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Abstract

Background: Grain appearance quality is a main determinant of market value in rice and one of the highly important
traits requiring improvement in breeding programs. The genetic basis of grain shape and endosperm chalkiness have
been given significant attention because of their importance in affecting grain quality. Meanwhile, the introduction of
NGS (Next Generation Sequencing) has a significant part to play in the area of genomics, and offers the possibility for
high-resolution genetic map construction, population genetics analysis and systematic expression profile study.

Results: A RIL population derived from an inter-subspecific cross between indica rice PYZX and japonica rice P02428
was generated, based on the significant variations for the grain morphology and cytological structure between these
two parents. Using the Genotyping-By-Sequencing (GBS) approach, 2711 recombination bin markers with an average
physical length of 137.68 kb were obtained, and a high-density genetic map was constructed. Global genetic mapping
of QTLs affecting grain shape and chalkiness traits was performed across four environments and the newly identified
stable loci were obtained. Twelve important QTL clusters were detected, four of which were coincident with the
genomic regions of cloned genes or fine mapped QTL reported. Eight novel QTL clusters (including six for grain shape,
one for chalkiness, and one for both grain shape and chalkiness) were firstly obtained and highlighted the value and
reliability of the QTL analysis. The important QTL cluster on chromosome 5 affects multiple traits including circularity
(CS), grain width (GW), area size of grain (AS), percentage of grains with chalkiness (PGWC) and degree of endosperm
chalkiness (DEC), indicating some potentially pleiotropic effects. The transcriptome analysis demonstrated an available
gene expression profile responsible for the development of chalkiness, and several DEGs (differentially expressed
genes) were co-located nearby the three chalkiness-related QTL regions on chromosomes 5, 7, and 8. Candidate genes
were extrapolated, which were suitable for functional validation and breeding utilization.

Conclusion: QTLs affecting grain shape (grain width, grain length, length-width ratio, circularity, area size of grain, and
perimeter length of grain) and chalkiness traits (percentage of grains with chalkiness and degree of endosperm
chalkiness) were mapped with the high-density GBS-SNP based markers. The important differentially expressed genes
(DEGs) were co-located in the QTL cluster regions on chromosomes 5, 7 and 8 affecting PGWC and DEC parameters.
Our research provides a crucial insight into the genetic architecture of rice grain shape and chalkiness, and acquired
potential candidate loci for molecular cloning and grain quality improvement.
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Background
The production and consumption of rice is concentrated
in Asia where more than 90 % of the world’s rice is
grown and consumed (Muthayya et al. 2014; Kong et al.
2015; Jones and Sheats 2016). Appearance (including
grain shape and endosperm chalk), cooking properties
and texture time were the most important traits affect-
ing grain quality (Fitzgerald et al. 2009). As one of the
major aspects of grain quality, grain appearance affects
market demand significantly (Tanabata et al. 2012). Even
though preferences relating to grain quality properties
vary across countries and regions (Calingacion et al.
2014; Concepcion et al. 2015), consumers typically desire
rice with uniform shape and translucent endosperm,
therefore the quality of appearance directly affects con-
sumer acceptance (Zhao et al. 2015). Grain shape and
chalkiness have attracted significant attention in rice
genetic research, however, as a practical matter, grain ap-
pearance quality is mostly conditioned by quantitative
trait locus QTL, representing a major problem for rice
improvement programs and production.
Grain shape, widely accepted as a complex quantitative

trait, is usually measured as grain length, width, thick-
ness and length-to-width ratio (Bai et al. 2010). Further-
more, digital imaging technology was introduced for
computational methods, which could enable us to auto-
matically measure the grain shape parameters of circu-
larity, seed area and perimeter length, etc. (Tanabata et
al. 2012). Over the past thirty years, QTL mapping and
association analysis have become widely used for analysis
of grain appearance traits (Bai et al. 2010; Han and
Huang 2013; Huang et al. 2013). By utilizing a variety of
mapping populations, such as F2, recombinant inbred
lines (RILs), backcross and doubled haploid (DH), many
QTLs associated with these traits have been identified
(Huang et al. 2013). Bai et al. (2010) identified 28 QTLs
related to grain shape using a RIL population derived
from the cross between japonica and indica rice, and
suggested that a mapping population derived from two
contrasting parents in grain shape is expected to give
rise to a larger number of QTLs. By using map-based
cloning strategies, several valuable genes regulating grain
shape have been isolated, including GS3 (Fan et al.
2006), GW2 (Song et al. 2007), GS5 (Weng et al. 2008),
qSW5 (Shomura et al. 2008), OsSPL16 (Wang et al.
2012), qGL3.1/qGL3 (Qi et al. 2012; Zhang et al. 2012),
GS6 (Sun et al. 2013), GW7 (Wang et al. 2015a), SLG7
(Zhou et al. 2015b) and GL7 (Wang et al. 2015b), which
have enhanced our knowledge of the molecular regula-
tory mechanisms responsible for grain shape and enables
breeders to develop high-yield varieties with improved
grain-quality (Wang et al. 2015b).
Chalkiness is the other appearance-related trait that af-

fects consumer acceptance of rice (Fitzgerald et al.

2009). Grain chalk is an important indicator of rice qual-
ity evaluation and a highly undesirable quality trait in
marketing and consumption of the rice grain (Li et al.
2014b). As a polygenic quantitative trait with complex
inheritance pattern, chalkiness is highly influenced by
the environment. Thus the genetic basis of grain chalki-
ness is still poorly understood, even though many QTLs
for chalkiness or related components have also been
identified (http://www.gramene.org). Peng et al. (2014)
mapped multiple QTLs associated with six chalkiness
traits (chalkiness rate, white core rate, white belly rate,
chalkiness area, white core area, and white belly area)
using five populations and suggested that most of the
QTLs clustered together and could be detected in differ-
ent backgrounds. Two loci controlling PGWC were
mapped by Zhou et al. (2009), and the qPGWC-7 was
narrowed to a 44-kb region. Chalk5, regulating grain
chalkiness was isolated by Li et al. (2014b), which en-
codes a vacuolar H+-translocating pyrophosphatase (V-
PPase) with PPi hydrolysis and H+-translocation activity.
Elevated expression of Chalk5 increases chalkiness of
the endosperm by disturbing the pH homeostasis in the
endomembrane trafficking system in developing seeds,
which affects the biogenesis of protein bodies coupled
with a great increase in small vesicle-like structures,
thus forming air spaces among endosperm storage
substances, resulting in chalky grain (Li et al. 2014b).
However, the regulation pathway and interaction
mechanisms of rice chalkiness associated genes re-
main unclear.
For traditional QTL mapping, molecular marker geno-

typing was time consuming and labor-intensive (Chen et
al. 2014a). Low-throughput molecular markers such as
simple sequence repeats (SSRs) were the most com-
monly used for linkage maps construction in rice QTL
mapping analysis. They are mostly of low density and
not able to provide precise and complete information
about the numbers and locations of the QTLs control-
ling the interesting traits (Yu et al. 2011). Single nucleo-
tide polymorphisms (SNPs) are currently the marker of
choice due to their large numbers in virtually all popula-
tions of individuals (Kumar et al. 2012) and next-
generation sequencing (NGS) has enabled the discovery
of numerous SNPs for many plant species. Therefore,
high-density genetic maps based on SNP markers are
achievable and can be developed to improve the effi-
ciency and accuracy of gene or QTL mapping (Li et al.
2014a). In rice, previous studies have demonstrated that
the improved quality and resolution of the linkage map
based on sequencing-based SNP has greatly facilitated
QTL dissection (Huang et al. 2009; Yu et al. 2011; Gao
et al. 2013; Zhang et al. 2015).
In this study, we demonstrate the discrepancy in the

morphology and cytological structure of two contrasting
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genotypes and the phenotypic variance of the grain
shape and chalkiness traits across a RIL population.
Using NGS, a high-density genetic map was constructed
based on the new developed bin markers. The QTLs as-
sociated with grain shape and chalkiness were identified
under four different environments. Moreover, we per-
formed transcriptome expression profiling and identified
differentially expressed genes located in the chalkiness-
related QTL regions, providing valuable information for
candidate gene verification and dissection of gene regu-
latory networks affecting rice grain appearance quality.

Results
The grain appearance and cytological difference between
PYZX and P02428
Considerable distinct variations in panicle structure,
grain shape and chalkiness traits between PYZX and
P02428 were observed (Fig. 1). PYZX showed much lon-
ger and slenderer grain, with limpid kernels, whereas the
grain of P02428 was wide and short, along with chalky
kernel. The grain appearance traits, including grain
length, grain width, the ratio of grain length and width,
circularity, area size of grain, and perimeter length of
grain for grain shape parameters, and chalk property in-
cluding percentage of grain with chalkiness and degree
of endosperm chalkiness were examined under four en-
vironments (Table 1 and Additional file 1: Table S1).
The GW and GL of PYZX were at an average of
2.26 mm and 12.17 mm, whereas averages were
3.75 mm and 7.16 mm respectively for P02428. Thus,
the LWR of PYZX was almost 3 times the level of
P02428, and the CS of the latter was about 2 times
greater than the former. Extreme differences in PGWC

(0.95 and 91.67 % on avg. for PYZX and P02428 respect-
ively) and DEC (0.09 and 54.16 at avg. for PYZX and
P02428 respectively) between parental genotypes were
detected continuously across all environments.
Microscopic observation with a cross-section of spike-

lets indicated that P02428 contained substantially higher
cell numbers when compared to that of PYZX, with only
an insignificant increase in cell length (Fig. 2a, b). A
scanning electron microscope investigation of outer
glume surfaces demonstrated a significant increase in
cell numbers and decrease in cell length for P02428
compared to PYZX (Fig. 2c, d). This histological analysis
established the major origins of the observed grain shape
and size variation between the parental lines. Transverse
sections of the endosperm bellies of mature seeds were
also examined using scanning electron microscopy, and
revealed that the endosperm of chalky grains of P02428
contained loosely packed starch granules with large air
spaces, while those of PYZX were filled with densely
packed granules (Fig. 2e).

Phenotypic variation of grain shape and chalkiness
parameters in RIL population
Generally, the RIL population exhibited an extremely
wide variation in rice grain shape and chalkiness traits
and continuous distributions were observed for all eight
investigated traits (Fig. 3), consistent with quantitative
traits controlled by multi-genes. All of the grain shape
related parameters were evenly distributed as single peak
patterns, whereas the phenotypic values of PGWC and
DEC were exhibited in the specific asymmetric distrib-
uted pattern. Furthermore, PGWC and DEC for the RIL
population also showed higher standard deviations

Fig. 1 Phenotypic differences between PYZX and P02428 (a) panicle (scale bar: 50 mm), (b) grain shape (scale bar: 3 mm), and (c) milled grains
(scale bar: 3 mm)
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Table 1 Phenotypic performances and correlation coefficients among the grain shape and chalkiness traits in the RIL population

Phenotypic performances

Lines GW (mm) GL (mm) LWR CS AS (mm2) PL (mm) PGWC (%) DEC

PYZX Mean 3.002 9.826 3.714 0.548 20.848 23.295 44.446 25.334

S.D 0.043 0.171 0.116 0.003 0.842 0.278 0.460 0.043

P02428 Mean 3.754 7.163 1.837 0.729 19.425 18.644 91.667 54.158

S.D 0.087 0.225 0.161 0.008 0.642 0.747 4.659 4.192

RILs Mean 2.743 9.404 3.461 0.516 19.650 21.950 28.260 19.430

S.D 0.028 0.161 0.026 0.002 0.588 0.359 5.936 7.989

Correlation coefficients

GW −0.378b −0.766b 0.822b 0.557b −0.125b 0.556b 0.357b

GL 0.759b −0.760b 0.608b 0.919b −0.130a −0.038

LWR −0.886b −0.047 0.669b −0.462b −0.248a

CS 0.043 −0.672b 0.455b 0.286b

AS 0.702b 0.374b 0.298b

PL −0.049 −0.014

PGWC 0.626b

a, b significant at the level of 0.05 and 0.01, respectively

Fig. 2 Cellular analyses of spikelet hull and endosperm of PYZX and P02428 grains. a Cross-section of spikelet hull. Upper: cross-section of spikelet hull
(100×). Dotted line indicates position of cross-section. Lower: magnified view of spikelet hull cross-section. b Comparison of total cell number and mean
cell length in the cross-section of outer glume cell layers of spikelet hull. c Scanning electron microscopy photos of outer glume surfaces (500×).
d Comparison of total cell number and mean cell length in the outer glume surface of spikelet hull. e Scanning electron microscopy images of transverse
sections from the endosperm bellies of mature seeds (3000×). ***P< 0.001; Student’s t test was used to generate the P values in (b) and (d)
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(Table 1), indicating that they are significantly affected by
environments. For GW, GL, LWR and CS, the average
value of traits measured in the RIL population was be-
tween the two parental lines, and none of the individual
lines exhibit values that surpass either P02428 or PYZX. A
large amount of variation and the greatest transgressive
segregation was observed for the trait of AS.
The correlation among the grain shape and chalkiness

parameters in the RIL population was analyzed (Table 1).
The results showed that significant correlations were de-
tected between grain shape and chalkiness trait. PGWC
and DEC were positively correlated with GW, CS,
and AS, while negatively correlated with LWR. The
correlation coefficient between PGWC and DEC was
high (r = 0.626). For grain shape traits, CS, AS, and
PL were significantly correlated with GW and GL
concurrently. We also found a considerably high posi-
tive correlation between LWR and CS (r = 0.886).

Genotyping by sequencing and bin markers
establishment
In this study, a total of 83.88 Gb high-quality sequence data
from 559,213,384 pair-end reads was obtained and about
97.48 % of those reads were mapped to the Nipponbare ref-
erence genome. For 192 RILs individuals, total mapped re-
gions covered by the captured fragments were about
~7.0 % of the genome sequence and with a coverage depth
of ~11.76× on average for the captured regions. Initial ana-
lysis identified 1,534,036 SNPs between the two parents
(see Additional file 1: Table S2 for annotation statistics of
location) of which 1,334,454 were consistent with the “aa ×
bb” type (presence of polymorphism between the genotypes
of parents and both of them were homozygous) were

selected for further analysis. Genotypes of the RIL individ-
uals at these SNP sites were determined, and 123,982 loci
with more than 4 base depth remained. After filtering for
abnormality, a total of 85,742 high-quality SNPs were vali-
dated for recombinant event determination.
Consecutive SNPs were examined (with a sliding win-

dow size of 15 SNPs) and the same genotypes were
lumped into recombination bins. Bins with an interval of
less than 300 kb and the number of sequenced SNPs fewer
than five were masked as missing data to avoid false
double recombinations (Xie et al. 2010). Adjacent bins of
the same genotype across the entire RIL population were
merged and transition between two different genotype
bins was determined as a breakpoint. After this process-
ing, a total of 2711 recombination bin markers along the
12 chromosomes were adopted to construct a bin map for
the RIL population (Fig. 4). The average physical length
between the recombination bin markers was 137.68 kb,
and the average annotated gene loci among the markers
ranged from 15.34 for Chr04 to 22.09 for Chr01 (Table 2).
Using the R/qtl package (est.map function with Lander-
Green algorithm), we constructed a genetic linkage map
with an average distance of 0.86 cM between adjacent bin
markers and a maximum spacing between markers ran-
ging from 9.93 cM for Chr03 to 5.84 cM for Chr10. The
average genetic size of the 12 chromosomes is about
195.31 cM, and the average physical distance between
markers was 137.68 Kb (Table 2).

Comprehensive QTL mapping for the grain shape and
chalkiness traits
With the inclusive composite interval mapping method,
a total of 136 loci affecting grain shape and chalkiness

Fig. 3 Frequency distribution of grain shape and chalkiness parameters of the RILs population derived from cross between PYZX and P02428.
Average trait values of four environments were used. Mean phenotypic values of both parental lines are indicated by arrows. a GW, (b) GL, (c)
LWR, (d) CS, (e) AS, (f) PL, (g) PGWC and (h) DEC
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traits were detected according to the LOD threshold
across four environments (47 for G-DS, 28 for Z-DS, 38
for G-WS and 23 for Z-WS respectively) (Additional file
1: Table S3 and Fig. 4). The majority of the QTLs associ-
ated with grain width and circularity traits had a nega-
tive additive effect, indicating that alleles from the
parent P02428 contributed to increasing phenotype,
whereas the phenotypes of GL, LWR and PL were
mainly contributed by PYZX. For AS traits, 62.5 and
37.5 % of the QTLs had a negative and positive effect re-
spectively, indicating both parents contributed favorable
alleles. All of the QTLs related to chalkiness were
endowed with the additive effect contributed by P02428
(Additional file 1: Table S3).
Seventeen QTLs were detected for GW and each QTL

explained 3.354 ~ 12.377 % of the phenotypic variation.
Among all QTLs identified for GW, five QTLs showed
high PEV value of more than 10 %, including three
major QTLs on Chr05 and two on Chr07. Sixteen QTLs
were detected for GL, explaining 3.904 ~ 20.799 % of
phenotypic variation for each QTL, and six showed
major QTL with higher LOD and effect value, located
on Chr03 and Chr07, remarkably similar to that of the
PL and LWR parameter. QTLs associated with AS were
also identified in these regions as well and a QTL with
LOD of 7.044 and PEV of 10.657 % was detected on
Chr10. Twenty-four QTLs for CS parameter were de-
tected across ten chromosomes using single-

environment analysis and each QTL explained 3.403 ~
26.139 % of phenotypic variation, and six major QTLs
with higher PEV value were located on chromosomes 3,
4, 5 and 7. There were ten QTLs for DEC and each QTL
explained 5.391 ~ 12.779 % of phenotypic variation, and
sixteen QTLs associated with PWGC were detected
explaining 4.457 ~ 12.975 % of phenotypic variation.
More than 81 % of the QTLs for PGWC and DEC pro-
vided a lower PEV value, indicating that the chalkiness-
related parameters were regulated with polygene and
minor effects. However, four major genomic regions har-
boring QTLs with higher LOD and PEV values for
PGWC or DEC were identified, and more importantly,
six common QTL regions were detected for both PGC
and DEC and distributed on chromosomes 4, 5, 7, and 8
(Table 3).

Stable QTLs and major QTL clusters
As many of the QTLs detected here overlapped, they
were classified into same loci according to the genetic
position. Three or more QTLs detected for the same
trait within the consistent confidence interval using sin-
gle environment analysis were defined as stable in this
study. Notably, most of these QTLs had good reproduci-
bility across multiple environments. For instance,
54.17 % of the grain circularity QTLs were reproducible
under the various environments. The main effect QTL
located on Chr03 between mk690 ~mk698 was detected

Fig. 4 Genetic linkage map constructed with bin markers and location of QTLs associated with the grain shape and chalkiness traits. Blue lines
represent the positions of bin markers on each linkage group. QTL clusters are indicated on the chromosome corresponding to their genetic
position. The total numbers of QTL detected per chromosome are shown below the chromosome. Detailed information on these QTLs is in
Additional file 1: Table S3
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up to four times, and the QTL located in the genetic
interval between mk1743 ~mk1747 were stably reprodu-
cible in three separate environments (Additional file 1:
Table S3). QTLs associated with different traits located
within the same confidence marker intervals were
grouped together as major QTL clusters. As a result, we
concluded that there were twelve QTL clusters distrib-
uted over six chromosomes (Table 4). Some of the traits
with high inter-trait correlations appeared to cluster to-
gether, which was in accordance with our correlation
analysis between the traits (Table 1), revealing the main
genetic determinants of grain shape and chalkiness char-
acteristics in rice. Among these, the QTL cluster of
qGS7.2 (mk1743-mk1745) was identified as the major
grain shape QTL explaining highest phenotypic variance
in our study (Table 4). The previously reported QTL of
GL7, which overlaps with this QTL cluster region, en-
codes a protein homologous to Arabidopsis thaliana
LONGIFOLIA proteins and was reported to regulate
grain appearance quality mainly by affecting the grain
length to width ratio and the formation of starch gran-
ules in endosperm (Wang et al. 2015b). In addition,
three other QTL clusters for grain shape or chalkiness
traits were mapped to relatively narrow genomic regions
that coincided with QTLs in previously published re-
ports including GS3 (Fan et al. 2006; Mao et al. 2010),
gw5/qSW5 (Shomura et al. 2008; Weng et al. 2008), and
qPGWC-7 (Zhou et al. 2009) (Table 4), thus supporting
the accuracy of our linkage map and mapping analysis.
Significantly, the other eight novel QTL clusters de-

tected in this study (Table 4) contributed the stable ef-
fects on the phenotype across different environments
which underscores the value and reliability of the QTL

analysis. The QTL cluster of qGS5.2, qPGWC5 (qDEC5)
(mk1189-mk1192) on Chr05 (Table 4 and Fig. 4) simul-
taneously affected the traits of CS, GW, AS, PGWC and
DEC and explained a phenotypic variation of 6.388 ~
12.378 % for each trait, suggesting some pleiotropic ef-
fect for this QTL cluster. The qGS5.2 allele for increas-
ing grain CS, GW and AS was contributed by the parent
P02428, which also contributed the qPGWC5 (qDEC5)
allele for increased PGWC and DEC. These results
strongly suggest that qGS5.2 and qPGWC5 (qDEC5) rep-
resent the same locus controlling both grain shape and
chalkiness. Around this QTL region, Gao et al. (2015)
also roughly mapped five major QTLs (the interval was
large) affecting GW, LWR, GT (grain thickness), PGWC,
and TGW (1000-grain weight), each explaining up to
44.30, 55.29, 62.30, 30.94, and 28.78 % of the variation.
Consequently, this QTL cluster could be a novel genetic
region controlling multiple grain quality traits.
The QTL clusters of qGS3.1 and qGS7.1 associated

with grain shape on Chr03 and Chr07 harbor more than
four QTL loci, showing high stability and PVE value in
multiple environments. Whereas the qGS3.3 was extrap-
olated to be a minor-effect QTL, and allele of P0428
contributed positively to grain shape (GL, CS, LWR and
PL). qPGWC8 (qDEC8), which has not been reported
previously, was identified for both PGWC and DEC,
explaining the phenotypic variation of 6.70 ~ 10.07 %. In
addition, there were three other QTL clusters with rela-
tively smaller effects: qGS1 (QTLs for GW, LWR and
CS), qGS2 (QTLs for GL, LWR and PL), and qGS3.4
(QTLs for GL and PL). Due to high correlations between
the examined traits, it is highly likely that these loci have
pleiotropic effects on multiple characters, rather than

Table 2 Distribution of genetic markers across the 12 chromosomes in rice

Chromosome Number of
bin markers

Length
(cM)

Average genetic distance
between markers (cM)

Maximum spacing
between markers
(cM)

Average physical distance
between markers (Kb)

Average number of annotated
gene loci among markersa

1 295 232.15 0.79 8.25 146.68 22.09

2 258 221.65 0.86 7.20 139.29 20.90

3 311 226.44 0.73 9.93 117.09 18.66

4 278 223.22 0.80 8.53 127.71 15.34

5 182 194.90 1.07 6.85 164.61 22.03

6 229 199.68 0.87 9.75 136.46 17.31

7 232 180.72 0.78 6.50 128.01 16.24

8 179 167.37 0.94 6.51 158.90 19.14

9 178 178.69 1.00 7.19 129.28 15.55

10 162 118.78 0.73 5.84 143.25 17.47

11 208 213.82 1.03 9.37 139.52 15.42

12 199 186.26 0.94 9.37 138.35 14.99

Overall 2711 2343.68 0.86 9.93 137.68 18.12
a annotation on Os-Nipponbare-Reference-IRGSP-1.0 (http://rapdb.dna.affrc.go.jp/)
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closely linked loci affecting individual characters. These
QTL intervals were assumed to harbor novel gene loci
affecting grain shape or chalkiness traits, and therefore
are worth further investigating.

Gene expression profile and identification of candidate
genes associated with chalkiness
To investigate the gene regulation patterns during grain
development and perform a large-scale inspection of dif-
ferent expressed genes (DEGs) correlated with the
chalkiness traits, RNA-Seq analysis was performed on
the parental lines and two bulked pools made of RILs
exhibiting extreme PGWC and DEC phenotypes. The
total number of genes detected in each of the bulks is
shown in Fig. 5c. After a significance test, 3603 genes
with increased expression and 1949 genes with de-
creased expression were identified for P02428 compared
to those of PYZX (Additional file 2: Table S4, Fig. 5a, d).

Such a large number of differentially expressed genes
could not be responsible for the variation in chalkiness
traits between PYZX and P02428. Normalization to re-
move the background noise of DEGs not related to
chalkiness resulted in the identification of 88 genes with
increased expression and 623 genes with decreased ex-
pression in the L-Pool (pool with extremely low levels of
PGWC and DEC) compared to the H-Pool (pool with
high levels of PGWC and DEC) (Additional file 3: Table
S5, Fig. 5b, d). Functional annotations of the DEGs were
analyzed and the investigation of GO enrichment (Gene
Ontology Enrichment) was performed (Additional file 2:
Table S4, Additional file 3: Table S5, and Additional file
4: Figure S1).
We analyzed the region bound by the flanking markers

and co-located these DEGs near the QTL regions for
PGWC and DEC including cluster 8, 11 and 12. A total
of thirty-three DEGs were co-located in these three QTL

Table 3 QTLs associated with chalkiness traits detected in the different environments

Trait Chromosome Peak Position (cM) Interval (cM) Left Marker Right Marker LOD PVE (%)a Addb Environment

PGWC 2 168 167.52 169.65 mk473 mk475 3.165 5.594 −7.291 Z-DS

4 113 111.78 113.37 mk998 mk1000 7.035 12.975 −10.997 Z-DS

4 135 134.51 136.37 mk1005 mk1007 5.635 9.738 −9.579 G-DS

5 13 9.76 14.4 mk1153 mk1155 2.638 4.971 −8.125 G-WS

5 35 34.39 35.18 mk1174 mk1175 5.250 8.985 −8.999 G-DS

5 60 56.09 61.75 mk1189 mk1191 6.347 11.890 −10.337 Z-DS

5 60 56.09 61.75 mk1189 mk1191 4.007 8.143 −9.706 G-WS

5 84 83.81 85.4 mk1228 mk1230 2.773 5.182 −8.332 G-WS

6 55 54.62 56.51 mk1378 mk1379 3.002 5.819 −8.807 G-WS

6 78 77.75 78.01 mk1408 mk1409 2.568 4.457 −6.255 Z-DS

7 132 130.52 132.94 mk1743 mk1745 3.662 7.123 −7.934 Z-DS

7 134 133.2 134.53 mk1746 mk1747 2.946 4.763 −6.593 G-DS

8 1 0.53 1.85 mk1786 mk1789 4.804 9.866 −10.693 Z-WS

8 4 1.85 3.46 mk1789 mk1791 4.076 6.701 −7.893 G-DS

8 17 16.85 17.11 mk1803 mk1804 4.580 8.645 −10.740 G-WS

9 108 107.39 108.72 mk2078 mk2079 2.642 5.430 −7.888 Z-WS

DEC 4 110 109.95 110.21 mk991 mk992 3.016 6.342 −3.745 Z-WS

4 136 134.51 136.37 mk1005 mk1007 3.779 7.760 −2.188 G-DS

5 18 17.86 21.8 mk1160 mk1161 3.589 5.831 −4.473 G-WS

5 35 34.39 35.18 mk1174 mk1175 3.354 6.847 −2.014 G-DS

5 60 56.09 61.75 mk1189 mk1191 3.660 8.462 −1.813 Z-DS

5 61 56.09 61.75 mk1189 mk1191 3.516 7.464 −4.003 G-WS

6 23 22.67 23.19 mk1339 mk1340 2.516 5.391 −3.390 Z-WS

6 64 63.57 65.46 mk1387 mk1388 7.378 12.779 −6.611 G-WS

7 134 133.2 134.53 mk1746 mk1747 3.610 6.532 −0.015 Z-WS

8 6 5.87 8.33 mk1792 mk1793 6.002 10.074 −5.931 G-WS

8 130 129.72 130.24 mk1924 mk1925 3.411 7.027 −2.046 G-DS
a phenotypic variation explained; b additive effects
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regions (Table 5). Most were expressed more highly in
H-Pool than in L-Pool and were higher in P02428 than
in PYZX. Three genes with significantly different expres-
sion were located at the qPGWC5 (qDEC5) locus: the bi-
directional sugar transporter SWEET3a (Os05g0214300),
the UDP-glucuronosyl/UDP-glucosyltransferase family
protein (Os05g0215300), and the class III peroxidase 73
(Os05g0231900) (Table 5). qRT-PCR analysis indicated
that the expression level of SWEET3a, a gene involved
in sugar transport, was about fifteen times higher in the
H-Pool than in the L-Pool. This gene was also strongly
upregulated in P02428 compared to PYZX in grain tis-
sue. Os05g0215300 was expressed 4.55 fold higher in the
H-Pool than comparing to L-Pool. The remaining thirty
DEGS were located at qPGWC7 (qDEC7) (17) and
qPGWC8 (qDEC8) (13) (Table 5). Of particular interest,
the UDP-arabinopyranose mutase 3 (Os07g0604800)
gene which was up-regulated in P02428 is located in the
qPGWC7 (qDEC7) region and beta-glucosidase, GBA2
type domain containing protein (Os08g0111200) and

fructose-bisphosphate aldolase (Os08g0120600) mapped
to the qPGWC8 (qDEC8) region. Differential expression
of these genes was also validated by qRT-PCR and
the results of the two experiments were basically con-
sistent. These genes are the most suitable candidates
for molecular cloning and development of new func-
tional gene-target markers to facilitate marker assisted
breeding.

Discussion
Cell division (cell number or cell size) is considered to
contribute to the development and patterning of grain
shape (Zhou et al. 2015b). Our finding in this study is
that outer glume epidermal cell numbers and cell length
were both significantly different between PYZX and
P02428. In brief, the slender grains of PYZX were pro-
duced by longitudinally increasing cell length and cell
number while transversely decreasing cell number
(Fig. 2). The LWR of PYZX is more than twice the value
of P02428, which to the best of our knowledge is the

Table 4 Major QTL clusters associated with grain shape and chalkiness traits detected in this study

QTL cluster Chromosome Marker
interval

Physical interval
(100 kb)

Involved traits LOD PVE (%)a Overlapped QTL
reported

qGS1 1 mk289-
mk295

425.5–432.5 GW, LWR and CS 3.122–
4.948

3.781–
7.943

qGS2 2 mk401-
mk405

162.5–167.5 GL, LWR and PL 2.765–
4.789

3.540–
8.689

qGS3.1 3 mk686-
mk692

156.5–162.5 AS, PL, CS, GL and LWR 3.161–
12.450

7.228–
18.648

qGS3.2 3 mk693-
mk698

163.5–169 CS, GL, LWR and PL 3.151–
14.296

5.068–
21.024

GS3 (Fan et al. 2006)

qGS3.3 3 mk794-
mk795

286.5–287.5 CS, GL, LWR and PL 2.648–
5.080

4.176–
6.470

qGS3.4 3 mk819-
mk822

311.5–314.5 GL and PL 2.921–
5.690

5.600–
8.828

qGS5.1 5 mk1174-
mk1175

51.5–55.5 CS, GW and LWR 3.047–
8.912

3.729–
11.617

gw5 (Weng et al.
2008)

qSW5 (Shomura et al.
2008)

qGS5.2, qPGWC5
(qDEC5)

5 mk1189-
mk1192

76.5–79.5 CS, GW and AS; PGWC
and DEC

2.686–
6.347

6.388–
12.377

qGS7.1 7 mk1734-
mk1739

232.5–239 CS, LWR, GL and PL 4.297–
11.568

8.141–
17.573

qGS7.2 7 mk1743-
mk1745

244–248 CS, GW, LWR and GL 18.346–
18.346

12.326–
26.139

GL7 (Wang et al.
2015a, b)

GW7 (Wang et al.
2015a)

SLG7 (Zhou et al.
2015b)

qPGWC7 (qDEC7) 7 mk1743-
mk1747

244–251.5 PGWC and DEC 2.946–
3.662

4.763–
7.123

qPGWC-7 (Zhou et al.
2009)

qPGWC8 (qDEC8) 8 mk1786-
mk1793

1.5–7.5 PGWC and DEC 4.076–
6.002

6.701–
10.074

a phenotypic variation explained
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most extreme difference between parents of mapping
populations used for QTL analysis of rice grain shape.
Examination of the microstructures of rice endosperm
of mature seeds demonstrated that the arrangement of
the endosperm of PYZX was more compact than that of
P02428, which exhibited starch granules with more
spherical surfaces and uniform size. The differences in
the starch granule shape and the arrangement of the
granules resulted in the higher PGWC and DEC per-
centage in P02428, which was in agreement with previ-
ous research (Guo et al. 2011; Li et al. 2014b). The
PGWC and DEC parameters were related to multiple in-
vestigated grain shape traits, and gave a maximum cor-
relation coefficient with grain width (Table 1). These
results were in accordance with Adu-Kwarteng et al.
(2003); Zhou et al. (2015a), considering grain width had
positive and high correlation with chalkiness. Starch
granules in translucent areas of grains are bigger and
more tightly packed than the small loosely packed gran-
ules in chalky areas of the grain (Lisle et al. 2000), and
the hypothesis is that source-sink interactions involved
in grain-filling are involved in the formation of chalk.
Hence, the processes of starch synthesis were the focus
of many studies about grain chalk (Fitzgerald et al.
2009). Previous studies demonstrate a complex mechan-
ism for chalkiness formation in the rice endosperm.
Although many starch-metabolic genes have been

characterized in the rice mutants, few corresponding to
the QTLs for grain chalkiness have been addressed (Sun
et al. 2015). Our results provide valuable background in-
formation on the structural characteristics of hull and
endosperm tissues, which facilitate the understanding of
molecular mechanisms determining grain shape and
chalkiness.
Since the advent of molecular markers, crop re-

searchers and breeders have dedicated huge amounts of
effort on QTL mapping in biparental populations and
marker-assisted selection (MAS) (Chen et al. 2014a).
High-throughput SNP genotyping and estimation of re-
combination points based on resequencing of recombin-
ant inbred lines were recently utilized, even though the
sequencing coverage was insufficient (Huang et al. 2009;
Xie et al. 2010). In this study, a total of 85,743 high-
quality population SNPs with even distribution through-
out the entire genome were detected using GBS strategy.
Recombination breakpoints were determined by check-
ing the positions where genotypes change. By this way,
raw SNPs were converted into effective recombination
bin, and these small recombination bins can be regarded
as an effective type of genetic marker (Wang et al. 2011).
The number of bin makers (a total of 2711) of the link-
age map were increased significantly, compared to the
previous study (1495 in total) using the RICE6K SNP
array, which mapped QTLs of grain shape using a

Fig. 5 Transcriptome profiling of parents and bulked RILs. a Differentially expressed genes between parents, (b) Differentially expressed genes
between bulked RILs, (c) Gene number mapped across four sequencing library, (d) Up and down regulated genes detected between
different samples
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Table 5 Annotated function of differentially expressed genes identified within or near the QTLs affecting chalkiness trait

No. Gene ID H-Pool vs. L-Pool PYZX vs. P02428 Symbol Description

Fold
change

log2(FC) FDR Sig. Fold change
(qRT-PCR)

Fold
change

log2(FC) FDR Sig.

qPGWC5 (qDEC5)

1
Os05g0214300 (−)11.74 −3.554 0.003 yes (−)15.33 (+)430.00 8.748 0.029 yes OsSWEET3a Similar to Bidirectional sugar

transporter SWEET3a.

2
Os05g0215300 (−)2.07 −1.046 0.000 yes (−)4.55 (+)22.53 4.494 0.000 yes UDP-glucuronosyl/UDP-

glucosyltransferase family protein.

3
Os05g0231900 (+)2.85 1.511 0.013 yes (−)1263.33 −10.303 0.009 yes prx73 Hypothetical conserved gene.

qPGWC7 (qDEC7)

1
Os07g0597000 (−)2.24 −1.163 0.000 yes (+)1.84 0.878 0.000 no Similar to Eukaryotic translation

initiation factor 5A (eIF-5A).

2
Os07g0597050 (−)2.78 −1.473 0.000 yes (+)6.30 2.654 0.000 yes Hypothetical gene.

3
Os07g0597100 (−)2.62 −1.392 0.000 yes (+)5.74 2.522 0.000 yes Similar to Saccharopine

dehydrogenase.

4
Os07g0597400 (−)7.63 −2.931 0.000 yes (+)168.27 7.395 0.000 yes Conserved hypothetical protein.

5
Os07g0599300 (−)4.27 −2.094 0.033 yes (+)15.84 3.986 0.002 yes Hypothetical protein.

6
Os07g0599500 (−)3.73 −1.900 0.004 yes (+)2483.33 11.278 0.000 yes Hypothetical protein.

7
Os07g0599600 (−)4.39 −2.135 0.000 yes (+)6.29 2.652 0.000 yes Hypothetical protein.

8
Os07g0599700 (−)3.69 −1.885 0.000 yes (+)3.88 1.955 0.000 yes Similar to Surface protein PspC.

9
Os07g0599900 (−)6.15 −2.620 0.000 yes (+)14.53 3.861 0.000 yes Conserved hypothetical protein.

10
Os07g0600300 (−)2.67 −1.415 0.005 yes (+)2.22 1.153 0.052 no Protein of unknown function

DUF794, plant family protein.

11
Os07g0601100 (−)6.04 −2.594 0.000 yes (+)4.60 2.201 0.000 yes DHFR Similar to NADPH HC toxin

reductase (Fragment).

12
Os07g0602000 (−)2.21 −1.142 0.001 yes (+)26.60 4.733 0.000 yes DHFR Similar to NADPH HC toxin

reductase (Fragment).

13
Os07g0602900 (−)4.42 −2.144 0.001 yes (+)1.75 0.805 0.029 no Protein of unknown function

DUF1675 domain containing
protein;Similar to UPF0737 protein
1.

14
Os07g0604800 (−)3.52 −1.815 0.000 yes (−)2.63 (+)2.09 1.062 0.000 yes OsUAM3 Similar to Alpha-1,4-glucan-pro-

tein synthase [UDP-forming] 1 (EC
2.4.1.112) (UDP- glucose:protein
transglucosylase 1) (UPTG 1).

15
Os07g0607500 (−)2.09 −1.067 0.049 yes (+)2.59 1.371 0.035 yes Protein of unknown function

DUF1195 family protein.

16
Os07g0616750 (+)2.13 1.090 0.034 yes (−)2.34 −1.229 0.012 yes Hypothetical gene.

17
Os07g0617100 (−)2.17 −1.120 0.000 yes (+)1.01 0.017 1.000 no Plant disease resistance response

protein family protein.

qPGWC8 (qDEC8)

1
Os08g0101500 (−)2.64 −1.403 0.000 yes (+)1.22 0.281 0.538 no OsSultr5;2 Similar to sulfate transporter.

2
Os08g0101800 (−)2.80 −1.485 0.020 yes (+)2.68 1.420 0.000 yes Protein of unknown function

DUF821, CAP10-like family
protein.
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similar population (197 RILs derived from the cross be-
tween indica variety ZS97 and japonica variety XZ2) (Hu
et al. 2013). It is generally considered that the efficiency
of QTL mapping largely depends on marker density and
QTL mapping resolution can be improved with greater
marker density to detect the locations of recombination
events more precisely (Pan et al. 2012; Chen et al.
2014b). Yu et al. (2011) detected QTL using an ultra-
high density SNP map based on population sequencing
relative to traditional RFLP/SSR markers, and indicated
that compared to RFLP/SSR and array-based SFP geno-
typing methods, the sequence-based method produces a
map of the highest density, while the accuracy and the
quality of the SNP markers was enhanced by using infor-
mation of adjacent SNPs to form bins. In our study, take
the example of QTLs of PGWC, the genetic intervals
range from 0.26 to 5.66 cM, with an average of 2.14 cM,
while the QTL clusters of PGWC were delimited into a
physical region of few hundred kb, which had narrowed
significantly compared to previous QTL mapping studies
about grain chalkiness with SSR (Mei et al. 2013; Peng
et al. 2014; Zhao et al. 2016b).
In general, it was expected that more QTLs for target

traits with a mapping population derived from two con-
trasting parents would be detected (Bai et al. 2010). In
our study, the mapping population derived from PYZX

and P02428 showed an extremely wide diversity in rice
grain shape and chalkiness traits, thus it was ideal for
identification of main and minor effect QTL. Using sin-
gle environment analysis, 109 and 27 QTLs associated
with grain shape and chalkiness were detected respect-
ively. Among these, 58 (53.2 %) of the QTLs for grain
shape were detected in two or more environments
whereas only 6 (22.2 %) of the chalkiness-related QTLs
were observed in more than one of the environments
(Additional file 1: Table S3). This confirmed that chalki-
ness was considerably affected by environment and ex-
hibited a pattern of instability, whereas rice grain shape
was fixed as long as the panicle was normally differenti-
ated and mainly controlled by genotype and had higher
heritability (Bai et al. 2010). GS3, which is reported as a
major QTL for grain length and weight and a minor
QTL for grain width and thickness in rice, encodes a pu-
tative transmembrane protein. It was located on the
qGS3.2 region in our QTL analysis, which was recurrent
across four environments for GL, LWR, CS, PL and AS,
showing the most stable expression and pleiotropic ef-
fects (Fan et al. 2006). The reported QTL of GL7 (Wang
et al. 2015b) regulates longitudinal cell elongation and
results in an increase in grain length and improvement
of grain appearance quality. In our study, GL7 was de-
tected in the QTL region of qGS7.2 (associated with CS,

Table 5 Annotated function of differentially expressed genes identified within or near the QTLs affecting chalkiness trait (Continued)

3
Os08g0104400 9.27 −3.212 0.000 yes (+)2.94 1.554 0.000 yes Conserved hypothetical protein.

4
Os08g0106100 (−)5.57 −2.477 0.000 yes (+)5793.33 12.500 0.000 yes Conserved hypothetical protein.

5
Os08g0111200 (−)3.14 −1.652 0.007 yes (−)2.87 (+)1.69 0.760 0.362 no Beta-glucosidase, GBA2 type

domain containing protein.

6
Os08g0112300 (−)3.54 −1.824 0.006 yes (+)2.10 1.071 0.002 yes Transferase domain containing

protein.

7
Os08g0113000 (−)3.67 −1.877 0.006 yes (+)2.43 1.279 0.000 yes prx117 Similar to Peroxidase 47 precursor

(EC 1.11.1.7) (Atperox P47)
(ATP32).

8
Os08g0114300 (−)3.16 −1.660 0.000 yes (+)1.62 0.699 0.008 no D-arabinono-1,4-lactone oxidase

domain containing protein.

9
Os08g0114400 (−)4.85 −2.277 0.000 yes (+)1.88 0.912 0.003 no Hypothetical protein.

10
Os08g0116800 (−)3.77 −1.913 0.016 yes (+)4.95 2.309 0.155 no Exoribonuclease domain

containing protein.

11
Os08g0120600 (−)2.33 −1.219 0.005 yes (−)5.67 (+)1.42 0.501 0.343 no Similar to Fructose-bisphosphate

aldolase, cytoplasmic isozyme (EC
4.1.2.13).

12
Os08g0122800 (−)6.45 −2.689 0.003 yes (+)240.50 7.910 0.000 yes Conserved hypothetical protein.

(Os08t0122800-01); Kringle,
conserved site domain containing
protein.

13
Os08g0124500 (−)306.67 −8.261 0.018 yes (+)96.67 6.595 0.114 no Similar to Resistance protein

candidate (Fragment); Similar to
Resistance protein candidate
(Fragment).
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GW, LWR, PL and GL) and also displayed consistent
heredity and pleiotropism. Similarly, we detected a new
QTL cluster of qGS5.2 associated with GW, LWR, CS
and AS with high PVE levels and stable performance
across multiple environments, representing potential tar-
gets for gene cloning. In addition, there were some new-
found important QTL clusters, such as qGS3.1 associ-
ated with AS, PL, CS, GL and LWR, qGS7.1 associated
with CS, LWR, GL and PL, and qPGWC8 (qDEC8) asso-
ciated with PGWC and DEC, which offer an opportunity
for improving grain appearance in rice for the future. As
the main grain quality related traits, we intend to de-
velop backcrossing introgression lines of the novel QTLs
in the background of elite high-yielding varieties which
should be useful to improve the grain quality. “Con-
sumer-Targeted Rice Breeding” is emphasized especially
in the rice quality area, and the grain shape QTLs
should been utilized based on the specificity of con-
sumer preference (Calingacion et al. 2014). The stable
QTLs across multiple environments gained in this study
enable incorporation of favorable alleles into agronomi-
cally superior germplasm by using technology of MAS
combined with backcrossing method. Moreover, grain
appearance quality had a close relation with milling
quality (Lou et al. 2009). And milling yield of short and
medium grain rice is typically higher than long grain rice
(Kepiro et al. 2008). QTLs associated to more grain
shape parameters (including GW, GL, LWR, CS, PL,
and AS) had been analysis in this study, and different ef-
fects of the alterable combinations of target QTLs could
probably strike a balance between grain shape and mill-
ing trait. In our practice, MAS have being performing by
introgression of multiple QTL alleles of low chalk and
grain length (preferred by local consumers of south
China) into the elite restorer lines (R) and maintainer
lines (B) in our lab, with the aim of improving the grain
quality characters in hybrid rice.
Another advantageous feature of our study was the in-

tegration of the QTL mapping of chalkiness-related
traits and the transcriptome profiling. Obtaining gene
expression information using bulked RIL pools is simple,
effective and aim-focused (Kloosterman et al. 2010),
making it possible to assay a large number of our sub-
jects. Hence it became possible to identify and narrow
down our search for putative candidate genes affecting
chalkiness-related traits. By this analysis, several differ-
entially expressed genes in the three QTL intervals on
chromosomes 5, 7 and 8 appear to have high probability
of the target genes, considering their protein function
prediction information as well. For instance, bidirec-
tional sugar transporter SWEET3a, which was identified
to be a DEG located on the region of qPGWC5 (qDEC5),
is involved in carbohydrate transmembrane transport
process (http://www.ebi.ac.uk/QuickGO/) and predicted

to mediate both low-affinity uptake and efflux of sugar
across the plasma membrane (http://string-db.org/news-
tring_cgi/). The major up-regulated expression observed
in P02428 is highly likely to influence carbohydrate
transport and result in high levels of chalkiness. In an-
other example, Os07g0604800 (OsUAM3) which co-
located with the qPGWC7 (qDEC7) QTL in our study
and the previously reported qPGWC7 QTL (Zhou et al.
2009) was detected to be sharply down-regulated in the
L-Pool and PYZX compared to the H-Pool and P02428.
OsUAM3 gene has an annotated as having UDP-
arabinopyranose mutase activity (http://www.shigen.ni-
g.ac.jp/rice/oryzabase/) and was predicted to be analpha-
1,4-glucan-protein synthase and UDP-glucose/protein
transglucosylase 1 (http://rapdb.dna.affrc.go.jp/). Given
that carbohydrate metabolism is considered to play an
important role in endosperm chalkiness (Wang et al.
2008), these DEGs represent strong candidates for genes
underlying these chalkiness-associated QTLs. For in-
stance, the rice GIF1 (GRAIN INCOMPLETE FILLING
1) gene is required for carbon partitioning during early
grain-filling and the gif1 mutant grains showed more
chalkiness, which accumulated lower levels of glucose
and fructose, as well as sucrose (Wang et al. 2008). The
UGPase1 gene played a key role in seed carbohydrate
metabolism and inactivation of the UGPase1 gene
caused endosperm chalkiness in rice (Woo et al. 2008).
The several DEGs we identified here were involved in
carbohydrate synthesis or transportation, indicating their
potential role in the formation of endosperm chalkiness.
Our identification of 668 functionally annotated DEGs
between bulked RIL pools (Additional file 3: Table S5)
provides a basis for dissecting the regulatory network
governing the chalkiness trait. While detailed insight
into these genes will be of great importance in unravel-
ing the complex nature of rice chalkiness and also in
elucidating the role of the diverse QTLs involved. The
integrated approach utilizing the identified stable QTLs
and transcriptome profiling could serve as a platform for
candidate gene identification for genetic dissection and
provide basal tools for molecular breeding in rice.

Conclusion
Using the Genotyping-By-Sequencing approach, a gen-
etic linkage map with an average distance of 0.865 cM
between adjacent markers was constructed based on a
RIL population in rice. A global mapping of quantitative
trait loci affecting the grain shape and chalkiness traits
were detected on four environments and the stable QTL
clusters were highlighted and analyzed. The results of
the transcriptome analysis demonstrated an available
gene expression profile responsible for the development
of chalkiness, and several important differentially
expressed genes were co-located on the chalkiness-
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related QTL regions on chromosomes 5, 7, and 8. Crit-
ical loci were investigated and identified as candidate
genes, which were suitable for functional validation and
breeding utilization.

Methods
Plant material
In this study, the mapping population consisting of 192
recombinant inbred lines (RILs) derived by single-seed
descent from an inter-subspecific cross of the indica
PYZX and the japonica P02428, was used to perform
QTL analyses for grain shape and chalkiness traits. RILs
and the parental lines were field planted in Guangzhou
(traditional flatland field) and Zengcheng (low hill dis-
trict) in Guangdong province of China at the dry season
(DS) in 2014 and the wet season (WS) in 2015, which
have been named G-DS, Z-DS, G-WS, and Z-WS re-
spectively in this study.

Morphological and cellular analyses
Paraffin-embedded sections of spikelet samples were
prepared according to Kim et al. (2014), with minor
modifications. The materials were fixed in FAA and
stored at 4 °C for 24 h. The fixed spikelets were dehy-
drated in a gradient ethanol series, and were then incu-
bated in 100 % ethanol overnight. Dehydrated spikelets
were embedded in Paraplast Plus (Sigma). The trans-
verse sections of each spikelet were stained with 0.5 %
toluidine blue, and viewed using an SZX10 stereomicro-
scope (Olympus, Tokyo, Japan). For scanning electron
microscopy analysis, spikelet hull and endosperm sam-
ples were processed according to Wang et al. (2015b)
and Li et al. (2014b). Young spikelets were fixed in 4 %
(w/v) paraformaldehyde and 0.25 % glutaraldehyde in
0.1 M sodium phosphate buffer, pH 7.2, at 4 °C over-
night. Fixed spikelets were dehydrated in a graded etha-
nol series, and 100 % ethanol was replaced with 3-
methylbutyl acetate (Toriba et al. 2010). Milled rice
grains were transversely cut in the middle with a knife
and were coated with gold under vacuum conditions.
Samples were dried at their critical point, sputter coated
with platinum, and observed with the XL-30-ESEM in-
strument at an accelerating voltage of 5 kV.

Evaluation of grain shape and chalkiness traits
Images of the mature grain were captured on a CanoS-
can 5600 F (Canon, Japan) scanner with the supplied
software without image enhancement, and the grain
shape parameters of GW, GL, LWR, CS, PL, and AS
were measured precisely using SmartGrain Software
(Tanabata et al. 2012). The chalkiness parameters were
measured with an automatic machine JMWT 12 accord-
ing to Xu et al. (2012). Two metrics were used to de-
scribe grain chalkiness as previously described (Zhao

et al. 2016a): percentage of grains with chalk (PGWC)
and degree of endosperm chalkiness (DEC) which is the
ratio of total chalky area to the total kernel area of all
sampled grains. The statistical analysis was performed
with SPSS statistics 18.0 and Microsoft Excel.

DNA extraction, genotyping by sequencing, and SNP
identification
Leaf samples were collected from two parental lines and
192 RILs at F7 generation. DNAs were extracted using
the CTAB method and quantified using both a Nano-
Drop ND-1000 Spectrophotometer and agarose gel elec-
trophoresis. In our study, the genome of parental lines,
PYZX and P02428, were directly sequenced to ~25×
coverage, while the RILs were subjected to Genotyping
By Sequencing (GBS) as described by Elshire et al.
(2011). The DNA samples of the RIL population
digested using MseI and HaeIII. The other basic sche-
matic of the protocol used for performing GBS was ac-
cording to Duan et al. (2013).
Sequencing was performed on the Illumina HiSeq

2500 platform to generate 150 bp paired-end reads
(Novogene Bioinformatics Technology Co., Ltd, China).
The original image data generated were converted into
sequence data via base calling (Illumina pipeline
CASAVA v1.8.2) and then subjected to the quality con-
trol (QC) procedure to remove unusable reads: 1) reads
contain the Illumina library construction adapters; 2)
reads contain more than 10 % unknown bases (N bases);
3) one end of a read contains more than 50 % low qual-
ity bases 4) Sequencing reads were aligned to the refer-
ence genome (http://plants.ensembl.org/Oryza_sativa/)
using BWA with default parameters. Subsequent pro-
cessing, including duplicate removal was performed
using SAMtools and PICARD (http://picard.sourcefor-
ge.net). The raw SNP/InDel sets are called by SAMtools
with the parameters as ‘-q 1 -C 50 –m 2 -F 0.002 -d
1000’. Then we filtered these sets using the following
criteria: (1) mapping quality >20; (2) depth of the variant
position >4.

Bin marker production and QTL analysis
To overcome the false positive of SNPs genotype of the
population, the sliding window approach adopted by
Huang et al. (2009) with some modification was used to
evaluate a group of consecutive SNPs for genotyping.
The genotypic maps of the RILs were aligned and split
into recombination bins according to the recombination
breakpoints, with the parameter of window size of 15
SNPs. Bins less than 300-kb were merged with the next
bin. Genotypes of bins for regions at the transitions be-
tween two different genotype blocks were set to missing
data. Segregation distortion markers showing distorted
segregation (P < 0.01) were discarded. For this step, a
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total of 85,743 high-quality SNPs were used for bin map
construction, containing 2711 bin markers.
SNP bin markers were used to construct the genetic

linkage map using the est.map function of the R/qtl
package (Broman et al. 2003) with the Kosambi map
method, and the marker genetic distances were esti-
mated. The QTLs were mapped with the inclusive com-
posite interval mapping method using the QTL
IciMapping software version 4 (Li et al. 2007; Meng
et al. 2015) with single-environment phenotypic values.
QTLs were calculated using the ICIM-ADD mapping
method, with mapping parameters of 1 cM step and
0.001 probabilities in a stepwise regression. The thresh-
old for logarithm of odds (LOD) scores was set as 2.5,
and the QTLs in a particular genomic region with the
LOD values larger than this threshold were called (Li et al.
2014a). The regional genes were annotated and analyzed
via the database of RAP (http://rapdb.dna.affrc.go.jp) and
Ensembl (http://plants.ensembl.org/Oryza_sativa).

Experimental design for transcriptome profiling study
To obtain an overview of the transcriptome profiling
and differential gene expression pattern relating to the
chalky trait, two bulked RIL pools with extreme tails of
the chalky trait were developed, consisting of 13 bulks
RIL individuals respectively. The L-Pool was constructed
from individuals with extremely low levels at PGWC
and DEC, conversely the H-Pool bears high levels of
PGWC and DEC parameters (the details are available in
Additional file 1: Table S6). The pools were used for
RNA-Seq analysis along with the parental lines. After ap-
proximately 20 days after fertilization, grain samples of
each group were collected and stored at −80 °C in prep-
aration for RNA-Seq.

RNA isolation, sequencing and statistical analysis of gene
expression profile
The total RNA of each of the above listed samples was
homogenized using mortar and pestle with liquid nitro-
gen and purified using the Plant Total RNA Purification
Kit (Dakewe Biotech Company) following the manufac-
turer’s instructions. RNA quality was verified using Agi-
lent 2100 Bio-analyzer (Agilent Technologies, Santa
Clara, CA) and was also checked by RNase free agarose
gel electrophoresis. Next, Poly (A) mRNA was isolated
using oligo-dT beads (Qiagen). All mRNA was broken
into short fragments by adding fragmentation buffer.
First-strand cDNA was generated using random
hexamer-primed reverse transcription, followed by the
synthesis of the second-strand cDNA using RNase H
and DNA polymerase I. The cDNA fragments were puri-
fied using a QIAquick PCR extraction kit. The cDNA li-
brary was sequenced on the Illumina sequencing
platform (IlluminaHiSeq™ 2500) using the paired-end

technology by Gene Denovo Co. (Guangzhou, China). A
Perl program was written to select clean reads by remov-
ing low quality sequences (there were more than 50 %
bases with quality lower than 20 in one sequence), reads
with more than 5 % N bases (bases unknown) and reads
containing adaptor sequences. Sequencing reads in
FASTQ format were mapped to the reference genome
(http://plants.ensembl.org/Oryza_sativa/) and splice
junctions were identified using TopHat (Kim et al.
2013). The Cufflinks package (Trapnell et al. 2012) was
used for genome guided transcript assembly and the ex-
pression abundance was estimated.
After the expression level of each transcript and gene

was calculated, differential expression analysis was con-
ducted using edgeR (Robinson et al. 2010). The false dis-
covery rate (FDR) was used to determine the threshold
of the p value in multiple tests, and for the analysis, a
threshold of the FDR ≤ 0.05 and an absolute value of
log2Ratio ≥ 1 were used to judge the significance of the
gene expression differences. The differentially expressed
genes were used for GO (Gene Ontology) and KEGG
(Kyoto Encyclopedia of Genes and Genomes) enrich-
ment analyses according to a method similar to that de-
scribed by Zhang et al. (2013). Both GO terms and
KEGG pathways with a Q-value ≤0.05 are significantly
enriched in DEGs. To compare the differential gene ex-
pression between PYZX versus P02428, and between
bulked RIL pools, we took PYZX and the H-pool as
baseline controls, respectively.

Validation of gene expression by qRT–PCR
Expression levels of five genes (Os05t0214300-00,
Os05t0215300-01, Os07t0604800-01, Os08t0101500-01,
and Os08t0120600-01) were selected for the validation of
RNA-seq results using quantitative real-time PCR (qRT-
PCR). The mRNA sequences of the five genes were down-
loaded from EnsemblPlants database (http://plants.ensem-
bl.org/Oryza_sativa/), and were used for primers design
using Primer3 software. The primer sequences are listed
in Additional file 2: Table S4. First strand cDNA was pre-
pared from 2 μg of total RNA in 50 μl of reaction volume
using the high-capacity cDNA Archive kit (Applied Bio-
systems, USA). Two μl of the first strand cDNA reaction
was used for quantitative real time PCR. qRT-PCR
was conducted using the AceQ qPCR SYBR Green
Master Mix Kit (Vazyme Biotech) according to
standard protocol, and the expression levels of the
genes were determined on the StepOnePlus System
(Applied Biosystems, USA). Three biological and
three technical replicates were taken for each treat-
ment. As an endogenous control, Actin was used for
the normalization of Ct value obtained and the rela-
tive expression values were calculated by ΔΔCt
method.
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