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Abstract

The receptor for activated C kinase 1 (RACK1) is a WD40 type protein that is involved in multiple signaling
pathways and is conserved from prokaryotes to eukaryotes. Here we report that rice RACKTA (OsRACKTA) is
regulated by circadian clocks and plays an important role in the salt stress response. OsRACKTA was found to
follow a rhythmic expression profile under circadian conditions at both the transcription and the translation
levels, although the expression was arrhythmic under salt stress. Analysis of plant survival rates, fresh weight,
proline content, malondialdehyde, and chlorophyll showed that suppression of OsRACKTA enhanced tolerance
to salt stress. The ion concentration in both roots and leaves revealed that OsRACKTA-suppressed transgenic
rice could maintain low Na® and high K" concentrations. Furthermore, OsRACK1A-suppressed transgenic rice
accumulated significantly more abscisic acid (ABA) and more transcripts of ABA- and stress-inducible genes
compared with the wild-type plants. Real-time quantitative polymerase chain reaction analysis revealed that

responses.
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many stress-related genes, including APETALA 2/Ethylene Responsive Factor (AP2/ERF) transcription factors,
were upregulated in the OsRACKTA-suppressed transgenic rice line. We identified putative interactors of
OsRACKTA, and found that OsRACKTA interacted with many salt stress-responsive proteins directly. These
results suggest that OsRACKTA is regulated by circadian rhythm, and involved in the regulation of salt stress

Background

The receptor for activated C kinase 1 (RACK1) is a
member of the WD repeat-containing scaffold pro-
teins and is conserved from prokaryotes to eukaryotes
(Zhang et al, 2013). As a scaffolding protein, RACK1
protein interacts with many proteins and is involved
in multiple signaling pathways (McCahill et al., 2002;
Zhang et al, 2013). In plants, RACKI is involved in
diverse biological processes, such as seed germination,
organ development, hormones and stress responses
(Nakashima et al, 2008; Guo et al, 2009, 2011;
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Zhang et al., 2014). Compared with the advances
made from studies in metazoans and vyeast, little is
known about the molecular mechanisms of RACKI in
plants.

The Arabidopsis genome contains three RACKI ortho-
logues, RACK1A, RACKIB and RACKIC, which are ~
78% similar to mammalian RACKI (Guo and Chen,
2008). Using loss-of-function mutants of RACKIA in
Arabidopsis, Chen et al.(2006) found that AtRACKIA
plays a role in several plant hormonal responses, includ-
ing abscisic acid (ABA), gibberellin (GA), indole-3-acetic
acid (IAA), and brassinosteroid (BR). There is direct and
indirect evidence that RACKIs are involved in the regu-
lation of plant tolerance to abiotic and biotic stresses
(Kundu et al., 2013; Cheng et al.,, 2015). In Arabidopsis,
the rackla mutant strongly tolerates soil drying, com-
pared with the wild-type (Zhang et al., 2013). Moreover,
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water loss in detached leaves and stomatal conductance
of rackl mutants were significantly lower than in the
wild-type, and the endogenous ABA content of rackla
mutants was higher than in the wild-type (Guo et al,
2009; Zhang et al, 2013). In addition, rackla mutants
were hypersensitive to ABA in serval developmental pro-
cesses, such as seed germination, cotyledon greening,
and root growth, and some ABA-responsive marker
genes were upregulated in rackla mutants, while the
RACKI genes were downregulated by ABA (Guo et al,
2009). These results suggest that RACKI functions as a
negative regulator of ABA signaling and consequently
enhances drought stress tolerance via ABA-dependent
signaling in response to water stress in plants. Compara-
tive proteomic analysis showed that the Arabidopsis
RACKIC protein might play roles in regulating plant re-
sistance to salt stress (Shi et al., 2011).

The rice genome contains two RACKI homologous
genes that are ~ 80% similar to Arabidopsis RACK1 pro-
teins at the amino acid level: OsRACKIA and
OsRACKIB (Nakashima et al, 2008). Li et al. (2009)
found that OsRACKIA-suppressed transgenic rice lines
were more tolerant of soil drying, but the molecular
mechanism remains unknown. Comparative phospho-
proteomics studies revealed that the OsRACK1A protein
is phosphorylated in response to exogenous ABA and
drought treatment (He et al., 2008; Ke et al., 2009).
These findings suggested that OsRACKIA plays essential
roles in ABA signaling and is involved in
ABA-dependent stress responses. In addition to the in-
volvement of RACKI in the regulation of plant responses
to abiotic stresses, it has been reported to function in
plant innate immunity. Overexpression of OsRACKIA
enhanced the production of reactive oxygen species
(ROS) and increased resistance to blast fungus in rice
(Nakashima et al, 2008). OsRACKIA regulated ROS
levels not only in abiotic stress responses but also in the
seed germination process. Previously, we found that
OsRACKIA positively regulated seed germination by
promoting H,O, production and enhancing ABA catab-
olism (Zhang et al., 2014). Although RACKI functions in
ABA signaling in both rice and Arabidopsis, it is still un-
clear whether RACKI is involved directly in
ABA-dependent stress responses.

Circadian clocks are 24-h biological oscillators, which
generally enable organisms to coordinate their activities
with the external light/dark cycles by anticipating the
onset of dawn or dusk. In mammals, RACK1 protein
plays a crucial role in circadian clocks by interacting
with  BMAL1, a component of the heterodimeric
CLOCK:BMAL1 circadian complex. However, the ex-
pression of RACKI itself showed little or no circadian
variation across the circadian cycle (Robles et al., 2010).
In plants, no clock component has been reported to
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interact with RACKI protein and whether plant RACK1
is involved directly in circadian clock regulation has yet
to be investigated. In this study, our results indicated
that OsRACKIA is a circadian rhythm gene and is in-
volved in the response to salt stress. OsRACKIA-sup-
pressed transgenic plants were hyposensitive to salt
stress, compared with  wild-type Nipponbare.
OsRACKI1A plays an important role in the tolerance to
high salinity by regulating many stress-related genes and
interacting directly with many stress-response proteins.

Methods

Plant materials and stress treatment

Rice (Oryza sativa L. cv. Nipponbare) was used as the
wild-type (non-transgenic line; NTL) and in the gener-
ation of all transgenic plants. All transgenic rice lines
were generated and kept in our laboratory. An
OsRACKIA over-expressing transgenic line, OeTL3-8,
and an RNA-interfered transgenic line, RiTL4-2, were
used as experimental materials (Zhang et al., 2014). For
NaCl treatment, 4-week-old hydroponic cultured rice
plants were placed in different concentrations of NaCl
solution (100, 150, 200 mM) for 10-20 d and finally de-
termined 150 mM NaCl treated with 18 d and recovered
for 10 d was the best condition for identifying stress
phenotypes. All the plants grew in a plant growth cham-
ber (Conviron atc26, 16 h light/ 8 h dark, 30 °C day/
22 °C night).

Measurements of physiological index

For the tolerance experiments, all rice plants were cul-
tured in a plant growth chamber (Conviron atc26) (30 °
C day / 22 °C night). The survival rate and fresh weight
were calculated after 18 d of treatment with 150 mM
NaCl and recovery in normal conditions for another 10
d. Lipid peroxidation was determined by measuring the
MDA content (Dhindsa and Matowe, 1981). The content
of free proline in leaves was determined as described
previously. (Bates et al., 1973) Chlorophyll was extracted
from the leaves in 10 mL of 80% acetone for 16 h in the
dark and was determined by measuring the absorbance
at 652 nm (Arnon, 1949). To measure the Na* and K*
concentrations, 2-week-old hydroponic cultured rice
seedlings were supplemented with 150 mM NaCl for 24,
48, or 72 h. Shoots and roots were harvested at the indi-
cated times and all physiological measurements were
based on the procedure described by Yang et al. (2015).
Measurement of water loss form detached leaves was
performed as previously described by Zhang et al.
(2015). The detached leaves of non-transgenic and trans-
genic rice lines were weighed at room temperature (~
23 °C) with 35% relative humidity. The endogenous
ABA levels of rice leaves were measured based on the
procedures described by Zhang et al. (2014). All of the
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data were subjected to Student’s t-test analysis using
SPSS ver. 13.0 (SPSS Company, Chicago, IL).

Gene expression analysis

The RNAprep Pure Plant Kit (cat. no. DP441; Tiangen
Biotech) was used to extract total RNA from rice.
Single-strand ¢cDNAs were synthesized by using the
HiScript Q RT SuperMix for qPCR kit (cat. no. R123;
Vazyme). Transcript-level expression of each gene were
measured by quantitative RT-PCR using a 7300
Real-Time PCR system (ABI), with the iTaq universal
SYBR Green SuperMix (Bio-Rad), and normalized
against the values obtained for housekeeping gene OsAc-
tinl (LOC_0Os03g50890). Three biological replicates
were performed for each experiment. Additional file 1:
Table S2 lists the qRT-PCR primer sequences. All of the
data were subjected to Student’s t-test analysis using
SPSS ver. 13.0 (SPSS Company, Chicago, IL).

Protein blot analysis

Rice leaves of seedlings were ground in liquid nitrogen
and homogenized in PBS buffer (cat. no. CW0040S;
CoWin Bioscience) containing complete protease inhibi-
tor cocktail (cat. no. 04693132001; Roche). To prepare
total protein, the homogenate was centrifuged (6000xg,
30 min, 4 °C) to remove cellular debris. Then, proteins
were separated by sodium dodecyl sulfate polyacryl-
amide gel electrophoresis (SDS-PAGE) on 10% gels and
blotted onto polyvinylidene difluoride (PVDF) mem-
branes. The antibodies used were anti-B-actin antibody
(cat. no. CWO0264M; CoWin Bioscience), anti-green
fluorescence protein (GFP) antibody (cat. no. ab290;
Abcam), and anti-OsRACK1A antibody (cat. no.
AbP80112-A-SE; Beijing Protein Innovation).

Co-IP assay

To identify the OsRACKIA interaction proteins,
UBI::GFP and UBI::GFP-OsRACKIA transgenic rice were
used for co-IP assays. Leaves from 4-week-old plants
were harvested and ground in liquid nitrogen. Proteins
were extracted with the buffer containing 50 mM Tris
(pH 7.5), 150 mM NaCl, 0.1% IGEPAL CA-630, Protein-
ase Inhibitor Cocktail (cat. no. 04693159001; Roche) and
Phophatase Inhibitor Cocktail (cat. no. 04906845001).
The samples were centrifuged at 12,000 g for 15 min at
4 °C and the supernatant was incubated with anti-GFP
magnetic beads (catalog no. D153-11; MBL) to over-
night at 4 °C with gentle rotation. The beads were then
washed four times with PBS. The immunoprecipitated
proteins were eluted with 1 M glycine (pH 3.0). The
presence of the corresponding proteins was detected by
tandem liquid chromatograph-mass spectrometry
(LC-MS/MS).
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Statistical analyses

Statistical analyses were performed using IBM SPSS Sta-
tistics 21 software (Chicago, IL, USA), and analyzed with
one-way ANOVA. P < 0.05 was considered significant.

Results

Expression of the OsRACK1A gene is controlled in a
circadian-clock like manner

Information retrieved from the public microarray
database (ArrayExpress, Accession: E-MTAB-275)
showed that a circadian rhythm in OsRACKIA
mRNA abundance occurred under photocycling
(12 h light/12 h dark; 12 h hot/12 h hot; LDHH),
thermocycling (12 h light/12 h light; 12 h hot/ 12 h
cold; LLHC) or photocycling and thermocycling
(12 h light/12 h dark; 12 h hot/12 h cold; LDHC)
conditions (Additional file 1: Figure S1A). Another
rice RACKI homolog, OsRACKIB, exhibited similar
expression patterns (Additional file 1: Figure S1B).
To confirm whether the expression of OsRACKIA
was controlled by a circadian clock, the expression
of OsRACKIA in a 24-h period was measured.
Quantitative RT-PCR analysis showed that the tran-
script level of OsRACKIA started accumulating with
the onset of light and reached a maximum level
10 h after the lights were switched on (ZTO and
ZT24) and then the transcript level declined grad-
ually and reached a minimum 6 h after the lights
were switched off (ZT16 and ZT40, Fig. 1a). We also
examined levels of OsRACKIA protein during the
light/dark cycle using western blot analysis and the
results revealed that OsRACKIA protein accumu-
lated in the light (ZTO0 to ZT14) and declined in the
dark (ZT16 to ZT22, Fig. 1b). Moreover, we tested
the expression of OsRACKIA under the constant
light conditions and found that OsRACKIA also dis-
played rhythmic expression (Additional file 1: Figure
S1C).

Overexpression of OsRACK1A delays the time of heading

Some circadian clock-controlled genes have been re-
ported to be involved in photoperiodic flowering regula-
tion (Xue et al.,, 2008; Ishikawa et al., 2011; Matsubara et
al, 2011). To investigate whether OsRACKIA plays a
role in photoperiod-controlled heading, we generated
several OsRACKIA RNA-interference (RNAi) and over-
expressing lines (Li et al., 2009). From these transgenic
rice lines, we chose the stable downregulated
RNA-interfered transgenic line RiTL4-2, and the upreg-
ulated overexpressed transgenic line OeTL3-8. Com-
pared with the non-transgenic line (NTL), the
OsRACKI1A protein level was higher in OeTL3-8 and
lower in RiTL4-2, measured by Western blot analysis
using an OsRACKI1A-specific antibody (Fig. 1c). This
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Fig. 1 Circadian clock-controlled OsRACKIA expression in rice. a Transcript analysis of the OsRACKTA gene by gRT-PCR over a 48-h period. Rice
plants were grown under 16 h light and 8 h dark in a growth chamber at a constant temperature of 28 °C and sampled at regular intervals. b
Immunoblot analysis of OsSRACKTA protein over a 24-h period. ¢ OsRACKTA expression was monitored by immunoblot analysis in seedlings of a
non-transgenic line (NTL), an OsRACK1A-overexpressing transgenic line (OeTL3-8), and an RNA-interfered transgenic line (RiTLs4-2). d Protein
levels of OsRACK1A in NTL, OeTL3-8 and RiTLs4-2 in light and dark. e Heading time distributions in transgenic rice plants grown in the field.
During the heading period, the number of heading plants for each line was recorded every 3 days and compared. f Phenotypic comparison
panicles during the heading period of transgenic plants. The rice plants had been grown in the field for 89 d. ZT, Zeitgeber Time. White and

black rectangles indicate lights on and lights off, respectively

differential protein expression patterns of the three ge-
notypes was occurred only in the light, whereas
OsRACKIA protein was nearly undetectable in the dark
(Fig. 1d). The heading date of field-grown plants was re-
corded and OeTL3-8 had a heading date nearly 1 week
later than NTL, whereas RiTL4-2 showed a heading
time approximately 1 week earlier than NTL (Fig. 1le).
The panicles phenotypes of field-grown plants at 95 d
after germination are shown in Fig. 1f.

NaCl treatment affects expression of the OsRACK7A gene

To investigate the expression profile of the OsRACKIA
gene under salt stress, 2-week-old hydroponic cultured
rice seedlings were exposed to 150 mM NaCl for different

times and the transcript-level expression of this gene was
monitored using quantitative RT-PCR. The OsRACKIA
expression pattern changed significantly in response to
NaCl treatment. The transcript level of OsRACKIA accu-
mulated from ZTO to ZT12 under both salt stress and
control conditions, but expression of OsRACKIA was
slightly higher under control than under salt stress condi-
tions (Fig. 2a). Under normal conditions, the expression of
OsRACKIA behaved like a circadian clock; when treated
with NaCl, however, the transcription level of OsRACKIA
first increased to a relatively high level and then main-
tained this level throughout the experiment (Fig. 2a),
which means that the circadian clock of OsRACKIA ex-
pression disappeared when exposed to salt stress. The
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similar expression pattern of OsRACKIA was shown
under both light/dark cycle and constant light conditions
with NaCl treatment (Additional file 1: Figure S1B). Inter-
estingly, the protein level of OsRACKIA increased and
was significantly higher than in the untreated control at 6,
12, 24, and 48 h after the onset of salt stress (Fig. 2b),
whereas the transcript levels of OsRACKIA were lower at
ZT6 and ZT12 in the NaCl treatment than under control
conditions (Fig. 2a).

Therefore, we suspected that OsSRACKI1A protein levels
were under post transcriptional and/or translational con-
trol. To test this, transgenic rice plants were generated
that constitutively expressed GFP-OsRACK1A. As shown
in Fig. 2c, the GFP-OsRACKI1A fusion protein was de-
tected in ubiquitin-promoted GFP-OsRACKIA transgenic
plants, whereas the GFP protein was detected in UBI:GFP
transgenic plants. Figure 2d shows fluorescence images of
GFP-OsRACKIA transgenic plants in the presence or ab-
sence of 150 mM NaCl for 6 h. Control plants containing

GFP alone showed no change in subcellular localization in
response to salt stress (Fig. 2d). Furthermore, before salt
treatment, plants containing GFP-OsRACKI1A exhibited
fluorescence that was detectable in the cytosolic fraction,
as well as in the plasma membrane and nuclei. After treat-
ment with 150 mM NaCl, GFP fluorescence from the
GFP-OsRACKIA fusion was enhanced and appeared dif-
fusely in the cytosol (Fig. 2d). These results supported the
premise that OsRACKI1A protein was controlled by
post-transcriptional and/or translational regulation and
accumulated under salt stress.

OsRACK1A negatively regulates salt tolerance

Because both mRNA and protein levels of OsRACKIA
were induced by the high-salinity treatment, we used the
OsRACKIA-overexpressing  (OeTL3-8) and RNAI
(RiTL4-2) lines to determine whether these different
transgenic lines showed differences in performance under
salt stress versus the NTL. Under normal conditions,
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transgenic plants showed no significant difference in
growth versus the NTL. When 4-week-old plants were
stressed with 150 mM NaCl for 18 d, the RiTL4-2 plants
had more green leaves than the OeTL3-8 or NTL plants.
After 18 d of high-salt treatment, all plants were subjected
to normal irrigation (without salt stress) to allow recovery.
Only RiTL4-2 plants survived and resumed growth, form-
ing new tillers, while OeTL3-8 and NTL plants died dur-
ing the 10-d recovery period (Fig. 3a). Twenty pots of
plants were counted and the data showed that the survival
rate of RiTL4-2 plants was ~ 50%, whereas only ~ 20% of
NTL plants survived. The lowest survival rate (< 10%) was
observed in OeTL3-8 plants (Fig. 3b). After 10 d of
high-salinity treatment, the fresh weight of NTL was sig-
nificantly higher than that of OeTL3-8 and lower than
that of RiTL4-2 (Fig. 3¢c). These results supported the no-
tion that OsRACKIA increases the salt stress response in
rice.

To evaluate the effects of salt stress on cell mem-
branes, 4-week-old seedlings were treated with 150 mM
NaCl for 24, 48, or 72 h and the malondialdehyde
(MDA) content was measured. The RiTL4—-2 plants had
lower MDA contents, whereas OeTL3-8 contained more
MDA than NTL under salt stress (Fig. 3d). The MDA
contents indicated that cell membrane stability was re-
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increased in the OsRACKIA-RNAI line, versus the NTL
under high-salinity stress. Most plants showed increased
proline contents under salt-stress conditions, which was
considered to be correlated with their stress resistance.
In this study, the content of proline was increased after
salt stress in plants. Compared with NTL plants,
RiTL4-2 plants accumulated higher levels of proline and
OeTL3-8 accumulated lower levels under 150 mM NaCl
treatment (Fig. 3e). It is known that salt stress causes
chlorophyll degradation. We examined the chlorophyll
content of rice plants exposed to 150 mM NaCl. As
shown in Fig. 3f, the chlorophyll content declined after
salt stress. Compared with NTL plants, chlorophyll con-
tents in RiTL4-2 plants were higher, whereas those in
OeTL3-8 were lower under 150 mM NaCl treatment.
These results indicated that suppression of OsRACKIA
enhanced salt-stress tolerance.

OsRACK1A regulates Na* and K* levels under salt stress

An important aspect of salt tolerance is the avoidance of
Na" accumulation, and K* homeostasis is important for
this process (Zhu, 2003). Four-week-old hydroponically
grown transgenic and non-transgenic rice plants were
subjected to 150 mM NaCl for 72 h. Subsequently, the
leaves and roots were harvested at 0 h (before stress)

duced in the OsRACKIA-overexpressing line and and after 24, 48, and 72 h of salt stress, to measure Na*
b c d
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Data shown are the means + SE of three biological replicates. An asterisk indicates a significant difference (P < 0.05) versus stressed NTL




Zhang et al. Rice (2018) 11:45

and K* contents. Before the NaCl treatment, Na* and
K" levels in both shoots and roots of the plants with the
three different genotypes were similar. The level of Na*
increased continuously under salt stress in all plant lines
tested. However, RiTL4-2 plants accumulated signifi-
cantly less Na* than the NTL, whereas OeTL3-8 con-
tained more Na* in both leaves and roots (Fig. 4a). In

Page 7 of 15

contrast to the Na* levels, the K" levels declined in the
leaves and roots of all plant lines tested during salt
stress. At 72 h of salt stress, the content of K" in
RiTL4-2 plants was higher than in NTL, whereas
O€TL3-8 contained less K than NTL in leaves and
roots (Fig. 4b). These results suggested that RiTL4-2
plants might have the ability to avoid Na* accumulation
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and maintain K* homeostasis under high-salinity stress. It
is generally accepted that the ability to maintain a high
K*/Na™ ratio contributes to salt tolerance in plants (Zhu,
2003). A decreasing K"/Na* ratio was detected in the
roots and leaves of all plants under salt stress. However, a
markedly higher K'/Na® ratio was observed in both
shoots and roots of the RiTL4-2 plants than those of the
NTL and OeTL3-8 plants, whereas no significant differ-
ence was observed under normal conditions (Fig. 4a, b).
These results imply that OsRACKIA negatively regulates
rice tolerance of NaCl largely by controlling the Na* and
K" accumulation in cells.

OsRACK1A regulates endogenous ABA content and ABA-
responsive genes under salt stress

The phytohormone ABA is a crucial regulator of plant
growth and development, and plays a critical role in con-
trolling adaptive plant responses to environmental
stresses, such as drought, high salt stress, cold stress, and
pathogen infection (Cutler et al, 2010; Umezawa et al,
2010). ABA accumulation and some ABA biosynthesis
genes are upregulated by NaCl, drought, and cold stress
(Cutler et al., 2010). We determined the endogenous ABA
content of leaves under salt stress and found that the en-
dogenous ABA content was significantly lower in OeTL3—
8, and significantly higher in RiTL4-2 compared with that
of NTL (Fig. 5a). The ABA content induced under stress
conditions is regulated by the ABA biosynthesis
9-cis-epoxycarotenoid dioxygenase (NCED) genes (Xiong
et al, 2002). Our preliminary analysis showed that the
transcript level of the OsNCED4 and OsNCEDS5 genes was
dramatically induced under salt stress (Additional file 1:
Figure S2). This study showed the transcript level of
OsNCED# in RiTL4-3 was ~ 1.5-fold those in NTL and
O€TL3-38, and the transcript level of OsNCEDS was much
higher in RiTL4-3 than in NTL and OeTL3-8 under
stress conditions (Fig. 5b).

Next, we determined the transcript expression of three
ABA response genes— OsRAB16A, OsLEA3 and OsLIP9
— under salt stress. As shown in Fig. 5¢, without NaCl
treatment, the transcript levels of OsRAB16A, OsLEA3
and OsLIP9 showed no significant difference between
wild-type and transgenic plants. Upon 150 mM NaCl
treatment, transcripts of these genes accumulated sig-
nificantly in all three genotypes, while RiTL4-3 accumu-
lated more transcripts than NTL and OeTL3-8 in
response to salt stress (Fig. 5c). Because ABA is a key
regulator of stomatal opening and closure, water loss
from the detached leaves of NTL, OeTL3-8 and RiTL4—
2 was compared. As shown in Fig. 5d, water loss in
RiTL4-2 was much slower than in NTL and OeTL3-8.
These results suggested that OsRACKIA negatively regu-
lated the expression of ABA-dependent stress-inducible
genes under salt treatment conditions.
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OsRACK1A significantly changes expression of salt stress-
related genes in rice plants

Next, we evaluated the expression of stress-related genes
in NTL, OeTL3-8, and RiTL4-2 plants grown under
both control and salt-stress conditions by real-time
qPCR. As shown in Fig. 6a, under control conditions,
the dehydration-responsive element-binding protein 1
(DREB1) genes, OsDREB-A, -1B, -1C, -1E, -1Gand -1H,
and the stress-related APETALA2/Ethylene Responsive
Factor (AP2/ERF) gene AP59 were upregulated in
RiTL4-2 and downregulated in OeTL3-8, in compari-
son with NTL. When treated with 150 mM NaCl for
24 h, the transcript levels of OsDREBIA, 1B, -1C, -1E,
-1G, and OsAPS59 in RiTL4-2 were higher than those in
NTL, and the expression of OsDREB1A, -1C and
OsAP59 was lower in OeTL3-8 (Fig. 6a).

We selected another seven salt stress-responsive genes
(OsMYB2, SNACI, OsTCP19, OsTPSI, OsMAPKS,
OsSIK1, and OsCPK4) that have been reported to improve
salt-stress tolerance (Xiong and Yang, 2003; Hu et al,
2006; Ouyang et al., 2010; Li et al., 2011; Yang et al., 2012;
Campo et al,, 2014; Mukhopadhyay and Tyagi, 2015). The
expression levels of these genes were all upregulated sig-
nificantly in RiTL4-2, while the expression levels of
OsMAPKS, OsMYB2 and SNAC1 were downregulated sig-
nificantly in OeTL3-8. OsRMC has been reported to be a
negative regulator of the salt-stress response in rice
(Zhang et al., 2009; Serra et al., 2013) and the expression
of OsRMC was downregulated in RiTL4-2 (Fig. 6b). Simi-
lar expression profile of these genes occurred under
salt-stress conditions (Fig. 6b). These results may partially
explain the phenotype of RiTL4-2 plants under stress
conditions.

OsRACK1A interacts with salt-stress response proteins

As a scaffold protein, RACK1 interacts with numer-
ous proteins and plays a critical role in many funda-
mental physiological processes, including stress
responses (Zhang et al., 2013). In this study, we used
co-immunoprecipitation (co-IP) to identify novel pro-
teins that interact with OsRACK1A under both nor-
mal and salt-stress conditions. As shown in Fig. 7a
and Additional file 2: Table S1, 12 and 20 proteins
were detected to interact with OsRACKI1A directly or
indirectly in normal and stress conditions, respect-
ively. Of these 32 identified proteins, two
(Os07g37760 and Os01g25610) interacted with
OsRACKIA in both normal and salt-stress conditions
(Fig. 7a). Nine of these genes responded to NaCl
treatment (Additional file 1: Figure S3). We also used
the yeast two-hybrid assay to confirm these interac-
tions and ultimately found that six of the identified
proteins interacted directly with OsRACK1A (Fig. 7b).
Interestingly, these six proteins were all identified in
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0s05g41640, Os07g04840, and Os01g31690, which en-
code phosphoglycerate kinase, PsbP, and oxygen-evolving
enhancer protein 1, respectively, were lower in RiTL4-2
compared with NTL and OeTL3-8 in normal conditions,
whereas no significant change in the expression of these
genes was observed in NTL and transgenic plants after
NaCl treatment (Fig. 7c). The Os09g36680, which encodes
a ribonuclease T2 family domain containing protein, was
downregulated in OeTL3-8 with no treatment and
up-regulated in RiTL4-2 under salt treatment (Fig. 7c).
These results indicated that OsRACKI1A regulates stress
responses by interacting directly with many stress related
proteins.

Discussion

RACKI1 is a highly conserved scaffold protein that is
expressed ubiquitously (Zhang et al., 2013). RACKI is
involved in multiple signaling pathways, including
growth and development and responses to external en-
vironmental stresses (McCabhill et al., 2002; Zhang et al.,
2013). However, the molecular mechanisms of RACK1
in plants is still in its infancy. In plant, RACKI is in-
volved in the regulation of cell proliferation and elong-
ation, and the responses to plant hormones and
environmental factors (Chen et al., 2006; Nakashima et
al, 2008; Guo et al.,, 2009; Li et al., 2009; Zhang et al.,
2013; Zhang et al.,, 2014). The rice genome contains two
RACKI ortholog genes, OsRACKIA and OsRACKIB
(Nakashima et al, 2008). Although OsRACKIA and
OsRACKIB are similar, OsRACKIA transcript levels are
always significantly higher than those of OsRACKIB in
leaves, roots, and mature seeds (Zhang et al., 2014). Pre-
viously, we reported that OsRACKIA negatively regu-
lated the response of seed germination to exogenous
ABA and the suppression of OsRACKIA improved
drought tolerant in rice (Li et al., 2009; Zhang et al,
2014). In the present study, we showed that OsRACKIA
negatively regulated salt stress tolerance and sought to
explore the molecular mechanism(s) involved.

A circadian oscillator controls the timing of several
physiological functions in living organisms. In plants, pro-
cesses controlled by a circadian clock include the photo-
periodic induction of flowering, rhythmic leaf movements
and stomatal opening (Thines and Harmon, 2011). Recent
research also suggests that a circadian clock may contrib-
ute to plant fitness, enhancing their ability to tolerate abi-
otic stress (Grundy et al, 2015). In maize, transcripts of
many stress related genes exhibits a diurnal cycling pat-
tern (Hayes et al, 2010; Khan et al, 2010). Some salt
stress-responsive genes, such as SOSI, RD29A and
DREB2A, exhibit a 24-h period of expression in Arabidop-
sis, suggesting that salt tolerance may also be affected by
the circadian clock (Park et al, 2016a). In some cases,
other stress, such as cold and drought, modifies the
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transcription pattern of a major portion of genes showing
diurnal oscillation (Wilkins et al, 2010; Jonczyk et al,
2017). Resent evidence indicates that plants respond to
salt stress more strongly during the day than at night and
salt-induced expression of RD29A and SOS1 was much
higher in the daytime than at night (Park et al, 2016b).
We found that both mRNA and protein levels of
OsRACKIA exhibits a diurnal cycling pattern, and much
higher during the day than at night (Fig. 1a, b). However,
expression of OsRACKIA increased under salt stress and
remained high in both the light and dark (Fig. 2a, b). It
might be that higher expression levels of OsRACKI1A in
day caused more damage under salt stress.

In rice, OsRACKI1A protein is phosphorylated under
ABA and drought treatment, although the kinase re-
sponsible was not identified (He and Li, 2008; Ke et al.,
2009). Recently, Urano et al. (2015) showed that Arabi-
dopsis RACK1A (AtRACK1A) is also phosphorylated by
an atypical serine/threonine protein kinase, WITH NO
LYSINE 8 (WNKS), and phosphorylation of AtRACKIA
rendered it unstable. Interestingly, in this present study,
we found that OsRACKIA protein was controlled by
post-transcriptional or translational regulation and con-
sequently accumulated under salt stress. These results
led us to the hypothesize that phosphorylation of
OsRACKI1A does not reduce the protein stability in rice
and RACK]1 protein may play distinct roles in different
plant species. Guo and Sun (2017) found that sumoyla-
tion of Arabidopsis RACK1B (AtRACKI1B) increased
AtRACKIB  stability and its  tolerance to
ubiquitin-mediated degradation in the ABA response,
and consequently enhanced the interaction between
RACKI1B and RAP2.6. Combined, these findings illus-
trate  that  protein  stability = controlled by
post-transcriptional modification is a critical regulatory
mechanism for RACK1 in both Arabidopsis and rice.

In Arabidopsis, the clock component GIGANTEA (GI)
is involved in salt-stress responses (Kim et al., 2013). Simi-
lar to OsRACKIA, GI transcription is under circadian con-
trol and peaked at 8—10 h after the start of the day (Park
et al.,, 1999). Under normal conditions, GI interacts with
SOS2, a key component of the SOS pathway, preventing
the interaction between SOS2 and SOS3. Under salt stress
conditions, GI is degraded and the free SOS2/SOS3 com-
plex activates SOS1, a Na*/H" antiporter, to export so-
dium (Na") ions from cells (Kim et al., 2013). In the
present study, OsRACKIA also negatively regulated Na*
accumulation and subsequently maintained a low K*/Na*
ratio in rice seedlings under NaCl stress (Fig. 4a, b). We
investigated the proteins that interact with OsRACK1A
and identified six salt-stress suppressed proteins that
interacted with OsRACKI1A directly (Fig. 7a, b). Unfortu-
nately, none of these proteins were reported to be directly
involved in salt-stress responses and the relationship
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between OsRACKIA and the Na*/H" antiporter is still un-
clear. In eukaryotes, RACK1 regulates various signaling
pathways and cellular processes through its interaction
with numerous signaling proteins (Zhang et al., 2013). For
example, OsRACK1A binds the active form of Racl and
interacts with the N terminus of Rboh, RARI1, and
SGT1, to form a complex in rice innate immunity
(Nakashima et al., 2008). Similarly, OsRACKIA may
form a complex with these salt-stress responses pro-
teins, and active downstream molecules, such as
salt-stress relative transcription factor. Future studies
will reveal whether these OsRACKI1A-interaction pro-
teins are involved in salt-stress response.

Under high-salt-stress conditions, a key plant
stress-signaling  hormone, ABA, and numerous
ABA-induced stress-responsive genes products accumu-
late (Yoshida et al., 2014). The NCED genes are known
to encode key enzymes in ABA biosynthesis in plants
(Nambara and Marion-Poll, 2005). In Arabidopsis,
AtNCED3 is induced by drought and high salinity, and
the overexpression of AtNCED3 in transgenic plants en-
hanced dehydration stress tolerance (Iuchi et al., 2001).
Five NCED genes (OsNCEDI-5) have been identified in
the rice genome (Zhu et al, 2009). The qPCR analysis
showed that the OsNCED4 and OsNCEDS were induced
strongly under salt stress (Additional file 1: Figure S2),
suggesting that transcriptional regulation of the
OsNCED4 and OsNCEDS5 genes may be involved in
salt-induced ABA accumulation in rice. Previous study
has showed that OsRACKIA negatively regulated the re-
sponse of seed germination to exogenous ABA (Zhang
et al., 2014). Here we showed that the expression levels
of OsNCED4 and OsNCEDS5 were higher in the
OsRACKI1A-suppressed line (RiTL4-2) than the
non-transgenic line and the OsRACKIA-expressing line
(OeTL3-38; Fig. 5b). Additionally, the ABA content was
higher in RiTL4-2 than in NTL and OeTL3-8 (Fig. 5a),
suggesting that the OsRACKI1A protein suppressed ABA
accumulation under salt stress by regulating the expres-
sion of ABA biosynthesis genes. Some typical
ABA-dependent  stress-inducible genes, such as
OsRAB16A, OsLEA3 and OsLIP9, show higher mRNA
levels in RiTL4—-2, indicating that OsRACKIA is involved
in ABA-dependent stress pathways.

The AP2/ERF transcription factor superfamily is in-
volved in responses to biotic and abiotic stresses, the regu-
lation of metabolism, and developmental processes in
various plant species (Dossa et al, 2016). We selected
some AP2/ERF genes (OsDREB-1A, 1B, -1C, -1E, -1G,
-1H and OsAP59) and found that these AP2/ERF genes
were all upregulated in RiTL4-2 and some of them were
downregulated in OeTL3-8 (Fig. 6a). Many of the upregu-
lated AP2/ERF genes have been reported to play roles in
salt-stress tolerance. Transgenic plants overexpressing
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OsDREBIB showed higher tolerances to drought, high
salt, and freezing stresses (Dubouzet et al., 2003; Qin et
al, 2006; Mao and Chen, 2012). The OsAP59 gene was
found to be induced after exposure to drought and
high-salt conditions, and constitutive expression of
OsAP59 in rice increased the tolerance to drought and
high salinity during vegetative development (Oh et al,
2009). Some of these AP2/ERF genes, such as OsAP59,
were not induced by ABA (Oh et al.,, 2009). These results
suggested that OsRACKIA is also involved in
ABA-independent signaling in response to stress in rice.
We found some other stress-related transcription fac-
tors, such as OsMYB2, SNAC1 and OsTCP19 were
upregulated in OsRACKIA suppressed-expression
plants in both normal and stress condition (Fig. 6b).
OsMYB2-overexpressing plants were reported showing
more tolerant to salt, cold, and dehydration stresses
and more sensitive to abscisic acid than wild-type
plants (Yang et al, 2012). Interestingly, two core cir-
cadian clock components, CIRCADIAN CLOCK AS-
SOCIATED 1 (CCAl) and LATE ELONGATED
HYPOCOTYL 1 (LHY1), are also belone to MYB
transcription factor family and involved in cold stress
responses (Dong et al, 2011), suggesting that MYB
transcription factors might be molecular link between
circadian clock and stress responses. We also showed
that suppression of OsRACKIA activated several
known stress-related kinases, such as OsSIKI,
OsMAPKS, and OsCPK4 (Fig. 6b). These genes have
been reported to be induced by cold, drought, salin-
ity, ABA, and other abiotic stresses. Transgenic plants
overexpressing these genes exhibited enhanced toler-
ance to various stresses (Xiong and Yang, 2003;
Ouyang et al,, 2010; Campo et al.,, 2014). In addition,
we showed that expression of OsRMC, which negatively
regulates salt-stress tolerance in rice (Serra et al., 2013),
was suppressed in the RiTL4-2 line (Fig. 6b). Although
the signal transduction pathway involving these gene
products is unclear, we suggest that OsRACKIA partici-
pates in abiotic stress pathways, directly or indirectly, by
altering the expression of these stress-related genes.

Conclusions
In summary, results presented in this study demon-
strate that  OsRACKIA  functions as a

stress-responsive gene and OsRACKIA RNAi trans-
genic rice can significantly improve salt stress toler-
ance through ABA-dependent and -independent
pathway. As a negative regulator of salt stress re-
sponse, OsRACKIA expresses rhythmically under nor-
mal conditions and shows the loss of cycling under
salt stress. Although OsRACKIA interacts with many
salt-responsive proteins, no directly evidence links
OsRACKIA protein to salt stress related transcription
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factors, such as DREB and AP2/ERF. Further investi-
gations on the identification of the functions of
OsRACKIA interaction proteins will be helpful to
elucidate the mechanism of OsRACKIA in regulating
salt stress tolerance.

Additional files

Additional file 1: Table S2. Primers used for the qRT-PCR analysis of
various genes. Figure S1. Public microarray data showing OsRACKTA (A)
and OsRACK1B (B) expression is controlled by a circadian clock (http://
www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-275/). OsRACKTA expres-
sion in rice leaves under 16 h light/ 8 h dark (LD) or constant light (LL)
conditions and under NaCl treatment (C). Figure S2. OsNCED gene ex-
pression in rice leaves under 150 mM NaCl treatment for 12 h. Figure S3.
Quantitative RT-PCR analysis of the expression of OsRACKT interactors in
response to salt stress. (DOCX 356 kb)

Additional file 2: Table S1. Identification of OsRACKTA interacting
proteins. (XLSX 22 kb)
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