p

selection

' .

Fine mapping of

NIL construction of

(]SER-7 qSER_7II-3?.B

Fig. 1 The scheme of plant population development for QTL analysis, NIL construction and QTL fine mapping

test showed that the three genotypes were distributed ac-
cording to 1:2:1 Mendelian ratio ()(2 =1.38< X20.05,2 =5.99)
. The total stigma exsertion rates of II-32B homozygotes
and heterozygotes were significantly higher than that of
Huhan1B homozygotes, indicating that the effect of gSER-
7 is likely controlled by one genetic locus (Table 2).

Homozygous recombinant plant selection and fine
mapping of gSER-7

The SSR marker RM3859 on one side of the gSER-7 target
region and RM5436 on the other side were used to identify
recombination break points in segregating progenies. To
narrow down the location of gSER-7, we developed six add-
itional InDel markers (Additional file 2: Table S2). A total
of 3192 BC,F, progenies were cultivated in order to screen
for recombinants, and 18 heterozygous individuals were se-
lected and selfed to generate individuals with homozygous
genotypes. Six different BC,F3,4 homozygous recombinant
lines (R1-R6) in the QTL region were analyzed for fine
mapping. The phenotypic performance of the stigma exser-
tion rates varied from 40.25% to 68.31% (Fig. 4b) in the
homozygous recombinant lines. The total stigma exsertion
rates of R1, R3, and R5 were similar to that of the ‘Huhan
1B’ recurrent parent; however, R2, R4, and R6 had signifi-
cantly higher stigma exsertion rates similar to that of II-

32B donor parent. Based on the genetic and phenotypic
analysis, the location of gSER-7 was finally narrowed to a
284-kb region between the RM3859 and Indel4373
markers (Fig. 4b).

Candidate gene analysis for gSER-7

According to the rice genome annotation database
(http:// rice.plantbiology.msu.edu/, MSU- version_7.0),
three genes were predicted in the mapping region: LOC_
Os07g15370, LOC_Os07g15390 and LOC_Os07g15400
(Fig. 4c). LOC_0s07g15370 (OsNRAMPS) was reported
to be a Mn and Cd transporter involved in the root up-
take of these metals from the medium (Ishikawa et al.
2012; Yang et al. 2014); LOC_0s07¢15390 and LOC_
0s07g15400 putatively encode a retrotransposed protein
and expressed protein, respectively. We performed a
quantitative reverse transcription-PCR (RT-PCR) ana-
lysis to determine the candidate genes, and the analysis
revealed that the expression level of LOC_0s07g15370
and LOC_0s07g15390 were significantly higher in II-32B
and NIL (¢SER-7"3%%) compared with Huhan 1B, how-
ever, no significant difference was observed in LOC_
Os07¢15400 (Fig. 5). Therefore, LOC_0Os07¢15370 and
LOC_0s07g15390 were likely to be the candidate genes
for gSER-7.
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Sequence comparison between II-32B and HuhanlB
revealed no coding sequence polymorphisms differenti-
ating these two genes. For LOC_0s07g15370, a single 1-
bp deletion was identified in the promoter region be-
tween the parental lines. For LOC_Os07¢15390, 16
single-base substitutions were found in the promoter se-
quence (Additional file 3: Table S3), suggesting that the
effect at gSER-7 might result from a difference in expres-
sion levels between 11-32B and Huhan1B alleles.

A T-DNA insertion mutant osnramp5, OsNRAMPS5-over-
expressing transgenic rice plants and wild type (Zhonghua
11) plants were obtained from Yang et al. (2014) for prelim-
inary phenotypic evaluation. Compared to wild type plants,
the stigma exertion rates of OsNRAMP5-overexpressing

plants (OE5 and OES8 lines) were significantly higher; in
contrast, the stigma exertion rates of the osnramp5 mutant
was significantly lower than that of wild type plants (Fig. 6,
Additional file 4: Figure S1).

Discussion

Stigma exertion rate is a female parental trait that is es-
sential for improving hybrid seed production in rice.
Exerted stigmas are fragile and thus can be easily dam-
aged by environmental conditions such as wind, water
stress, and physical disruption during the flowering
period (Yu et al. 2006; Yan et al. 2009). A number of
SER QTLs have previously been detected and are dis-
tributed across all 12 chromosomes in rice. However, the

Table 1 The stigma exsertion rates of Huhan 1B, 1I-:32B and NIL (gSER-7">%%)

Traits Huhan 18 -328 NIL (gSER-7"325)
Single stigma exsertion rate (%) 2793 + 5.00 4850 £ 1.19 4384 + 749
Dual stigma exsertion rate (%) 9.08 + 438 15.73 + 4.74 17.26 = 5.39
Total stigma exsertion rate (%) 3701 +£780 64.23 + 4.77 61.10 £ 948

NIL (gSER-7""328), is a near isogenic line carrying the homozygous gSER-7 region from 1I-32B on Huhan 1B genetic background. Trait values are shown as mean +

standard deviation values
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Fig. 3 The phenotype of the stigma exsertion of the parents Huhan 1B, II-32B, and NIL (gSER-7"). aThe panicles of the parental lines shown
from the left to the right are Huhan 1B, II-32B, and NIL (gSER-7">?%). b Examples of single, dual, and no stigma exsertion in a spikelet, ¢ Huhan 1B

results of these QTL locations are not exactly consistent
across population types, mark densities and analytical
methods used by different studies. Previous studies have
demonstrated that stigma exertion rate is significantly
positively correlated with stigma length (Kato and Nimai
1987; Miyata et al. 2007). Currently, GS3 (Takano-Kai et
al. 2011) and ¢gSTL3 (Liu et al. 2015) are the only two
cloned genes, that have been shown to increase stigma
exsertion by increasing stigma length. However, neither
of these two genes were cloned based on studies in
which stigma exertion rate was the target trait. Recently,
a major QTL (¢SE1I) for stigma exertion rate was nar-
rowed to a 350.7-kb region between the SE6-10 and
SE10 markers on the long arm of rice chromosome 11
(Rahman et al. 2017a). One of the main reasons for slow
progress in the fine-mapping of stigma exertion rate

QTL is that stigma exertion is strongly influenced by en-
vironment. To improve the accuracy of the phenotype
assay, ten main panicles of parental and homozygous re-
combinant lines were collected at 5-7 days after head-
ing, when the lower spikelets of the panicle had
flowered, and stored at — 20 °C. Observation and count-
ing were performed by the same person. Thus, the data
generated in the present study with this technique pro-
vides an accurate description of stigma exsertion rate in
the genotypes studied.

Development of NILs is a productive strategy for QTL
confirmation and evaluation of their genetic effect, and
it provides useful materials for population development
during QTL fine mapping (Ding et al. 2011). One of the
parents used in this study, HuhanlB, is the maintainer
line of Huhan 1A, which is the first indica CMS line of

Table 2 Marker segregation and total stigma exsertion rate of the three genotypic groups in the BC4F, population

Marker Numbers of plants in the three genotypic groups ¥ (1:21)  Phenotypic of the three genotypic groups
Huhan1B homozygote  Heterozygote  II-32B homozygote Huhan1B homozygote  Heterozygote  [I-32B homozygote
RM3859 25 61 34 1.38 39.16 + 7.14° 57.36 + 9.02° 6217 + 1142

The superscript letters indicate statistically significant differences (p <0.07) between the mean values within each row (Student’s t-test). Phenotypic values are
shown as mean + standard deviation values
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in the rice genome annotation database (http:// rice.plantbiology.msu.edu/, MSU- version_7.0)

water-saving and drought resistance rice (WDR) (Luo
2010). The NIL of ¢gSER-7 regions were constructed
using Huhan1B as the recurrent parent. The NIL had in-
creased rates of exsertion frequency of 15.91%, 8.25%
and 24.09% (SSE, DSE, and TSE, respectively), compared
to the recurrent parent HuhanlB. Thus, an improved
version of HuhanlA carrying a homozygous gSER-7 re-
gion would shows a higher stigma exsertion rate and
more hybrid seeds would be produced on a plant, and
has therefore been widely used for WDR breeding.

A total of 10 QTLs for stigma exsertion rate were de-
tected on chromosomes 3, 4, 7, and 9 in our previous
study (Yue et al. 2009). The QTL flanked by RM3859
and RM5436 on chromosome 7, gSER-7, which had ef-
fects on single stigma exsertion and total stigma exser-
tion rate was dissected in this study. The gSER-7 region
coincides with QTLs reported by Yin et al. (2014). In
our report, gSER-7 was fine-mapped to a 28.4-kb region.
The target region contains three predicted genes. LOC_
0s07¢15370 and LOC_Os07g15390 are likely to be the
candidate genes according to the real time quantitative
RT-PCR analysis. LOC_0s07g15370 (OsNRAMPS) was
reported to be a Mn and Cd transporter involved in the
root uptake of these metals from the medium (Ishikawa
et al. 2012; Sasaki et al. 2012). Yang et al. (2014) found
that OsNRAMPS exhibited the strongest expression

signal in young reproductive tissues, e.g., panicles and
spikelets. Preliminary phenotypic evaluation showed that
the stigma exertion rates of two OsNRAMPS5-overex-
pressing plants (OE5 and OE8 lines) were significantly
higher than that of wild type plants. Furthermore, more
work, such as a transgenic complementary test, are
needed to examine whether LOC_0s07¢15370 or LOC_
0Os07g15390 is the most likely candidate underlying the
effect of gSER-7. Dissection of the genetic mechanisms
for stigma exertion rate, which will facilitate rice
molecular breeding for high stigma exsertion rate, will
continue to improve the efficiency of hybrid seed
production.

Conclusion

In this study using 3192 individuals from a BC4F, seg-
regation population, a new QTL (¢SER-7) for stigma
exsertion rate, was fine mapped to within a 28.4-kb
physical interval on chromosome 7. Two candidate
genes were finally selected based on differences in tran-
scriptional expression. The cloning and examination of
the genetic study of the effect of gSER-7 will facilitate
increasing the stigma exsertion rate of male sterile lines
and the further improvement of hybrid rice seed
production.
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Methods

Population and cultivation

The detailed process of population development is illus-
trated in Fig. 1. In the previous study, the main effect QTL
qSER-7 was detected for single stigma exsertion and total
stigma exsertion rates using a F, population derived from a
cross between Huhan 1B and II-32B (Yue et al. 2009).
Huhan1B is the maintainer line for Huhan 1A, which is the
first indica CMS line of water-saving and drought resist-
ance rice (WDR) with a low stigma exsertion rate, whereas
II-32B is the maintainer line of II-32A which has a good
flowering habit and high stigma exsertion rate.

To obtain a relatively simple genetic background and to
fine map the gSER-7 locus, we constructed the NIL with
respect to gSER-7. To this end, an F, line with the 1I-32B
genotype in the gSER-7 region was selected to successively
backcrossed with Huhan 1B for four generations. The SSR
markers RM3859 and RM5436 were used for marker-

assisted selection (MAS) of each generation among the seg-
regating progenies. As a result, a BC,F; line with the
Huhan 1B genetic background, but exhibiting heterozygos-
itys across the entire gSER-7 region was constructed. After
selfing, we acquired a BC4F, line and used homozygous
recombinants from the BC,F, generation for fine mapping
of gSER-7. Based on the genotypes of the I1-32B alleles, one
BC4F; plant with homozygous II-32B regions surrounding
the gSER-7 allele with a single segment was chosen and
named NIL (gSER-7"3%®). A set of 102 simple sequence
repeat (SSR) markers that were uniformly distributed on a
previous linkage map (Yue et al. 2009) were used to screen
the genetic background (Additional file 1: Table S1).

The BC,F; population was planted at Lingshui, Hainan
Island, China, in winter 2015; the BC,F, population was
planted at Shanghai, China, in summer 2016. The BC,F3
and BC,F, populations were planted at Hainan in winter
2016 and Shanghai in summer 2017, respectively.
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Fig. 6 Stigma exertion rate assay of osnramp5 mutant and
OsNRAMP5 overexpressing transgenic rice. WT: wild type, OE5 and
OES8: overexpressing transgenic lines, nramp5 M: osnramp5 mutant.
The data represent the mean +SD (n=10), *P < 0.05, **P < 0.01
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Recombinant plants, NIL (gSER-7"%?") and their parents
were established in five rows with seven plants per rows.
Spacing was maintained at 30 cm between rows and 20
cm between plants. Standard crop management practices
were followed.

Seeds of T-DNA insertion mutant, wild type (Zhon-
ghua 11), and transgenic plants were obtained from
Huazhong Agricultural University, Wuhan City, Hubei
Province, China in 2016(Yang et al. 2014).

Phenotypic evaluation

The stigma exsertion rate was subdivided into three traits,
single stigma exsertion rate (SSE), dual stigma exsertion
rate (DSE) and total stigma exsertion rate (TSE). At 5-7
days after all spikelets had flowered, ten main panicles
from parents and homozygous recombinant lines were
collected for the examination of stigma exsertion rates.
SSE, DSE, and TSE were calculated as the percentage of
the numbers of spikelets with single stigma exsertion, dual
stigma exsertion, and either single or dual stigma exser-
tion in the total number of spikelets, respectively.

DNA extraction and development of molecular markers

Total DNA was extracted from fresh leaves using the
CTAB method (Murray and Thompson 1980). PCR was
performed in 20-pL reaction volumes containing 1.5 pL
of 20.0 ng/pL template DNA, 10 uL of Taq PCR Master-
mix (TIANGEN, Beijing, China), 2 pL of 10 umol/pL pri-
mer pairs, and 6.5 L of ddH,O. The thermal cycling
consisted of an initial denaturation at 95°C for 5 min,
followed by 35 cycles of denaturation at 95°C for 30s,
annealing at 55 °C for 30's and extension at 72 °C for 45
s, with a final extension at 72°C for 5min. The PCR
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products were separated on 6% non-denatured poly-
acrylamide gels and detected by silver staining (Creste et
al. 2001). Insertion/deletion (InDel) markers (Additional
file 2: Table S2) were developed from the target region
to determine recombination sites and the genotype of
recombinant progenies based on the published rice
DNA polymorphism database (Shen et al. 2004). The se-
quences of markers were designed using Primer Premier
5.0 (PREMIER Biosoft, Palo Alto, CA, USA).

RNA extraction and real-time PCR analysis

Total RNA was isolated from young panicles (Stage In7 to
Stage In8, with a panicle lengths of 5 to 100 mm) of
Huhan 1B and II-32B at the pre-heading stage using
TRNzol-A+ Total RNA Reagent (TIANGEN, Beijing,
China). cDNA was obtained via reverse transcription of
total RNA using the PrimeScript RT reagent Kit (Takara
Biotechnology, Dalian, China) and following the manufac-
turer’s instructions. Real-time PCR was conducted using
Hard-Shell 96-Well PCR Plates (BIO-RAD, Hercules, CA,
USA), utilizing the CFX96TM Real-Time System (BIO-
RAD). The utilized reaction system contained 10 pL of
2 x SYBR Premix Ex TaqTM (Takara Biotechnology, Da-
lian, China), 20 ng of cDNA, and 0.1 uM of gene-specific
primers (Additional file 2: Table S2) in a final volume of
20 pL. The thermal cycling conditions used were 95 °C for
30, followed by 40 cycles at 95°C for 55, and 60°C for
31s, followed by a final extension stage. The housekeeping
gene Actin2 was used as a reference gene for calculating
the relative expression levels of each gene.

Sequence and statistical analysis

Gene-specific PCR primers were designed to amplify the
promoters and coding regions of gSER-7 candidate genes
in the two parents (Additional file 2: Table S2). The re-
action mixture (50 uL) for the sequence analysis con-
sisted of 2 pL of template DNA/cDNA, 5pL of KOD-
PCR Buffer, 5 uL of 2mM dNTPs, 1 pL each of 10 mM
forward and reverse primers, 3 uL of 2.5 mM MgSQOy,,
0.5U of KOD enzyme, and 32 pL of ddH,O. The ther-
mal cycling program included an initial denaturation at
95 °C for 5 min, followed by 35 cycles of denaturation at
95°C for 30s, annealing at 50 °C for 30s and extension
at 68 °C for 1 min, with a final extension at 68 °C for 5
min. The PCR products were then sub-cloned into the
pEASY-Blunt cloning vector (TransGen Biotech, Beijing,
China) according to the manufacturer’s protocol. Posi-
tive clones were sequenced by the BioSune Company
(Shanghai, China). The sequence results were analyzed
using DNASTAR software (DNASTAR Inc., Madison,
WI, USA). All statistical analyses were performed using
Excel (Microsoft Corp., Redmond, WA, USA) and SPSS
17.0 (SPSS Corp., Chicago, IL, USA).
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