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Abstract

Background: Bakanae or foot rot disease is a prominent disease of rice caused by Gibberella fujikuroi. This disease may
infect rice plants from the pre-emergence stage to the mature stage. In recent years, raising rice seedlings in seed
boxes for mechanical transplanting has increased the incidence of many seedling diseases; only a few rice varieties
have been reported to exhibit resistance to bakanae disease. In this study, we attempted to identify quantitative trait
loci (QTLs) conferring bakanae disease resistance from the highly resistant japonica variety Wonseadaesoo.

Results: A primary QTL study using the genotypes/phenotypes of the recombinant inbred lines (RILs) indicated that
the locus qBK1WD conferring resistance to bakanae disease from Wonseadaesoo was located in a 1.59 Mb interval
delimited on the physical map between chr01_13542347 (13.54 Mb) and chr01_15132528 (15.13 Mb). The log of odds
(LOD) score of qBK1WD was 8.29, accounting for 20.2% of the total phenotypic variation. We further identified a gene
pyramiding effect of two QTLs, qBKWD and previously developed qBK1. The mean proportion of healthy plant for 31 F4
RILs that had no resistance genes was 35.3%, which was similar to that of the susceptible check variety Ilpum. The
proportion of healthy plants for the lines with only qBKWD or qBK1 was 66.1% and 55.5%, respectively, which was
significantly higher than that of the lines without resistance genes and that of Ilpum. The mean proportion of the
healthy plant for 15 F4 RILs harboring both qBKWD and qBK1 was 80.2%, which was significantly higher than that of the
lines with only qBKWD or qBK1.

Conclusion: Introducing qBKWD or pyramiding the QTLs qBKWD and qBK1 could provide effective tools for breeding
rice with bakanae disease resistance. To our knowledge, this is the first report on a gene pyramiding effect that
provides higher resistance against bakanae disease.
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Background
Bakanae disease is a disease of rice caused by Gibberella
fujikuroi that was first described in Japan and now is widely
distributed throughout Asia, Africa, North America, and
Italy (Ou 1985; Prà et al. 2010). The common bakanae
disease symptoms in rice plant are abnormal elongation
such as tall, lanky tillers with pale green flag leaves, dried-
up leaves, and infertile panicles (Mew and Gonzales 2002;
Ou 1985). Bakanae disease decreases rice grain yield by 20–
50% in Japan (Ou 1985) and 15–25% in India (Gupta et al.
2015). In Korea, 28.8% of the seedboxes for seedlings
nursery were afected with bakanae disease in 2006 (Park et

al. 2009), and 9.3% were affected in 2014. In recent years,
raising rice seedlings in seedboxes for mechanical
transplanting has coincided with many seedling disease
problems that were not prevalent in open-field nurseries
used for manual transplanting. Bakanae disease has become
a serious problem in the breeding of hybrid rice, which in-
volves increased use of seedbeds for plant growth (Li and
Luo 1997; Yang et al. 2003). The most common manage-
ment practice for bakanae is treating the seeds with hot
water or fungicides. The hot water immersion method
(Hayasaka et al. 2001) is ineffective for severely infected rice
seeds because the hot water does not make contact with
the pericarp of the rice seed. The application of fungicides
cannot fully control fungal spores either, and fungicide
resistant strains of bakanae have been reported (Ogawa
1988; Park et al. 2009; Kim et al. 2010; Lee et al. 2011).
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Cultivation of resistant cultivars potentially represents a
cost-effective and environmentally friendly way to control
this disease. However, extensive screening for bakanae
resistant rice germplasm has identified only a few rice
varieties (Li et al. 1993; Lv 1994; Khokhar and Jaffrey 2002;
Kim et al. 2014).
It is necessary to identify resistance genes that can be

used for marker-assisted selection in rice breeding and for
understanding the mechanisms of resistance. Several
quantitative trait loci (QTL) associated with bakanae dis-
ease resistance have been identified in previous studies.
Yang et al. (2006) identified two QTLs on chromosome 1
and chromosome 10 by in vitro evaluation of the Chunjiang
06/TN1 doubled haploid population, which explained
13.4% and 13.3% of phenotypic variance. Hur et al. (2015)
identified a major QTL, qBK1, from 168 BC6F4 near iso-
genic lines generated by crossing the resistant indica variety
Shingwang with the susceptible japonica variety Ilpum.
qBK1 is located within a 520 kb region between simple se-
quence repeat (SSR) markers RM8144 (19.30 Mb) and
RM11295 (23.72 Mb) based on the Nipponbare genome
sequence. The RM9 marker showed the highest log of odds
(LOD) score (33.21) and accounted for 65% of the pheno-
typic variation. Fiyaz et al. (2016) identified three QTLs,
qBK1.1, qBK1.2, and qBK1.3, which accounted for 4.76%,
24.74%, and 6.49% of phenotypic variation, respectively.
Varieties with a single resistance gene may lose their resist-
ance by the emergence of new population of fungal isolates
(Wang and Valent 2009). Four Fusarium species including
F. andiyazi, F. fujikuroi, F. proliferatum, and F. verticil-
lioides from the G. fujikuroi species complex have been re-
ported to be associated with bakanae disease (Wulff et al.
2010). Hence, identifying new resistance genes from diverse
sources is important for rice breeding programs to defend
against bakanae disease by enhancing the resistance level
and/or help to overcome the breakdown of resistance genes.
In this study, we generated 200 recombinant inbred lines
(RILs) from a cross between a resistant (Wonseadaesoo) and
a susceptible (Junam) japonica variety using insertion/dele-
tion (InDel) and tetra markers (Ye et al. 2001), which were
developed based on resequencing of the two parental var-
ieties, to identify new QTLs for bakanae disease resistance in
rice. The results of this study are expected to provide useful
information for developing resistant rice lines that contain
single or multiple major QTLs by pyramiding the resistance
genes for bakanae disease.

Results
Bakanae disease bioassay in parental rice varieties
To investigate the host resistance to bakanae disease, the
proportion of healthy plants in Wonseadaesoo (resistant)
and Junam (susceptible) were measured after inoculation
with virulent F. fujikuroi isolate CF283 (Kim et al. 2014).
Junam showed typical bakanae disease symptoms such as

abnormal elongation, pale green leaves, or drying up of the
whole plantlets as compared to Wonseadaesoo (Fig. 1a).
The proportion of healthy Junam and Wonseadaesoo
plants was 11.0% and 65.7%, respectively (Fig. 1b).
We generated green fluorescent protein (GFP)-tagged F.

fujikuroi CF283 isolate and inoculated two rice varieties for
microscopic observation. Ten days after inoculation, infected
plants from each variety with typical disease symptoms were
subjected to a confocal microscopy analysis. Confocal im-
aging of radial sections of the basal stem showed that the
fungus penetrated the stele in both varieties, and was more
abundant in the susceptible Junam variety than it was in the
resistant Wonseadaesoo (Fig. 2).

QTL analysis and mapping of bakanae disease resistance
using 200 F4 RILs
A bioassay for bakanae disease was conducted with 200 F4
RILs derived from the cross Junam/Wonseadaesoo using
the F. fujikuroi isolate CF283. The proportion of healthy
plants for the 200 F4 RILs exhibited a continuous distribu-
tion (0–100%; Fig. 3). The average proportion of healthy
Junam plants was 10.9% (0–12.5%; n = 11) and that of
Wonseadaesoo was 56.7% (51.9–72.2%; n = 11).
A genotyping by sequencing (GBS) experiment detected

16,941 single-nucleotide polymorphism (SNP) and 1591

Fig. 1 Phenotype (a) and proportion of healthy plants (b) in
parental varieties infected with the Fusarium fujikuroi isolate CF283
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InDel loci between Junam and Wonseadaesoo (data not
shown). Finally, 135 InDel markers that showed a
polymorphism in 3% agarose gel were selected from 277
InDel markers designed from resequencing data and a
polymorphism survey of the whole chromosomes of Junam

and Wonseadaesoo. A genetic linkage map of Junam and
Wonseadaesoo was constructed with 135 polymorphic
markers that covered a total length of 2134 cM with an
average interval of 15.8 cM (Additional file 1: Figure S1).
Primary QTL mapping showed that a significant QTL associ-
ated with bakanae disease resistance at the seedling stage was
located between the InDel markers, chr01_10336087 and
chr01_26628298 on chromosome 1, and it was designated
qBK1WD. The LOD score of qBK1WD was 8.29, which
accounted for 20.2% of the total phenotypic variation
(Table 1). The location of qBK1WD was narrowed down by
analyzing the chromosome segment introgression lines in
the region detected from primary mapping. The qBK1WD

region from the primary mapping was further analyzed

Fig. 2 Confocal imaging of Wonseadaesoo and Junam rice plants infected with CF283GFP Fusarium fujikuroi isolates. a Radial and (b) longitudinal
sections of the basal stem (Scale bar = 20 μm)

Fig. 3 Frequency distribution of the proportion of healthy plants (n= 200)
in 200 F4 recombinant inbred lines

Table 1 Quantitative trait loci (QTLs) detected by composite
interval mapping for bakanae disease resistance
QTL Chromosome Left

marker
Right
marker

LOD PVE
(%)

Additive
effect

qBKWD 1 chr01_10336087 chr01_26628298 8.29 20.2 −9.53

LOD log of odds score, PVE percentage of phenotypic variation explained
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with 46 additional InDel markers for the insertion/dele-
tion sites and 15 tetra markers for the SNPs based on the
resequencing data of the Wonseadaesoo and Junam
varieties. Seven InDel markers and three tetra markers
were selected as polymorphic markers between the par-
ents to narrow down the position of the qBK1WD region
(Additional file 2: Table S1 and Table S2).
Finally, seven homozygous reczombinants were selected

from the F4:5 lines using 10 markers in the 16.29 Mb re-
gion between the InDel markers chr01_10336087 and
chr01_2662898 (Figs. 4 and 5). The phenotypes of the re-
combinant lines indicated that the locus conferring resist-
ance to qBK1WD was approximately a 1.59 Mb interval
delimited on the physical map between chr01_13542347
(13.54 Mb) and chr01_15132528 (15.13 Mb).

Gene pyramiding effect of two bakanae disease
resistance QTLs, qBKWD and qBK1
To identify the pyramiding effect of the two major QTLs
qBKWD and qBK1, we generated 314 F4 RILs from a cross
between Wonseadaesoo (harboring qBKWD) and YR24982–
9-1 (harboring qBK1), and further selected 231 F4 lines
showing homogeneous genotype with the molecular
marker chr01_15132528 for qBKWD (in this study) and
RM9 for qBK1 (Hur et al. 2015). The mean proportion of

healthy plant for the F4 RILs plants with no resistance gene
(aabb, 31 lines) was 35.3% (Table 2), which was similar to
that of the susceptible control variety Ilpum (the mean of
the 22 replicates was 39.2%; data not shown). The mean
proportion of healthy plant in the lines with only qBKWD

(aaBB, 93 lines) and qBK1 (AAbb, 92 lines) was 66.1% and
55.5%, respectively, which was significantly higher than that
of the lines that had no resistance gene (aabb) or that of
Ilpum. The mean proportion of healthy plant in the lines
with both qBKWD and qBK1 (AABB, 15 lines) was 80.2%,
which was significantly higher than that of the lines with a
single QTL, qBKWD (aaBB) or qBK1 (AAbb).

Discussion
Identification of qBKWD, a major QTL against bakanae
disease resistance
Rice varieties with a single resistance gene are at an in-
creased risk of being overcome by new virulent strains.
Therefore, it is essential to improve various genetic re-
sources against bakanae disease in rice breeding programs.
In our previous study (Hur et al. 2016), the japonica germ-
plasm Wonsaedaesoo showed the highest level of resistance
(ratio of healthy plants was 97%) among the 254 rice germ-
plasm accessions examined, and it showed a higher level of
resistance than that of another bakanae-resistant plant

Fig. 4 Quantitative trait locus (QTL) analysis of qBK1WD using recombinant inbred lines (RILs) derived from a cross between Wonseadaesoo and
Junam rice plants. a In primary mapping, qBK1WD was identified in a 16.29 Mb region between the InDel markers chr01_10336087 and
chr01_26628298 on chromosome 11. b Location of qBK1WD was narrowed down to 1.59 Mb by finer mapping using homozygous recombinants.
The proportion of healthy plant were calculated from biological replications. Values (%) of the proportion of healthy plant with different letters
are significantly different by Duncan’s multiple range test at P = 0.05
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Shingwang (ratio of healthy plants was 77%). In this study,
we have attempted to identify new resistance loci from
Wonseadaesoo to improve bakanae disease resistance in
rice breeding programs. Our GBS results detected 16,941
SNP and 1571 InDel loci between Wonseadaesoo and
Junam. In the primary mapping, qBKWD was detected in
the 16.29 Mb region between the physical positions 10.33
and 26.62 Mb on chromosome 1.
We further selected four additional InDel markers and

three tetra markers to narrow down the position of the
qBK1WD region. Tetra-primer amplification has been de-
scribed as an efficient and low-cost method for SNP genotyp-
ing (Ye et al. 2001, Chiapparino et al. 2004). This method
uses two locus-specific outer primers that asymmetrically
flank the SNP under investigation and two allele-specific
inner primers. The different product sizes produced by one
inner and outer primer pairs can be easily detected by poly-
acrylamide or agarose gel electrophoresis. Finer mapping re-
vealed that the QTL qBKWD is located in an approximately
1.59 Mb long interval between 13.54 and 15.13 Mb on
chromosome 1 (Fig. 4).
Five QTLs related to bakanae disease resistance were

previously identified on chromosome 1. Hur et al. (2015)
identified qBK1, a major QTL from the Korean indica

variety Shingwang. The qB1, identified by Yang et al.
(2006), is located between RM7180 and RM486 (approxi-
mately 34 Mb long region). The qBK1 (Hur et al. 2015) is
located between RM8144 and RM11295 at the physical
position of 23.2 and 23.72 Mb; this region is shared with
qBK1.1, located between RM9 and RM11282 (Fiyaz et al.
2016). Both qBK1.2 and qBK1.3 are located between
RM10153 and RM5336, which correspond to the physical
positions of 3.10 and 3.36 Mb, and from RM10271 to
RM35 at the physical position of 4.65 Mb regions (Fiyaz et
al. 2016). Therefore, qBKWD is a novel QTL for bakanae
disease resistance, and which does not overlap with any of
qB1 (Yang et al. 2006), qBK1 (Hur et al. 2015), qBK1.1
qBK1.2, or qBK1.3 (Fiyaz et al. 2016).

Application of marker-assisted selection (MAS) for the
pyramiding of QTLs, qBKWD + qBK1
Gene pyramiding through conventional phenotype assays
in breeding crops is considered to be difficult and often im-
possible due to the dominance and epistatic effects of genes
governing disease resistance and the limitations related to
all year-round screening (Sundaram et al. 2009). Major
QTLs for bakanae disease resistance were transferred into
japonica rice by backcross breeding and marker-assisted se-
lection, which would thus reduce the amount of time and
labor-intensive bioassays required for the backcross proced-
ure. Pyramiding multiple resistant genes in a single plant
might confer higher and/or durable resistance against baka-
nae disease. The effects of pyramiding resistance genes have
been investigated for several plant-microbe interactions.
Pyramiding three bacterial blight resistance genes resulted
in a high level of resistance and was expected to provide
durable pathogen resistance (Singh et al. 2001, Pradhan et
al. 2015). In other cases, pyramiding of resistant genes

Fig. 5 Phenotypic responses to bakanae disease in seven homozygous recombinants for finer mapping

Table 2 Mean proportion of healthy plants harboring individual
gene combinations infected with Fusarium fujikuroi isolate CF283

Gene
combination

AABB
(qBK1 + qBKWD)

aaBB
(qBKWD)

AAbb
(qBK1)

aabb Total

No. of lines 15 93 92 31 231

Mean proportion
of healthy plants

80.2a 66.1b 55.5c 35.3d 59.3

Means with different characters of superscripts (a, b, c and d) indicate
significant differences at P = 0.05
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resulted in a level of resistance that was comparable to or
even lower than that by a single gene. For example, Yasuda
et al. (2015) reported that disease suppression in rice lines
carrying pairs of resistance genes against rice blast is com-
parable to that observed in lines containing the gene with a
stronger suppressive effect. Moreover, the number of le-
sions and the percentage of diseased leaf area in lines with
several gene combinations such as pi21 + Pi34 and pi21 +
Pi35 were significantly lower than those in lines with indi-
vidual resistance genes. Therefore, investigating the effect
of pyramiding genes involved in bakanae disease resistance
is important to enhance the level of resistance in rice.
In our previous study of bakanae disease resistance,

qBK1 was mapped between the flanking markers RM8144
and RM11295; the RM9 marker had the highest LOD
score and was therefore selected for marker-assisted fore-
ground selection of qBK1 into elite breeding materials to
acquire bakanae disease resistance (Hur et al. 2015). The
results presented herein revealed that rice lines harboring
qBKWD showed a higher level of resistance than those with
qBK1. Furthermore, the pyramided rice lines harboring
qBKWD + qBK1 had a much higher level of resistance than
those harboring either qBKWD or qBK1.
The development of a rice variety with a higher level

of resistance against bakanae disease is a major challenge
in many countries (Cumagun et al. 2011, Bashyal et al.
2014, Fiyaz et al. 2016, Hur et al. 2015). The study
clearly establishes the utility of MAS in gene pyramiding
such as that of the two-gene combination qBKWD +
qBK1, which can achieve higher resistance in many
bakanae disease prone rice growing areas.

Conclusions
Introducing qBKWD and pyramiding the QTLs qBKWD and
qBK1, along with the utilization of the MAS could provide
tools for the breeding of rice varieties with bakanae disease
resistance. Further fine mapping studies will be needed to
determine the actual candidate gene of the qBKWD QTL by
using additional molecular markers and recombinants.

Methods
Plant materials
Two rice varieties, the bakanae disease resistant japonica
variety Wonseadaesoo and the susceptible japonica variety
Junam, were used in this study. Wonseadaesoo was selected
as the foremost resistant rice germplasm from 500 varieties
screened with a newly developed fast and reproducible in-
oculation method for accurate evaluation of rice bakanae
disease resistance (Kim et al. 2014; Hur et al. 2016). We gen-
erated 200 F2:4 RILs from a cross between Wonseadaesoo
and Junam for QTL analysis. To identify the pyramiding ef-
fect of the two major QTLs qBKWD and qBK1, 314 F4 RILs
were further generated from a cross between Wonseadaesoo
and YR24982–9-1 harboring qBKWD and qBK1, respectively.

YR24982–9-1 is a BC5F5 near isogenic line carrying qBK1
selected from backcross lines between Shingwang as the
donor, and Ilpum as the recurrent parent (Hur et al. 2015).

Evaluation of bakanae resistance
The evaluation of bakanae disease was performed using a
method modified from that described by Kim et al. (2014)
and Hur et al. (2015, 2016). Our previous study revealed that
11 varieties including Wonseadaesoo were resistant to baka-
nae disease among 254 rice germplasm accessions examined
for infection with F. fujikuroi isolate CF283 (Hur et al. 2016).
The F. fujikuroi isolate CF283 was inoculated in potato dex-
trose broth (PDB) and cultured at 26 °C under continuous
light for one week. The fungal spore concentration was ad-
justed to 1 × 106 spores/mL with a hemocytometer to obtain
standardized inoculums. Forty seeds per line were placed
into a tissue-embedding cassette (M512, Simport, Beloeil,
QC, Canada). The seeds in the tissue-embedding cassette
were then surface sterilized in a hot water bath (57 °C) for
13 min and allowed to drain before they were soaked in a co-
nidial suspension in another tray for 3 d at 26 °C with gentle
shaking four times a day. After inoculation, 30 seeds per line
were sown in nursery bed soil in a seedling tray. The
inoculated seedlings were grown in a greenhouse at 28 ± 5 °
C during the day and 23 ± 3 °C at night, in a 12 h light/dark
cycle. The response to bakanae disease was evaluated by
calculating the proportion of healthy plants in a given plot
one month after sowing. Healthy and unhealthy plants were
classified by the method described by Kim et al. (2014).
Plants with the same phenotype as untreated plants or slight
elongated seedlings with no thinness or yellowish coloring
after infection were regarded as healthy plants. This method
is fast, reproducible, and accurate in evaluating bakanae
disease resistance in rice when compared to methods using
direct indicator of bakanae disease resistance such as shoot
elongation after GA treatment (Kim et al. 2014).

Generation of transgenic F. fujikuroi strains carrying
green fluorescent protein (GFP)
To investigate the infection process of F. fujikuroi in rice,
GFP was introduced into the CF283 isolate as previously
described (Lee et al. 2008). In brief, a DNA fragment
(3.4 kb) of a cassette including GFP and hygromycin resist-
ance genes was amplified from the pIGPAPA plasmid
(Horwitz et al., 1999), which carries the gene encoding GFP
fused to the Neurospora crassa isocitrate lyase promoter
and hygB fused to the Aspergillus nidulans TrpC promoter,
with primers ICL-F1 (5′-GGGCCCCACACGGACT-
CAAAC-3′) and HYG-F1 (5′-GGCTTGGCTGGAGC-
TAGTGGAGG-3′). The fragment was directly introduced
into CF283 protoplasts with a polyethylene glycol-mediated
method (Lee et al. 2002). Transformed CF283GFP constitu-
tively expressing GFP had similar pathogenicity, growth,
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conidiation, and pigmentation to that of untransformed
CF283 isolate.

Microscopy
The disease symptoms of 10-day-old plants infected with
CF283GFP isolate were observed by confocal micros-
copy. Symptomatic tissues were analyzed using a Zeiss
510 laser scanning confocal microscope (Carl Zeiss Mi-
croscopy GmbH, Jena, Germany). The GFP was excited
with a 488 nm excitation line and detected with a BP
500–530 IR emission filter.

Selection of InDel markers from sequencing data
The number of polymorphic SSR markers was not suffi-
cient for japonica/japonica mapping populations. Only
four out of 100 SSR markers from the Gramene database
(http://www.gramene.org) showed polymorphic differ-
ences between Wonseadaesoo and Junam varieties in
our preliminary test for marker survey. We re-
sequenced Wonseadaesoo and Junam by GBS, and se-
lected 135 polymorphic InDel markers that could differ-
entiate the genotypes of Wonseadaesoo and Junam using
agarose gel electrophoresis from 11,393 InDel loci be-
tween the two varieties covering the 12 rice chromo-
somes. The PCR cycling conditions for InDel markers
were 2 min at 94 °C, followed by 35 cycles at 94 °C for
20 s, 55 to 60 °C for 30 s, and 72 °C for 40 s, and a final
extension at 72 °C for 7 min. The PCR cycling condi-
tions for tetra primers were as follows: 5 min at 94 °C,
followed by 35 cycles at 94 °C for 30 s, 60 to 65 °C for
40 s, and 72 °C for 1 min, and a final extension at 72 °C
for 7 min. The amplified products were separated using
a 3% agarose gel electrophoresis and visualized with
ethidium bromide.

QTL and statistical analysis
The 200 F2:4 RILs that were derived from a cross be-
tween Wonseadaesoo and Junam were used for QTL
analysis. The QTL analysis was performed by composite
interval mapping with QTL IciMapping v4.0.6.0 software
(Meng et al. 2015). LOD threshold of 7.2 was used to
confirm the presence of putative SSR markers associated
with bakanae disease resistance. The percentage of trait
variation explained by a QTL and the additive effects
were also estimated by QTL IciMapping program (Meng
et al. 2015). Statistical differences between means were
analyzed using Duncan’s multiple range test after one-
way analysis of variance (ANOVA). The level of sig-
nificance was designated at P < 0.05 and determined
using the SAS 9.4 program (SAS Institute Inc., Cary,
NC, USA).

Additional files

Additional file 1: Figure S1. Linkage map constructed with 200 F4
recombinant inbred lines (RILs) derived from a cross between
Wonseadaesoo and Junam rice plants (TIFF 4376 kb)

Additional file 2: Table S1. InDel markers used for the fine mapping of
qBKWD. Table S2. Tetra markers used for the fine mapping of qBKWD (DOC 36 kb)
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