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Abstract

Background: Grain size is a key determinant of grain weight and a trait having critical influence on grain quality in
rice. While increasing evidences are shown for the importance of minor-effect QTL in controlling complex traits, the
attention has not been given to grain size until recently. In previous studies, five QTL having small effects for grain
size were resolved on the long arm of chromosome 1 using populations derived from indica rice cross Zhenshan

targeted for fine-mapping in the present study.

and consequently affect grain weight.

97///Zhenshan 97//Zhenshan 97/Milyang 46. One of them, gTGW1.2¢ that was located in a 2.1-Mb region, was

Results: Firstly, the gTGW1.2¢ region was narrowed down into 1.1 Mb by determining genotypes of the cross-over
regions using polymorphic markers newly developed. Then, one BCFg plant that was only heterozygous in the
updated QTL region was identified. A total of 12 populations in generations from BC5F4 .15 to BCoF 5.4 Were
derived and used for QTL mapping. Two QTL linked in a 460-kb region were separated. The gGS1-35.2 was
delimited into a 57.7-kb region, containing six annotated genes of which five showed nucleotide polymorphisms
between the two parental lines. Quantitative real-time PCR detected expression differences between near isogenic
lines for gGS1-35.2 at three of the six annotated genes. This QTL affected grain length and width with opposite
allelic directions, exhibiting significant effect on ratio of grain length to width but showing little influence on vyield
traits. The other QTL, gGW1-35.5, was located within a 125.5-kb region and found to primarily control grain width

Conclusions: Our work lays a foundation for cloning of two minor QTL for grain size that have potential
application in rice breeding. The gGS71-35.2 could be used to modify grain appearance quality without yield penalty
because it affects grain shape but hardly influences grain yield, while gGW1-35.5 offers a new gene recourse for
enhancing grain yield since it contributes to grain size and grain weight simultaneously.
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Background

Rice (Oryza sativa L.) is the staple food for more than
half of the global population. Grain yield of rice depends
on three components, i.e.,, number of panicles per plant,
number of grains per panicle, and grain weight. Among
them grain weight is mainly determined by grain size.
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Grain size and shape is also an important quality trait
that greatly influences the market value of grain prod-
ucts. In general, a short and bold rice grain is favored by
consumers in Northern China, Japan and Korea, while a
long and slender rice grain is preferred by consumers in
the Africa, America and countries of Southeast Asia
(Calingacion et al., 2014).

Grain size and shape are largely determined by grain
length and width. All of them are complex traits
controlled by a large number of quantitative trait loci
(QTL). Up to date, a total of 14 QTL having large effect
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for grain length and width in rice were cloned. One of
them, GL7/GW?7, has similar effects on grain length and
width with opposite allelic directions, controlling grain
shape but hardly influencing grain weight (Wang et al.,
2015a; Wang et al, 2015b). The other 13 genes affect
grain size and weight. Four of them mainly control grain
width, including GW2, GS5, ¢gSW5/GW5, and GWS8
(Li & Li, 2016). Eight others mainly control grain
length, including GS2/GL2, OsLG3, qLGY3/OsLG3b,
GS3, GL3.1/qGL3, GL4, TGW6, and GLW7 (Li & Li,
2016; Wu et al, 2017; Yu et al, 2017; Liu et al,
2018; Yu et al., 2018). The remaining one, GW6a, has
similar effects on grain length and width with the
same allelic direction, and consequently exhibits a
larger impact on grain weight (Song et al., 2015). It
has been shown that these QTL regulate the prolifer-
ation and expansion of cells in spikelet hulls through
diversified regulatory pathways. While most of them
were involved in independent signaling pathways me-
diated by proteasomal degradation, plant hormones
and G proteins, a number of genes were found to
interact with each other (Yan et al, 2011; Wang et
al., 2015a; Liu et al, 2018). These findings have
greatly enriched our knowledge on the genetic control
of grain size in rice, but much more efforts are
needed to fill the gap in understanding the regulatory
framework for this critical agronomical trait (Zuo &
Li, 2014; Li & Li, 2016).

It has long been recognized that both major- and
minor-effect QTL play important roles in the genetic
control of complex traits (Mackay, Stone & Ayroles,
2009). QTL cloning in rice has been focused on those
having large effects since the first success that was
published in 2000 for heading date gene HdI (Yano
et al.,, 2000). Nevertheless, more and more attentions
have been given to QTL with relative small effects in
recent years. For heading date that has been taking
the leading position in rice QTL studies, a number of
minor-effect QTL were cloned or fine-mapped (Wu
et al, 2013; Chen et al, 2014; Zhong et al, 2014;
Chen et al., 2015; Shibaya et al., 2016). These QTL
also showed important influences on the eco-
geographical adaption and grain yield of rice, provid-
ing evidences for the importance of minor-effect QTL
in controlling complex traits. For grain size and
weight, QTL cloned are small in number and include
no minor-effect QTL. While at least 546 QTL were
detected in primary mapping and distributed over all
regions of the 12 rice chromosomes (http://www.gra-
mene.org), those that were cloned have very low gen-
ome coverage. None was located on chromosomes 1,
9, 10, 11 and 12, and on the long arm of chromo-
some 5 and short arms of chromosomes 2, 4, 6, 7
and 8. Isolation of QTL in these regions will be of
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great importance for establishing a gene network
regulating grain size in rice.

In our previous studies, dissection of minor-effect
QTL for grain weight and size was conducted using near
isogenic lines (NILs) derived from a cross between
indica rice cultivars Zhenshan 97 (ZS97) and Milyang
46 (MY46). Five QTL were resolved in an 8.2-Mb region
on the long arm of chromosome 1 (Zhang et al., 2016).
The present study aimed to fine-map one of the QTL,
qTGW1.2c that was located in a 2.1-Mb interval (Wang
et al., 2015c). Two linked QTL were separated in the tar-
get region, designated as ¢GS1-35.2 and gGW1-35.5, re-
spectively. The gGS1-35.2 was delimited into a 57.7-kb
region starting from the position of 35.2 Mb, affecting
grain length and width with opposite allelic directions
and showing little influence on grain weight. The
qGW1-35.5 was mapped in a 125.5-kb region starting
from the position of 35.5 Mb, mainly controlling grain
width and consequently affecting grain weight.

Methods

Plant materials

A total of 12 populations segregating in an isogenic
background were used in this study. As described below
and illustrated in Fig. 1, they were derived from a BC,Fy
plant of the rice cross ZS97///2597//ZS97/MY46.

Firstly, new polymorphic markers were developed in
the cross-over regions of gTGW1.2¢ (Wang et al., 2015c)
and used to determine genotypes of a set of NILs that
segregated this QTL. The ¢TGWI.2c region was
narrowed down to be RM11807-RM11842 (details are
presented in the first section of Results). Then, a BC,Fq
plant that was only heterozygous in the RM11807—
RM11842 interval was identified. The resultant BC,F;q
population consisting of 293 plants was genotyped using
polymorphic markers in the target region. Two plants
were selected, carrying heterozygous segments
RM11807-RM11842 and RM265-RM11842, respect-
ively. In the two resultant BC,F;; populations consisting
of 246 and 111 plants, respectively, homozygous
non-recombinants (i.e., plants that were homozygous
and showed no recombination in the corresponding
segregating region) were identified and selfed. Two sets
of NILs, namely L1 and L2, were developed and used for
QTL analysis. The gTGW1.2¢ region was updated to be
RM265-RM11842.

Another BC,Fj, plant carrying the RM265-RM11842
heterozygous segment was selected and selfed for two
generations. A BC,F;, population consisting of 259
individuals was genotyped. Five plants were selected,
carrying sequential heterozygous segments extending
from RM265 to RM11842. In the five resultant BC,F;3
populations consisting of 184, 188, 212, 190 and 206
plants, respectively, homozygous non-recombinants
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were identified and selfed. Five sets of NILs, namely D1,
D2, D3, D4 and D5, were developed and used for QTL
analysis. Two QTL were resolved, of which gGSI-35.2
located in the upstream region was selected for further
analysis.

Three plants were selected from the BC,F;3 popula-
tions, carrying sequential heterozygous segments cover-
ing gGS1-35.2. In the three resultant BC,F, populations
consisting of 175, 166 and 187 plants, respectively,
homozygous non-recombinants were identified and
selfed. Three sets of NILs, namely Q1, Q2 and Q3, were
developed and used for QTL analysis. The segregating
region for gGSI1-35.2 was updated to be RM265-
Wn35263.

Two other plants were selected from the BC,F;,
populations, carrying heterozygous segments RM265-
Wn35263 and RM11824—Wn35393, respectively. In the

two resultant BC,F;5 populations consisting of 199 and
237 plants, respectively, homozygous non-recombinants
were identified and selfed. Two sets of NILs, namely Bl
and B2, were developed and used for fine-mapping of
qGSI1-35.2.

Field experiments and phenotyping

The rice populations were tested in the experimental
stations of the China National Rice Research Institute
located at either Hangzhou in Zhejiang Province or
Lingshui in Hainan (Table 1). The experiments followed
a randomized complete block design with two replica-
tions. In each replication, one line was grown in a single
row of ten plants. Seedlings of about 25-day-old were
transplanted with a planting density of 16.7 cm x
26.7 cm. Field management followed the normal agricul-
tural practice. At maturity, five middle plants in each
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Table 1 Rice populations and field experiments
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Generation Name Segregating region Number of lines® Location and
Marker Physical position NILZY NILMT4e growing season®

BGF1.02 L1 RM11807 — RM11842 34,722,600-35,694,183 41 37 HZ: May—-Sep. 2014

L2 RM265 — RM11842 35,197,724-35,694,183 21 22 HZ: May—-Sep. 2014
BCoF 134 D1 RM265 —Wn35518 35,197,724-35,518,354 25 27 HZ: May—-Sep. 2016

D2 RM265 —Wn35618 35,197,724-35,618,264 28 27 HZ: May—Sep. 2016

D3 RM265 — RM11842 35,197,724-35,694,183 25 27 HZ: May—Sep. 2016

D4 RM11828 — RM11842 35,315,714-35,694,183 23 25 HZ: May—Sep. 2016

D5 Wn35518 —RM11842 35,518,508-35,694,183 25 28 HZ: May—Sep. 2016
BCoFi4a5 Q1 RM265 —Wn35263 35,197,724-35,263,529 24 26 LS: Dec. 2016 — Apr. 2017

Q2 RM265 —Wn35393 35,197,724-35,393,538 27 25 LS: Dec. 2016 — Apr. 2017

Q3 Wn35263 —Wn35518 35,263,716-35,518,354 29 30 LS: Dec. 2016 — Apr. 2017
BCoF 156 B1 RM265 — Wn35263 35,197,724-35,263,529 36 35 HZ: May—Sep. 2017

B2 RM11824 —Wn35393 35,240,934-35,393,538 32 34 HZ: May—Sep. 2017

ANIL?7 and NILM* are near isogenic lines with Zhenshan 97 and Milyang 46 homozygous genotypes in the segregating region, respectively

bHz, Hangzhou, Zhejiang Province; LS, Lingshui, Hainan Province

row were harvested in bulk. Fully filled grain were se-
lected and evaluated for grain weight and size following
the procedure reported by Zhang et al. (2016). Four
traits were measured for all populations, including
1000-grain weight (TGW, g), grain length (GL, mm),
grain width (GW, mm) and ratio of grain length to
width (RLW). One more trait for grain size, grain thick-
ness (GT, mm), was measured for populations Bl and
B2. The measurement was made over 20 fully filled
grains using an electronic digital caliper with a precision
of 0.001 mm (Shenzhen Star Instrument Co. Ltd.,
China). In addition, the two populations were evaluated
for three other yield traits including number of panicles
per plant (NP), number of grains per panicle (NGP) and
grain yield per plant (GY, g).

Microscopy observation

For gGSI-35.2 that was mapped within a 57.7-kb region
in this study, NIL”**” and NILMY*® were taken from
population Bl and used for observation of outer glume
epidermal cell. Young spikelet hulls were fixed with 2.5%
glutaraldehyde for 24 h and then dehydrated by a graded
series of ethanol. The dehydrated sample were coated
with gold-palladium using ion sputter (Model E-1010,
Hitachi, Japan) and observed using scanning electron
microscope (Model TM-1000, Hitachi, Japan). Cell length
and width of the outer glumes were measured, and cell
number in the longitudinal direction was counted. For
each NIL, 20 glumes from 20 plants were used.

DNA marker genotyping, sequence analysis and
quantitative real-time PCR analysis

For population development and QTL mapping, total
DNA was extracted using 2 cm-long leaf sample following

the method of Zheng et al. (1995). PCR amplification was
performed according to Chen et al. (1997). The products
were visualized on 6% non-denaturing polyacrylamide gels
using silver staining. A total of 24 polymorphic DNA
markers were used, including 11 simple sequence repeat
(SSR) and 13 InDel markers (Additional file 1: Table S1).
The SSR markers were selected from the Gramene data-
base (http://www.gramene.org), and the InDel markers
were designed according to the differences between ZS97
and MY46 detected by whole genome re-sequencing.

Sequence analysis was performed for six annotated
genes located in the target QTL region. DNA was ex-
tracted using DNeasy Plant Mini Kit (QIAGEN, German)
according to the manufacturer’s instructions. The primers
were designed according to the sequence of Nippon-
bare in RAP-DB (http://rapdb.lab.nig.ac.jp/:IRGSP-1.0)
(Additional file 1: Table S2). Products amplified from
the genomic DNA of ZS97 and MY46 were se-
quenced. Nucleotide sequence and the predicted
amino acid sequence between ZS97 and MY46 were
compared.

Panicles of 1 cm and 8 c¢cm long were collected from
NIL%“7 and NILMY*® in population B1. Total RNA was
extracted using RNeasy Plus Mini Kit (QIAGEN,
German). First-strand ¢cDNA was synthesized using
ReverTra AceR Kit (TOYOBO, Japan). Quantitative
real-time PCR was performed on Applied Biosystems
7500 using SYBR qPCR Mix Kit (TOYOBO, Japan) ac-
cording to the manufacturer’s instructions. Actinl was used
as the endogenous control. The data were analyzed accord-
ing to the 2748t method (Livak and Schmittgen, 2001).
Three biological replicates and three technical replicates
were used. The primers were listed in Additional file 1:
Table S3.
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Data analysis

Two-way analysis of variance (ANOVA) was performed
to test the phenotypic differences between the two geno-
typic groups in each NIL set. The analysis was per-
formed using the SAS procedure GLM (SAS Institute
1999) as described previously (Dai et al, 2008). Given
the detection of a significant difference (P<0.05), the
same data were used to estimate the genetic effect of the
QTL, including additive effect and the proportion of
phenotypic variance explained (R?). QTL were desig-
nated according to the rules recommended by McCouch
and CGSNL (2008) with slight modification. Physical
position of the first segregating marker in the QTL re-
gion was used as the unique identifier for the given
QTL. For example, gGW1I-35.5 indicates that this QTL
was associated with grain width (GW) and mapped in a
region on chromosome 1 with the first segregating
marker located at 35.5 Mb.

Cell length, width and number, as well as the expres-
sion level, were presented in mean * s.e.m. Differences
between NIL“**7 and NILMY*® were tested by student’s
t-test.

Results

Delimitation of gTGW1.2c from 2.1-Mb to 1.1-Mb by
increasing marker density

In a previous study (Wang et al., 2015c), gTGW1.2c
controlling grain weight in rice was located within a
2.1-Mb region between RM11800 and RM11885 on the
long arm of chromosome 1. This interval included the
segregating region RM11807-RM265 and two flanking
cross-over regions, ie., RMI11800-RM11807 and
RM265-RM11885. Based on sequence differences be-
tween ZS97 and MY46 detected by whole genome
re-sequencing, seven polymorphic markers were devel-
oped. They were all located in one of the two cross-over
regions RM265-RM11885. The original NIL population
segregating gTGW1.2c was assayed using these markers.
Four markers neighboring to RM11885 were homozy-
gous, thus the downstream boundary of the QTL was
moved from RM11885 to RM11844 (Fig. 2a). Therefore,
qTGW1.2c was narrowed down to a 1.1-Mb region
flanked by RM11800 and RM11844.

Dissection of gTGW1.2c into two QTL

Two NIL sets were developed following the updated
location of gTGW1.2¢ (Fig. 2b). Highly significant geno-
typic effects (P < 0.001) were detected for TGW and GW
in both populations, with the enhancing alleles all de-
rived from MY46 (Table 2). In L1, the additive effects
were 0.20 g for TGW and 0.027 mm for GW, explaining
17.6 and 49.3% of the phenotypic variance, respectively.
In L2, the additive effects were 0.22 g for TGW and
0.025 mm for GW, contributing 21.6 and 44.7% to the
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phenotypic variance, respectively. An opposite small effect
was detected for GL, which was significant (P = 0.0015) in
L1 only. The ZS97 allele increased GL by 0.017 mm,
explaining 7.7% of the phenotypic variance. Obviously,
qTGWI1.2¢ affected grain weight mainly through grain
width. For RLW, the ratio of GL to GW, highly significant
effects (P<0.0001) were detected in both populations
(Table 2). The R? values were 57.2 and 58.6%, higher than
the values estimated for GL and GW.

As described above, the effects detected in the two
populations were similar, indicating that gTGW1.2¢ was
located in the common segregating regions of L1 and
L2. While the whole candidate region was segregated in
L1, only a portion was segregated in L2. Thus,
qTGW1.2c was located in the segregating region of L2,
which was a 672.3-kb region flanked by Wn35060 and
RM11844 (Fig. 2b). This result was used to develop five
NIL sets with sequential segregating regions jointly
covering the entire QTL region (Fig. 2c).

In all the five populations, significant effects were de-
tected on GW with the enhancing alleles always derived
from MY46 (Table 3). The additive effects were 0.009,
0.021, 0.023, 0.014 and 0.015 mm in D1, D2, D3, D4 and
D5, respectively. Two alternative explanations could be
given to the consistent allelic direction and varied mag-
nitudes among the five populations. Firstly, there are
two QTL for GW segregated in these populations. One
was segregated in D1 but not in D4 and D5, and the
other was segregated in D4 and D5 but not in D1. They
were both segregated in D2 and D3, thus the additive ef-
fects were higher in the two populations than D1, D4
and D5. Secondly, one single QTL was segregated in
these populations but the effect was not highly stable.

For GL, significant effects were detected in three
populations (Table 3). The enhancing alleles were also
derived from MY46 in D4 and D5, but from ZS97 in D1.
These results indicate that two QTL for GL were located
in the target region. One was segregated in D1 but not
in D4 and D5, and the other was segregated in D4 and
D5 but not in D1. The two QTL were both segregated in
D2 and D3, thus the effect became nonsignificant due to
opposite directions. Taking the results on GL and GW
together, it could be concluded that two QTL simultan-
eously affecting the two traits were segregated in these
populations. One was located in a region that was segre-
gated in D1, D2 and D3 but homozygous in D4 and D5,
with the allele from MY46 decreasing GL but increasing
GW (Fig. 2¢; Additional file 2: Figure S1). The other was
located in a region that was segregated in D2, D3, D4 and
D5 but homozygous in D1, with the allele from MY46 in-
creasing GW and GL (Additional file 3: Figure S2).

The first QTL was located within the Wn35183
-RM11828 interval that corresponds to a 132.4-kb
region of the Nipponbare genome (Fig. 2c). It had little
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effect on TGW but significantly affected GL, GW and
RLW. In the D1 population that segregated this QTL
only, the MY46 allele decreased GL by 0.027 mm, in-
creased GW by 0.009 mm, and decreased RLW by 0.017,
having R? of 14.7, 11.6 and 39.0%, respectively (Table 3).
Because this QTL primarily contributed to grain shape
with the first segregating marker RM265 located at
35.2 Mb on chromosome 1, we designated it gGSI-35.2
(Fig. 2¢).

The other QTL was located in a 125.5-kb region
flanked by Wn35518 and Wn35643 (Fig. 2¢). It affected
GL and GW with the same allelic direction and exerted
significant influence on TGW. In the D4 and D5 popula-
tions that segregated this QTL only, the MY46 allele

increased TGW by 0.20 and 0.14 g, GL by 0.018 and
0.014 mm, and GW by 0.014 and 0.015 mm, having R*
of 14.3 and 7.2%, 8.3 and 5.5%, and 25.7 and 27.3%, re-
spectively (Table 3). Because this QTL mainly contrib-
uted to grain width with the first segregating marker
Wn35518 located at 35.5 Mb on chromosome 1, we
designated it gGW1-35.5 (Fig. 2c¢).

Fine-mapping of qGS1-35.2

One QTL, gGSI-35.2, was selected for further analysis.
Two more runs of NIL construction — QTL mapping
were performed. The first run of QTL mapping was con-
ducted using three NIL sets, Q1, Q2 and Q3. Significant
effects for grain shape traits were detected in Q1 and Q2
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Table 2 Validation of gTGW1.2¢ using two sets of near isogenic
lines in BGFq1.95

Name Trait® Phenotype (mean + sd)® P AC R2(9%)°
N”_Z597 N”_MY46

L1 TGW 2867+034 2908+032 <0.0001 0.20 17.6
GL 8458 £0.040 8423+0.051 0.0015 -0017 77
GW  3218+0021 3272+0016 <0.0001 0027 493
RLW  2628+0.017 2575+0015 <0.0001 -0027 572

L2 TGW 2886+035 2930+035 0.0002 0.22 216
GL 8517+0044 8502+0.050 03107
GW  3262+0017 3311+0020 <0.0001 0025 447
RLW  2611£0012 2568+0.016 <00001 -0.022 586

#TGW 1000-grain weight (g), GL grain length (mm), GW grain width (mm), RLW
ratio of grain length to width

PNILZ%7 and NILMY#6 are near isogenic lines with Zhenshan 97 and Milyang 46
homozygous genotypes in the segregating region, respectively

“Additive effect of replacing a Zhenshan 97 allele with a Milyang 46 allele
4Proprotion of phenotypic variance explained by the QTL effect

Table 3 Dissection of gTGW1.2c into two QTL using five sets of
near isogenic lines in BCoFy3.44

Name Trait® Phenotype (mean + sd)? p A R’
NILZS7 NILMY46 %)°
D1 TGW 28224050 2824 +044 0.8500
GL 8392+0042 8338+0046 <0.0001 —0.027 147
GW 3.063+£0.022 3.080+0017 0.0023 0.009 116
RLW 274040018 2707+0012 <0.0001 -0.017 390
D2 TGW  2710+£039 2773+037 <0.0001 032 30.3
GL 8342+0039 8332+0042 0.3473
GW 3.079+£0023 3.121+£0023 <0.0001 0.021 331
RLW  2710+£0.020 2670+0018 <0.0001 —0.020 412
D3 TGW 27224038 27.75+049 <0.0001 0.26 153
GL 8313+£0051 8298+0042 0.2498
GW 3.037+0020 3.084+0022 <00001 0023 398
RLW 2738+ 0.016 2691+0017 <0.0001 -0.023 49.1
D4 TGW 27714039 28.11+£040 0.0013 0.20 143
GL 8286+0.050 8321+0.052 0.0205 0.018 83
GW 3.087+£0017 3.116+0021 <0.0001 0014 25.7
RLW 2684 +0018 2671+0017 00192 -0.007 89
D5 TGW 2725+036  2753+042 00126 0.14 7.2
GL 8339+0047 8368+0.049 0.0328 0.014 55
GW 3.046+£0015 3.075+£0016 <0.0001 0015 273
RLW 2738+ 0.019 2721+0016 0.0015 -0.008 117

2TGW 1000-grain weight (g), GL grain length (mm), GW grain width (mm),
RLW ratio of grain length to width

ENILZ%7 and NILMY46 are near isogenic lines with Zhenshan 97 and Milyang 46
homozygous genotypes in the segregating region, respectively

“Additive effect of replacing a Zhenshan 97 allele with a Milyang 46 allele
dProprotion of phenotypic variance explained by the QTL effect
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but not Q3. The QTL effects remained to be large on
GL and RLW, and small or nonsignificant on TGW and
GW (Table 4). The QTL location was delimited into an
80.4-kb region flanked by Wn35183 and Wn35263
(Fig. 2d). The second run was done using two NIL
sets, B1 and B2. Significant effects for grain shape
traits were detected in Bl but not B2. Finally,
qGSI1-35.2 was mapped within a 57.7-kb region
flanked by Wn35183 and RM11824 (Fig. 2e). The ef-
fect of this QTL was large on GL and RLW, small on
GW, and nonsignificant on GT and vyield traits in-
cluding TGW, NP, NGP and GY (Table 4).

Length, width and number of the outer glume epider-
mal cells were compared between NIL“*®” and NILMY*®
for qGS1-35.2 (Additional file 4: Figure S3). Nonsignifi-
cant difference was detected on the cell length and
width, but the cell number in the longitudinal direction
was higher in NIL“**7 than NILMY*¢ (P =0.0027). These
results suggest that gGSI-35.2 affects grain length by
controlling cell division.

Candidate genes of gGS1-35.2

According to the Rice Annotation Project Database
(http://rapdb.dna.affrc.go.jp/), there are six annotated
genes in the 57.7-kb region for qGSI1-35.2. Three of
them encode proteins containing known functional do-
mains. Os01g823900 encodes the U-box E3 ubiquitin lig-
ase OsPUB3 that regulates the response to abiotic stress
(Byun et al., 2017). Os01g0824600 produces two different
transcripts, encoding a serine/threonine protein kinase
domain containing protein or CBL-interacting protein
kinase 11 that are involved in various biological pro-
cesses (Sanyal et al, 2015). Os01g0824700 encodes a
member of the cyclin-like F-box domain containing pro-
teins that are major components of E3 ubiquitin-protein
ligase and participate in a large variety of biological pro-
cesses including seed development (Somers & Fujiwara,
2009, Chen et al,, 2013; Gupta, Garg & Bhatia, 2015).
The remaining three annotated genes are Os01g0823951,
0s01g0824000 and Os01g0824500 that encode hypothet-
ical proteins.

Sequence comparisons of the six annotated genes were
conducted between full-length genomic fragments of
ZS97 and MY46 (Additional file 1: Table S4). Among
the three genes encoding proteins of known functional
domains, no difference was identified in Os01g0824600
but single nucleotide polymorphisms (SNPs) were de-
tected in the other two genes. For Os01g0824700, the
G116A substitution resulted in a premature stop codon
in MY46. For Os01g823900, four SNPs were found, of
which two were synonymous and the other two were
non-synonymous. SNPs resulting in non-synonymous
mutation were also found for all the three genes encod-
ing hypothetical proteins.
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Table 4 Fine mapping of gGS7-35.2 using five sets of near isogenic lines in BC,F 445 and BCoF 5.6
Generation Name Trait® Phenotype (mean + sd)® P AS R2(9%)?
N”_Z597 N”_MY46
BCF 45 Q1 TGW 2766+ 0.20 2761+0.22 0.3588
GL 8.032+0.033 7.989 +0.034 < 0.0001 -0.022 26.1
GW 3.235+0015 3242 £0015 0.0917
RLW 2483 +£0.014 2464 +£0.010 < 0.0001 —0.010 18.2
Q2 TGW 2757 +£0.26 27.60+0.26 0.7044
GL 8.023 +£0.034 7.964 +0.027 <0.0001 -0.029 334
GW 3222+0014 3235+£0018 0.0084 0.006 7.5
RLW 2490+ 0.011 2462 £0014 < 0.0001 -0.014 343
Q3 TGW 2800+ 0.34 28.13+0.28 0.0986
GL 8.015+0.036 8.017+£0.026 0.8229
GW 3246 +0.017 3249+ 0015 04148
RLW 2470+0014 2468 £0.014 0.5968
BCoFisa6 B1 TGW 2880+ 027 2876 +0.29 0.6390
GL 8386+ 0.030 8325+0.036 < 0.0001 —0.030 29.0
GW 3.128+0017 3.141 £0.021 0.0070 0.006 52
GT 2.193+0014 2.197 £ 0.009 0.1490
RLW 26810011 26510018 < 0.0001 -0.015 365
NP 1654+ 1.79 1644 +2.19 0.8313
NGP 5560+ 5.84 57.12+890 0.3960
GY 2428 +1.28 2467 £1.88 0.3065
B2 TGW 27.94 + 044 28.04 +0.30 0.2894
GL 8438 £0.047 8443 £0.041 06192
GW 3.055+0.027 3.057+£0.019 0.6095
GT 2204 +£0.011 2209+0011 0.0843
RLW 2.762 £0.021 2.760+£0.014 0.7448
NP 1516+0.93 1542+1.13 0.3456
NGP 69.04 +7.68 67.82+£6.95 0.5098
GY 2412 +338 2411 +£344 0.9599

2TGW 1000-grain weight (g), GL grain length (mm), GW grain width (mm), GT grain thickness (mm), RLW ratio of grain length to width, NP number of panicles per

plant, NGP number of grains per panicle, GY grain yield per plant (g)

ENILZ%7 and NILMY46 are near isogenic lines with Zhenshan 97 and Milyang 46 homozygous genotypes in the segregating region, respectively

“Additive effect of replacing a Zhenshan 97 allele with a Milyang 46 allele
4Proprotion of phenotypic variance explained by the QTL effect

Transcript levels of the six annotated genes in panicle
were compared between NIL“*®7 and NILMY*® for
qGSI1-35.2 (Additional file 5: Figure S4). For the two
transcripts produced by Os01g0824600, significant differ-
ence was only detected on Os01t0824600-2 encoding
CBL-interacting protein kinase 11. In panicle of 1 cm
and 8 cm long, the expression levels were 1.8 and 1.6
times higher in NILMY*® than NIL“**7, respectively. Two
more genes were found to have significant expression
differences between the two NILs. They were
0s01g0823951 and Os01g082400 encoding hypothetical
proteins. As compared with NIL“*®7, the expression
levels of NILM**® in panicles of 1 cm and 8 cm were 6.2

and 7.6 times higher on Os01g0823951, and 1.6 and 0.8
times higher on Os01g082400, respectively. Nonsignifi-
cant difference was detected on other genes.

Discussion

In recent years, increasing attention has been paid to the
cloning of minor QTL in rice, but none has been re-
ported for traits determining grain size. In the present
study, two minor QTL associated with grain size in rice
were dissected and fine-mapped. They were located in
the 460-kb interval Wn35183-Wn35643 on the long
arm of chromosome 1. One of them, gGSI1-35.2, was
delimited into a 57.7-kb region flanked by Wn35183 and
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RM11824, affecting grain length and width with opposite
allelic directions and showing little influence on grain
weight. The other one, gGW1I1-35.5, was mapped within
a 125.5-kb region flanked by Wn35518 and Wn35643,
primarily controlling grain width and consequently
affecting grain weight. Our work lays a foundation for
cloning the genes underlying these two minor QTL for
grain size.

Clustering of genes for the same trait is frequently ob-
served in plant genome. This has been evident for genes
having large effects on grain size in rice. For example, a
3.2-Mb region on the short arm of chromosome 3
covers five genes, including PGLI, BGI, OsLG3,
OsLG3b/qLGY3, and TUDI (Heang & Sassa, 2012a; Hu
et al, 2013; Li & Li, 2016; Liu et al,, 2018; Yu et al,
2018); a 4.3-Mb region on the short arm of chromosome
5 covers seven genes, including APG, OsPPKL2, SRS3,
GS5, GW5/qSWS5, GSK2 and OsCYP51G3 (Heang &
Sassa, 2012b; Zhang et al., 2012; Huang et al., 2013; Xia
et al., 2015; Li & Li, 2016). Clustering of QTL having
small effect on grain size in rice has also been observed.
In our previous studies, five minor QTL for grain size
were dissected in a region on the long arm of chromo-
some 1 (Wang et al,, 2015¢; Zhang et al., 2016). One of
them, gTGW1.2¢, was separated into two QTL in the
present study. Altogether, six minor QTL for grain size
have been separated in a 7.1-Mb region using one indica
rice cross, spanning from the upstream boundary
marker Wn28447 for gTGW1.1a (Zhang et al,, 2016) to
the downstream boundary marker Wn35643 for
qGW1I1-35.5 reported here. These results suggest that
grain size in rice is controlled by a large number of
QTL, including a few loci with large effects and numer-
ous loci with small effects, which is similar to the genetic
architecture of heading date in rice (Hori et al., 2015).

Grain size and shape are both determined by grain
length and width. While grain size is the major deter-
minant of grain weight, grain shape is mainly related to
consuming preference (Calingacion et al., 2014) and may
not be associated with grain weight. For genes having
similar effects on grain length and width with opposite
directions, such as GL7/GW7 (Song et al., 2015), the in-
fluence is usually exerted on grain shape rather than
grain weight. One of the two QTL we identified,
qGSI1-35.2, affected grain shape without influencing
grain weight and other yield traits. The MY46 allele de-
creased grain length but increased grain width, resulting
in little effect on grain weight and enhanced effect on
the ratio of grain length to width (Table 3). This type of
QTL could be used to modify grain shape without yield
penalty. For genes simultaneously controlling grain
length and width with the same allelic direction, and those
contributing to either grain length or width, such as most
of the cloned genes conditioning these traits (Li and Li,
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2016; Yu et al,, 2017), the same direction of QTL effect is
always simultaneously detected on grain size and grain
weight. Another QTL we identified, gGW1-35.5, falls into
this category (Table 3). The MY46 allele significantly in-
creased both the grain length and width, and in the
meantime enhanced grain weight. This type of QTL
could be used for yield improvement. More and more
choices for breeding utilization can be anticipated
with the identification of new genes for grain size
traits.

Three annotated genes encoding proteins with known
functional domains were located in the ¢gGSI-35.2
region. They were involved in two important pathways
that regulate grain size in plants (Zuo & Li, 2014; Li &
Li, 2016). Os01g0824700 and Os01g0823900 encode two
proteins that are important components of ubiquitin
ligases (Xu et al, 2009; Byun et al., 2017), and
0Os01g0824600 participates in plant hormone signaling
pathway (Xiang, Huang & Xiong, 2007). For
0Os01g0824700, a premature stop mutation was found in
MY46, which usually fully disrupt gene function. In
addition, nonsignificant difference was detected between
NIL“®” and NILM¥*® on the expression of Os01g0824.700.
It is unlikely that this is the gene for gGSI-35.2. For
0s01g823900, two amino acid substitutions were identi-
fied, which may cause minor phenotypic change as
suggested in previous studies (Matsubara et al., 2012;
Wu et al, 2013; Shibaya et al, 2016). For
0Os01g0824600, no difference was identified in its coding
region, but expression difference was found on one of the
two transcripts of this gene (Additional file 5: Figure S4).
Both 0s01g823900 and Os01g0824600 are more likely to
be the gene underlying gGS1-35.2.

Three other annotated genes, Os01g0823951,
0Os01g0824000 and Os01g0824500 encoding hypothetical
proteins, were also located in the gGSI1-35.2 region. All
of them showed amino acid substitutions. Expression
differences were also detected on two of the genes,
Os01g0823951 and Os01g0824000. None of them could
be ruled out from the candidate genes for gGS1-35.2.
Therefore, more work is needed to clarify which gene is
the one for QTL ¢gGS1-35.2.

Conclusion

Two closely linked minor QTL for grain size in rice
were separated on the long arm of chromosome 1.
The qGSI-35.2 was delimited into a 57.7-kb region in
which six annotated genes were found. This QTL reg-
ulates grain length and width with opposite allelic di-
rections, affecting grain shape but having little
influence on grain weight and other vyield traits, pro-
viding a potential gene resource for fine-tuning grain
shape to modify grain appearance quality without
yield penalty. The gGW1-35.5 regulates grain width
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and length with the same allelic direction, simultan-
eously affecting grain shape, size and weight, offering
a new gene resource for enhancing grain yield.
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Additional file 1: Table S1. Primers used for population development
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glumes of NIL**” and NILMY*® for qGS7-35.2. a Scanning electron
microscopic images of the cells. Scale bar, 200 um. b Cell length, width
and number. The cell numbers were measured in the longitudinal
direction. Data are presented in mean £ s.em. (n=20). A Student’s t-test
was used to generate the P values. (PDF 1633 kb)

Additional file 5: Figure S4. Transcript levels of annotated genes in the
qGST1-35.2 region. The experiment was performed using panicles of 1 cm
(P1) and 8 cm (P8) collected from NIL?>°” and NILMY*® for qGS71-35.2. The
expression levels were normalized to Actinl and related to P1 of NIL**%.
Data are presented in mean +s.em. (n=3). A Student's t-test was used to
generate the P values. (PDF 2579 kb)
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