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Abstract

Background: Rice is one of the major staple foods in the world, especially in the developing countries of Asia. Its
consumption as a dietary source is also increasing in Africa. To meet the demand for rice to feed the increasing
human population, increasing rice yield is essential. Improving the genetic yield potential of rice is one ideal
solution. It is imperative to introduce the identified yield-enhancing gene(s) into modern rice cultivars for the rapid
improvement of yield potential through marker-assisted breeding.

Results: We report the development of PCR-gel-based markers for eight yield-related functional genes (Gnla,
OsSPL14, SCM2, Ghd7, DEP1, SPIKE, GS5, and TGWE) to introduce yield-positive alleles from the donor lines. Six rice
cultivars, including three each of donor and recipient lines, respectively, were sequenced by next-generation
whole-genome sequencing to detect DNA polymorphisms between the genotypes. Additionally, PCR products
containing functional nucleotide polymorphism (FNP) or putative FNPs for yield-related genes were sequenced.
DNA polymorphisms discriminating yield-positive alleles and non-target alleles for each gene were selected
through sequence analysis and the allele-specific PCR-gel-based markers were developed. The markers were
validated with our intermediate breeding lines produced from crosses between the donors and 12 elite indica
rice cultivars as recipients. Automated capillary electrophoresis was tested and fluorescence-labeled SNP
genotyping markers (Fluidigm SNP genotyping platform) for Gnila, OsSPL14, Ghd7, GS5, and GS3 genes were
developed for high-throughput genotyping.

Conclusions: The SNP/indel markers linked to yield related genes functioned properly in our marker-assisted
breeding program with identified high yield potential lines. These markers can be utilized in local favorite rice
cultivars for yield enhancement. The marker designing strategy using both next generation sequencing and
Sanger sequencing methods can be used for suitable marker development of other genes associated with useful
agronomic traits.
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Background

Food security is threatened by the growing human popula-
tion and decreasing agricultural resources, including crop
land and labor, through urbanization and industrialization.
Current global yield increase rates (0.9-1.3% per year) of
the four major crops (rice, maize, wheat, and soybean) are
insufficient to meet food demand for the estimated nine
billion people in 2050 (Khush 2005; Ray et al. 2013). Rice
is a major staple food in the world, especially in the devel-
oping countries of Asia. In Africa, it is the most rapidly
growing food source and, according to a conservative esti-
mate, about 30 million tons more rice will be needed by
2035 (Seck et al. 2012). Within existing agricultural lands,
the genetic improvement of yield potential in rice could
be the ideal way to increase yield.

Three major traits (grain size, grain number per pan-
icle, and panicle number per plant) are directly associ-
ated with rice grain productivity, and these traits
strongly depend on the genetic potential of rice. How-
ever, these traits are complex and quantitative in nature.
Through quantitative trait loci (QTL) analysis with fine
mapping or positional cloning using rice mutants, about
20 genes that are involved in yield-related traits have
been isolated in rice (Wang and Li 2005; Xing and
Zhang 2010; Miura et al. 2011; Huang et al. 2013; Liu et
al. 2015). In regards to the genes controlling grain size,
six genes can be considered in rice breeding programs.
The GW2 encoding RING-type E3 ubiquitin ligase regu-
lates grain width. The loss of GW2 function by a prema-
ture stop codon caused by a 1-bp deletion on the fourth
exon increased grain width, resulting in increased yield
(Song et al. 2007). The GS3 gene encoding a putative
transmembrane protein functions as a negative regulator
for grain size. The nucleotide substitution from C to A
on the second exon resulted in the stop codon (TGA)
and eventually caused C-terminal truncated GS3 protein.
This mutated allele increased grain size (Fan et al. 2006).
The gSW5/GWS gene encoding a nuclear-localized un-
known protein is involved in the regulation of grain
width. The loss-of-function allele by a 1.2-kb deletion in-
cluding coding DNA sequence (CDS) of the gene in-
creases grain width, and this allele is common in
japonica varieties (Shomura et al. 2008; Weng et al.
2008). The GS5 gene encoding a putative serine carboxy-
peptidase regulates grain size. Different expression level
of GS5 based on promoter sequences is associated with
grain width (Li et al. 2011). OsSPL16/qGWS, encoding
SQUAMOSA promoter binding protein-like (SPL) 16,
controls grain width, and higher expression in young
panicle promotes grain width (Wang et al. 2012). The
TGW6 gene encoding a novel protein having indole-3-
acetic acid (IAA)-glucose hydrolase activity regulates grain
weight. The mutant allele (1-bp deletion in CDS) showed
increased thousand-grain weight (Ishimaru et al. 2013).
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Among the genes regulating grain number per panicle,
several seem useful in a rice breeding program. The
Gnla gene encoding cytokinin oxidase/dehydrogenase2
(OsCKX2) regulates grain number per panicle. The non-
functional allele of Gnla increased grain number per pan-
icle, resulting in increased yield (Ashikari et al. 2005). The
Ghd?7 encoding a CCT domain protein is involved in the
regulation of heading date, plant height, and grain num-
ber per panicle. Fully functional alleles Ghd7-1 and
Ghd7-3 showed delayed heading date and increased
plant height and yield (Xue et al. 2008). The DEPI gene
encoding a phosphatidylethanolamine-binding protein-
like domain protein regulates panicle architecture. The
mutant allele produced short panicle with high grain
number per panicle, resulting in increased yield (Huang et
al. 2009). The SPIKE/NALI gene encoding an unknown
function protein regulates grain number per panicle.
Either transcription level or three amino acids changes on
NALLI protein are associated with phenotype (Fujita et al.
2013). The SCM2/APOI encoding F-box-containing pro-
tein controls grain number per panicle and culm diameter.
Abundant transcripts of SCM2 in developing panicles in-
creased grain number (Ookawa et al. 2010). Higher ex-
pression of OsSPL14/WFP/IPA1 gene encoding OsSPL14,
in young panicle is associated with higher grain number
per panicle (Jiao et al. 2010; Miura et al. 2010). Regarding
the genes regulating panicle number per plant, several
have been identified through positional cloning from the
rice monoculm mutant mocl and rice dwarf mutants with
higher tiller number (Jeon et al. 2011). However, the re-
ported alleles of these genes may not be desirable in actual
breeding programs because of too much reduction in tiller
number of mocl mutant or dwarfism in the high tiller
number mutants.

Some PCR markers for the yield-related genes were
developed and used for marker-assisted breeding and
gene function study. In the GS3 gene, the C/A single nu-
cleotide polymorphism (SNP) on the second exon
regarded as a functional nucleotide polymorphism (FNP)
is directly associated with the phenotype, and it can be
discriminated by digestion of PCR product with PstI re-
striction enzyme. Cleaved amplified polymorphic se-
quence (CAPS) markers for C/A SNP were reported
(Fan et al. 2009; Yan et al. 2009; Wang et al. 2011). Add-
itionally, Wang et al (2011) developed gene-tagged
markers using the difference in repeat number of di- or
tri-nucleotides within GS3 for marker-assisted selection
(MAS). In the GW2 gene, the 1-bp deletion on the
fourth exon is the FNP. This mutation was detected by
the CAPS marker using Hpal restriction enzyme (Yan et
al. 2009; Yan et al. 2011). For gSW5/GWS5 gene, three al-
leles (Nipponbare type, Kasalath type, and indica 11 type)
were discriminated by the N1212 marker, which used
the difference in PCR product sizes among the alleles
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(Shomura et al. 2008; Yan et al. 2011). For the genes
regulating grain number per panicle, the markers of
Gnla, OsSPL14, and DEPI genes were reported. Yan et
al (2009) developed the Gnla-M1 marker for the detec-
tion of Gnla-Habataki allele, which has a 16-bp deletion
in the 5’-untranslated region (5’'UTR), and the Gnla-M2
marker for the detection of Gnla-5150 allele, which has
an 11-bp deletion on the third exon. Xu et al (2014) de-
veloped the CAPS marker using Sdul restriction enzyme
to select OsSPL14-Ri22 allele, which transcribes
OsmiR156-resistant OsSPLI4 transcripts caused by the
nucleotide substitution at the OsmiR156 target site.
They also developed the gene-tagged PCR marker of
DEPI gene using the 625-bp gap on the fifth exon be-
tween the yield-positive allele and non-target allele.

The allele-specific gene-tagged markers for the target
genes are more effective than the genomic random
markers surrounding the target gene (from several kb to
a few Mb distance) because some markers will not show
polymorphism in some recipient backgrounds and some-
times a false-positive allele can be selected by recom-
bination between the target gene and the genomic
random marker. However, allele-specific markers for
yield-enhancing genes have not been developed yet for
some major yield-enhancing genes or the existing markers
need to be improved for an effective marker-assisted
breeding program. The allele-specific gene-tagged markers
were well developed for GS3, GW2, and gSW5/GWS5 genes
as mentioned above. But, for GS5, TGW6, SCM2, Ghd?7,
and SPIKE genes, PCR markers for selecting the yield-
positive alleles have not been developed yet. Additionally,
the marker that can select the yield-positive OsSPLI4-
ST12 allele, which is different from the OsSPLI4-Ri22 al-
lele, has not been reported. For the Gnla gene, a 16-bp
deletion in 5’'UTR is common in indica rice varieties
(54.3%) (Yan et al. 2009), suggesting that the Gnla-M1
marker may not function in many indica varieties. For the
DEPI marker (Xu et al. 2014), the intensity of the non-
target allele band was very weak compared with that of
the target allele in the heterozygous plants. To obtain clear
genotype data, the previous DEPI marker needs to be
improved.

Although around 20 yield-related genes have been
identified in rice, their evaluation and use are still lim-
ited for rice breeding programs. These studies are very
important for improving the genetic yield potential of
rice effectively. To evaluate and use the yield enhancing
genes, in this study we report allele-specific gene-tagged
markers for eight yield-related genes. For effective
screening of DNA polymorphisms of yield-enhancing
genes, we employed both next-generation sequencing as
well as Sanger sequencing methods. For easy access and
user-friendly markers, we developed PCR-gel-based
markers without restriction enzyme digestion. In addition,
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for high-throughput genotyping using a fluorescence de-
tection system, we also developed Fluidigm SNP genotyp-
ing markers. Moreover, the allele-specific PCR-gel based
markers were validated through its application in our
marker-assisted selection (MAS) breeding program.

Results and Discussion

Development of allele-specific markers for eight yield-
enhancing genes was conducted as a part of our breed-
ing program for increasing genetic yield potential in 12
elite indica varietal backgrounds (Table 1). For deter-
mination of alleles of yield-enhancing genes in 12 recipi-
ent cultivars and effective screening of polymorphisms
between the donor and the recipient, we sequenced the
whole genomes of three donors (Habataki, ST6, and
ST12) and three recipients (NSIC Rc158, NSIC Rc222,
and NSIC Rc238) using next-generation sequencing
technique. In addition, the target yield-enhancing genes
were also sequenced from the 12 recipients and the do-
nors using Sanger sequencing method.

Generally, several DNA polymorphisms such as indel
and/or SNP were found between the two parental alleles
as a result of fine mapping of major QTLs. Among poly-
morphisms, the ENP was identified in some yield-enhan-
cing genes such as GS3, GW2, DEPI1, and TGW6 genes
but not in some other genes. For marker designing, firstly

Table 1 The donor cultivars of yield-enhancing genes and 12

recipients

Variety Class Origin Donor/recipient
Habataki® indica Japan Gnla, SCM2, Ghd7
ST12° indica Japan Gnla, OsSPL14
ST6% japonica Japan Gnla, GS5
Aikawa' Japonica Japan OsSPL14

YPQP indica Philippines SPIKE
Osmancik-97 japonica Turkey DEPT

Kasalath indica India TGWe

PSB Rc82 indica Philippines recipient

NSIC Rc158° indica Philippines recipient

NSIC Rc222° indica Philippines recipient

NSIC Rc238° indica Philippines recipient
IRO4A115 indica Philippines recipient
IRO5N412 indica Philippines recipient
PR37951-3B-37-1-2 indica Philippines recipient
PR38012-3B-3-1 indica Philippines recipient
CT5803 indica Colombia recipient
CT5805 indica Colombia recipient
Irga427 indica Colombia recipient
Parao indica Colombia recipient

®Entry of whole-genome sequencing
PNear-isogenic line (SPIKE-Daringan allele in IR64 genetic background)
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we targeted FNP or putative FNPs of yield-related genes.
Secondly, we selected the donor-specific polymorphisms
within the target gene to select the donor allele easily. Ac-
tually, when breeders have the original donor source
which was used for QTL/fine-mapping analysis, any DNA
polymorphisms within or near the target gene between
the donor and the recipient can be used to design a
marker for MAS (Usually indel polymorphisms are
preferred to design markers because of convenience to
marker designing and clear genotype results by the
markers). The selected polymorphisms for each yield-
related gene and its corresponding markers were de-
scribed below one by one. Finally, the markers we devel-
oped were validated through its application in our MAS
breeding lines.

Gnla Markers

Yield-positive Gnla allele was originally isolated from
the high-yielding rice variety Habataki through QTL
analysis with positional cloning (Ashikari et al. 2005)
and Gnla-Habataki allele was also found in cultivar
ST12 (Miura et al. 2010). These two materials were used
as a Gnla donor in our marker-assisted breeding pro-
gram. We screened DNA variations in the Gnla gene,
including in the 5-kb upstream region from the start
codon and 2-kb downstream region from the stop
codon, using IGV software (Robinson et al. 2011) with
WGS data. Within this range, the sequences were the
same among Habataki, ST6, ST12, and NSIC Rc222, in-
dicating that these four accessions have the yield-
positive Gnla allele. Three SNPs in the promoter region
were found based on WGS analysis (Additional file 1:
Figure S1A) and the sequences of three SNPs were con-
firmed by Sanger sequencing of PCR products from
Gnla donors and 12 recipients (Fig. 1la). Based on the
sequence analysis, all genotypes were divided into three
groups (Types 1-3; Fig. la). NSIC Rc222, IRO5N412,
CT5805, and Irgad27 among the 12 recipients have
Gnla-Habataki allele (Type 3). First, we developed the
Gnla-indell marker to detect a 16-bp indel in 5UTR as
identified by Ashikari et al (2005). Except for Parao, all
genotypes showed the same band size as Habataki
(Fig. 1b bottom), indicating that this marker is available
only for Gnla MAS in a Parao background. Next, we
developed the Gnla-17 SNP marker using the tetra-
primer PCR method (Additional file 2: Figure S2A) to
discriminate G/A SNP in the promoter region (Fig. 1a).
The marker discriminated G/A SNP clearly in the par-
ents (Fig. 1b top) as well as in intermediate breeding
lines that contained heterozygous plants (Fig. 1c). This
marker is available to introduce Gnla-Habataki allele
(Type 3) into both Gnla-Type 1 and Gnla-Type 2 back-
grounds. Additionally, we developed an indel-type
marker, the Gnla-indel3 marker, based on WGS data
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analysis, which showed approximately 70-bp indel poly-
morphism near 3’'UTR (Additional file 1: Figure S1B).
This marker was tested in the parental varieties, and the
result was consistent with the Gnla-17 SNP marker ana-
lysis, except for Parao (Fig. 1b middle), indicating that
the marker is available to introduce Gnla-Habataki al-
lele into Gnla-Type 2 backgrounds but not Parao back-
ground. The Gnla-indel3 marker was also applied to
intermediate breeding lines and the genotyping results
were consistent with those of the Gnla-17 SNP marker
(Fig. 1c). Based on the Gnla sequence context of the
background varieties, a suitable marker among the
Gnla-indell, Gnla-indel3, and Gnla-17 SNP markers
can be used to select the yield-positive Gnla allele.
Reduced expression of Gunla in inflorescence meristem
of Habataki elevates cytokinin content, resulting in high
grain number per panicle. Therefore, we tried to find
polymorphisms in the Gnla promoter region, which is
the regulatory region for gene transcription. Through
WGS and PCR product sequencing of the Gnla gene,
we found three SNPs in the promoter region. It was pre-
sumed that any of the three SNPs were associated with
Gnla expression level. Based on the combination of the
three SNPs and 16-bp indel in the Gnla promoter re-
gion, we assigned rice accessions into three Gnla alleles
(Types 1-3) (Fig. la). Earlier the effect of the Gnla-
Habataki allele was evaluated in only japonica back-
grounds (Type 1) (Ashikari et al. 2005; Ohsumi et al.
2011). When 35 indica varieties were analyzed by the
Gnla-M1 marker that discriminates the 16-bp indel in
the 5’'UTR, 19 accessions (54.3%) showed a Habataki
band pattern (Yan et al. 2009), suggesting that these
lines are Type 2 or Type 3 alleles. In our analysis, 11 out
of 12 recipients showed 16-bp deletion in the 5’UTR like
Habataki. This suggested that many indica varieties be-
long to Type 2 or Type 3 alleles, unlike japonica var-
ieties. However, the effect of the Gnla-Habataki allele
(Type 3) needs to be tested in Type 2 backgrounds
through the development of near-isogenic lines (NILs).
If the Type 3 allele is functionally the same as the Type
2 allele (i.e., no grain number difference between the re-
cipient variety and NIL-Type 3), rice breeders do not
need to introduce the Gnla-Habataki allele into Type 2
cultivars. The previous Gnla-M1 marker is not available
to introduce the Habataki allele in Type 2 backgrounds
because it cannot discriminate the Type 2 allele and
Type 3 allele. The Gnla-17SNP marker and three Flui-
digm SNP markers (Gnla-17SNP-FD, Gnla-18SNP-FD,
and Gnla-19SNP-FD) are effective for introducing the
Gnla-Habataki allele into Gnla-Type 1 background as
well as Type 2 background. Regarding detection of the
16-bp indel, we newly designed the Gnla-indell marker,
which enhanced the band separation in agarose gel by
reducing PCR product sizes (99 bp and 115 bp)
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Start Stop 1kb
Gnla-indel3
Gn1a-195NP-FD Gnla-18SNP-FD Gnla-17SNP Gnla-indell {about 70 bp indel)
(6/m) (T/7) Gnla'ﬁgjgp'm (16 bp indel) start

| |
T1 Nipponbare

Gnla-indell

~~ < N(115 bp)
P(99 bp)

[

Gnla-indell- F/R

CTCTATGGCCGGATC (50bp) GGATGTGTTTCTACT (100bp) TATGCGGGGGATGTG (850bp) AAACCGATCGATTGATTGATTGATAATG

Parao CTCTATGGCCGGATC(50bp)GGATGTGTTTCTACT(lOObp)TATGCGGGGGATGTG(850bp)AAACCGATCGATTGATTGATTGATAAEQ
PSBRc82 CTCTATGGCCGGATC (50bp) GGATGTGTTTCTACT (100bp) TATGCGGGGGATGTG (846bp) ARA-——~-—~-—————————— TTGATAATG
NSICRc158 CTCTATGGCCGGATC (50bp)GGATGTGTTTCTACT (100bp) TATGCGGGGGATGTG (84 6bp) AAA=—=—=—====——=————~ TTGATAATG
NSICRc238 CTCTATGGCCGGATC (50bp)GGATGTGTTTCTACT (100bp) TATGCGGGGGATGTG (84 6bp) AAA=—=——=————=————~ TTGATAATG
T2 IR04A115 CTCTATGGCCGGATC (50bp) GGATGTGTTTCTACT (100bp) TATGCGGGGGATGTG (846bp) ARA-——————————————— TTGATAATG
PR38012 CTCTATGGCCGGATC (50bp) GGATGTGTTTCTACT (100bp) TATGCGGGGGATGTG (846bp) AAA-————~-———————-——— TTGATAATG
PR37951 CTCTATGGCCGGATC (50bp) GGATGTGTTTCTACT (100bp) TATGCGGGGGATGTG (84 6bp) AAA=—=======—=—————~ TTGATAATG
CcT5803 CTCTATGGCCGGATC (50bp) GGATGTGTTTCTACT (100bp) TATGCGGGGGATGTG (84 6bp) ARA=—=——=——=———————~ TTGATAATG
Habatakis CTCTATGTCCGGATC (50bp) GGATGTGATTCTACT (100bp) TATGCGGAGGATGTG (846bp) AAA-——~-—~-———————-——— TTGATAATG
ST12 * CTCTATGTCCGGATC (50bp) GGATGTGATTCTACT (100bp) TATGCGGAGGATGTG (846bp) AAA-——~-—~-—————————— TTGATAATG
T3 NSICRc222 CTCTATGTCCGGATC (50bp)GGATGTGATTCTACT (100bp) TATGCGGAGGATGTG (846bp) AAA-——————=-——————- TTGATAATG
IR0O5N412  CTCTATGTCCGGATC (50bp) GGATGTGATTCTACT (100bp) TATGCGGAGGATGTG (84 6bp) ARA=—=———=——————————— TTGATAATG
CT5805 CTCTATGTCCGGATC (50bp) GGATGTGATTCTACT (100bp) TATGCGGAGGATGTG (846bp) AAA-——~-—~-—————————— TTGATAATG
Irga4d27 CTCTATGTCCGGATC (50bp) GGATGTGATTCTACT (100bp) TATGCGGAGGATGTG (846bp) AAA-===-==-=—=—===—=—=~ TTGATAATG
b * W BRR LN m
T+ 29990 T g0 388N C
52 ~~2553 553333 8 Z Zoa oz oM E M mE B MM E
5%;&232522&255?& A AT S T
b — m s o~ 8 O 99 3
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P (257 bp) o - o= - - <— N(321 bp)
Gnla-17SNP- OPF / OPR / AF / GR - — - . - - .. +L9(257 bp)
—_ —_ -— %% W= s 4— P (275 bp) Gnl: del3
- —he Sew ~205 bp)
Gnla-indel3-F/R N -_— - - e .2 - - <— P (275 bp)
- - - - S e -
N(~205 bp)

Fig. 1 Gnla markers. a Identification of nucleotide polymorphisms in Gnla gene for marker development. Gnla gene consists of four exons
(orange boxes) in which translation initiation codon (Start) and stop codon (Stop) are depicted. Each nucleotide variation with corresponding
markers (PCR-gel-based markers and Fluidigm genotyping platform (-FD) markers) is mapped on the gene structure. The sequence alignment
showed nucleotide polymorphisms in the promoter and 5'UTR regions of GnTa among 15 varieties, including the reference genome (Nipponbare),
two Gnla donors, and 12 recipients. DNA polymorphisms were highlighted with pink and green color. The number of unrepresented nucleotides (bp)
in a sequence was shown in parentheses. Based on the context of the promoter sequences, three Gnia alleles (Types 1-3: T1-T3) were found. Variety
name with asterisk (¥) was used as the donor line of target allele. b Agarose gel images analyzed by three Gnla markers (Gn1a-17SNP, Gn1la-indel3,
and Gn1la-indell markers) from two donor lines and 12 recipients. Predicted PCR product sizes for yield-positive allele (P), non-target allele (N),
and common band (OP) were shown at the right side of the gel image. Primer combination for each marker was shown on the gel images and
its sequences were listed in Table 2. M, DNA size marker. ¢ Application of Gn1a markers in the intermediate breeding line. Fourteen BC;F3 plants
derived from PR37951 x Habataki cross were genotyped with Gn1a-17SNP and Gnla-indel3 marker, respectively. Genotyping result was scored
for each plant as PP (homozygous for positive allele), NN (homozygous for non-target allele), and PN (heterozygote)

compared with those of the Gnla-M1 marker (113 bp
and 129 bp). The Gnla-indel3 marker located near the
3'UTR was developed for obtaining clear genotype data.
The marker showed clear band separation in agarose gel
and similar PCR efficiency between the two alleles in
heterozygotes (Fig. 1c). Although the Gnla-indel3
marker was not associated with the phenotype, it will be
helpful for MAS of the Gnla gene in many indica culti-
var backgrounds.

OsSPL14/WFP/IPAT Markers

The QTL WFP (WEALTHY FARMER’S PANICLE) en-
coding OsSPL14 negatively regulates the number of til-
lers in the vegetative stage and positively controls the

number of rachis in the reproductive stage. Higher
expression of OsSPL14 in young panicles increased pan-
icle branching and grain number per panicle, resulting
in increased yield. Two different yield-positive alleles
(OsSPL14-ST12 and OsSPL14-Aikawal) showed higher
expression in inflorescence with different mechanisms.
In the line ST12, OsSPLI14 transcripts were abundant by
less DNA methylation in the OsSPLI4 promoter region
compared with that of Nipponbare rather than by DNA
sequence differences (Miura et al. 2010). The OsSPL14-
ST12 allele belongs to epigenetic alleles that show herit-
able gene expression difference which is caused not by
DNA sequence variations but by DNA methylation or
chromatin status (Kakutani 2002). In contrast, the
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OsSPL14-Aikawal allele expressed OsmiR156-resistant
OsSPL14 transcripts because of the nucleotide substitu-
tion (C to A) at the OsmiR156 target site located on the
third exon of OsSPL14, resulting in higher expression in
panicles (Miura et al. 2010). The same alleles with
Aikawal were isolated through fine mapping of QTL
IPA1 (Ideal Plant Architecture 1) from the japonica lines
Shaoniejing and Ri22 (Jiao et al. 2010). Through WGS
data analysis, we found a putative ST12-specific SNP (C/T)
in the OsSPLI14 promoter region (Additional file 3:
Figure S3). Finally, this was confirmed by direct sequen-
cing of PCR product from line ST12 and 12 recipients
(Fig. 2a). The SNP was selected for developing the SPL14-
04SNP marker which consists of two PCRs: the C-allele
primer set (SPL14-04SNP-F/CR) and the T-allele primer
set (SPL14-04SNP-F/TR). The SPL14-04SNP marker
showed allele-specific PCR amplification in parental lines
(Fig. 2b) and in intermediate breeding lines harboring het-
erozygous plants (Fig. 2c). The Aikawal-specific SNP lo-
cated at OsmiR156 target site was confirmed by Sanger
sequencing from Aikawal and 12 recipients (Fig. 2a).
The SNP was used for developing the SPL14-12 SNP
marker to select OsSPLI4-Aikawal allele. The non-
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Ajakawal allele and Aikawal allele were amplified with
SPL14-12SNP-CF/R primer set and SPL14-12SNP-F/AR
primer set, respectively. The marker discriminated the
alleles clearly from the parents (Fig. 2b) and intermedi-
ate breeding lines (Fig. 2d).

The OsSPL14-ST12 allele is an epigenetic allele. Less
DNA methylation in OsSPLI14 promoter in ST12 in-
creased its transcription, resulting in high grain number
per panicle. However, we can introduce the OsSPLI4-
ST12 allele using DNA polymorphism within or near the
OsSPL14 gene between ST12 and the recipient instead of
checking the status of DNA methylation. Among the six
varieties analyzed by WGS, Habataki had many unique
DNA polymorphisms (18 SNPs and one 2-bp deletion) in
the OsSPLI4 gene located on chromosome 8 (data not
shown). But, the new OsSPL14 allele, Habataki allele, may
not be a new yield-positive allele because the QTL con-
trolling grain number per panicle was not detected on
chromosome 8 (Ashikari et al. 2005). However, we found
an ST12-specific C/T SNP in the promoter region, which
was about 4.2 kb distance from the start codon. This nu-
cleotide was identical to the border nucleotide of the 2.6-
kb WFP candidate region (Miura et al. 2010), indicating
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Fig. 2 OsSPL14 markers. a Identification of donor-specific DNA polymorphisms in OsSPL14 gene. The donor-specific SNPs at the promoter and the
third exon were represented through DNA sequence alignment among 15 varieties, including Nipponbare, two different OsSPL14 donors (ST12
and Aikawal1), and 12 recipients. The location of 2.6-kb candidate region of WFP (Miura et al. 2010) was depicted. b Agarose gel images analyzed
by the SPL14-04SNP marker and the SPL14-12SNP marker, respectively, from the parental lines. Primer combination for each PCR was shown on
the gel images. ¢ Application of SPL14-04SNP marker in the intermediate breeding line, with 12 BC,F, plants derived from PR38012 x ST12 cross.
d Application of SPL14-12SNP marker in the intermediate breeding line. Twelve BC,F, plants derived from IR04A115 x Aikawal cross
were genotyped
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that the SNP can be an FNP of the OsSPL14-ST12 allele.
In plants, DNA methylation occurs through the addition
of a methyl group to the cytosine bases of DNA in the
context of CG, CHG, and CHH (H= A, C, or T) (He et al.
2011). The nucleotide substitution from C to T resulted in
CCC (other varieties) and TCC (ST12) sequence context,
respectively (Fig. 2a). If this C base is a target site of
methylation, the T base of ST12 can avoid methylation,
indicating higher OsSPL14 expression. Miura et al (2010)
tested DNA methylation levels in the 2.6-kb WFP candi-
date region using bisulfite sequencing and the result
showed some differences in the region between ST12 and
Nipponbare, which is about 1070-bp distance from the C/
T SNP locus. Further study is needed to show that this
SNP has some function.

The marker for the OsSPL14-ST12 allele has not been
reported. We developed the SPL14-04SNP marker using
the ST12-specific SNP to select the OsSPL14-ST12 allele.
This marker will be available for most indica and japon-
ica background varieties because the SNP is quite
unique in ST12. To select OsSPLI14-Aikawal/Shaoniej-
ing/Ri22 allele, Xu et al. (2014) developed the CAPS
marker using Sdul restriction enzyme. Here, we intro-
duced the allele-specific PCR-gel-based marker, the
SPL14-12SNP marker. This marker will be effective for
MAS to most of rice varieties because the OsSPLI14-
Aikawal allele is rare.

SCM2/APO1 Marker

ABERRANT PANICLE ORGANIZATION1 (APO1) en-
codes an F-box-containing protein and is involved in
controlling rachis branching in panicle, tiller outgrowth,
and culm diameter. The apol mutant formed smaller in-
florescences with reduced numbers of branches and
spikelets (Ikeda et al. 2007). In contrast, the APOI-over-
expressing mutant, Undulate rachil (Url) and APOI-
overexpressing transgenic plants showed dramatic incre-
ment of grain number per panicle but tiller number per
plant reduced remarkably (Murai and lizawa 1994;
Ikeda-Kawakatsu et al. 2009). STRONG CULM?2 (SCM?2)
is a mild allele of APOI found in variety Habataki (2-3
times higher expression of APOI in inflorescence than
that of Koshihikari) and the allele increased culm diam-
eter and grain number per panicle without a reduction
in tiller number (Ookawa et al. 2010; Terao et al. 2010).
This SCM2-Habataki allele is regarded as a useful allele
of APOI gene for increasing yield and lodging resistance
in a breeding program. Through WGS data analysis, we
tried to find Habataki-specific DNA variations in the
SCM?2 gene (-5 kb from start codon and +2 kb from stop
codon) among the six cultivars. However, no sequence
difference was found among the five genotypes (Habataki,
ST12, NSIC Rc158, NSIC Rc222, and NSIC Rc238). To
determine the APOI1 allele from 12 recipients, we
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sequenced two promoter regions and the third exon
(Fig. 3a), which showed some DNA variations between ge-
notypes of mapping bi-parents (Habataki and Koshihikari)
(Ookawa et al. 2010). Except for Parao, 11 recipients had
the same sequence as Habataki. However, the 12-bp indel
in the promoter region (Fig. 3a) was selected for marker
development to introduce the SCM2-Habataki allele into
Parao. We developed the SCM2-indell marker and tested
it in the parental lines. As expected, only Parao showed a
different band size (Fig. 3b). The marker was also applied
in intermediate breeding lines that were BC3F, plants de-
rived from a Parao x Habataki cross and it distinguished
the genotypes clearly (Fig. 3c). For automated high-
throughput electrophoresis, the same PCR product was
analyzed using Fragment Analyzer (Fig. 3d).

The WGS and PCR product sequencing showed that
the SCM2-Habataki allele was detected in most of our
donors and recipients. These results indicate that the
high-yielding and lodging-resistant SCM2-Habataki al-
lele is widely dispersed in indica varieties. In contrast,
temperate japonica varieties Nipponbare, Koshihikari,
Sasanishiki, and Aikawal had the non-yield-positive
SCM2 allele, suggesting that the SCM2-Habataki allele
will be effective in many temperate japonica varieties.
The SCM2-indell marker may be helpful for MAS in ja-
ponica backgrounds. The SCM2 sequence of ST6 was al-
most the same as that of Nipponbare but two 2-bp
deletions in the promoter region (3.4-kb and 5.8-kb re-
gions from the start codon) were found in only the line
ST6 among the six lines in the WGS analysis carried
out. The new allele, SCM2-ST6, needs to be tested if the
ST6 allele is superior to the Habataki allele through
checking SCM?2 expression level in stem, young panicle,
and phenotypes in NIL-ST6 because the grain number
per panicle and culm diameter of ST6 were higher than
those of Habataki as observed at IRRI during the 2013-
2015 experiments.

Ghd7 Marker

Grain number, plant height, and heading date7 (Ghd?7)
encoding a CCT domain protein is involved in multiple
yield-related traits, including heading date, plant height,
and grain number per panicle (Xue et al. 2008). Nine
Ghd7 alleles (Ghd7-0~7 and Ghd7-0a) were identified
based on the predicted protein sequences from about
120 genotypes (Xue et al. 2008; Lu et al. 2012). To know
the allele type of Ghd7 from our breeding materials, we
analyzed the genomic sequence (protein coding regions
and an intron) of Ghd7 using WGS data of six geno-
types. ST6 variety had Ghd7-6 allele and the others had
exactly the same DNA sequences as variety Minghui63,
which had the fully functional yield-positive Ghd7-1 al-
lele. Additionally, we sequenced PCR products contain-
ing Ghd7 coding sequences from Habataki, ST12, ST6,
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Fig. 3 SCM2 marker. a Gene structure of APO1/SCM2. Three regions sequenced by the Sanger method were represented with primer pairs. b
Agarose gel image analyzed by SCM2-indel1 marker from the donor line (Habataki), ST12, and 12 recipients. To separate two bands (117 bp and
105 bp) produced by the SCM2-indel1 marker, 4% agarose gel was used. c-d Application of SCM2-indel1 marker in the intermediate breeding line.
Thirteen BCsF, plants derived from Parao x Habataki cross were genotyped by the SCM2-indel1 marker and its PCR products were electrophoresed in
4 % agarose gel (c) and in Fragment Analyzer (d)

and 12 recipients, resulting in that all lines (except for
ST6 and Parao) had the Ghd7-1 allele. These results
indicated that 11 out of 12 recipients already have the
yield-positive Ghd7-1 allele. However, we selected the
A/T SNP (521st nucleotide from ATG in CDS) and
developed the Ghd7-05SNP marker detecting the SNP
to introduce the Ghd7-1 allele into Parao which had
the Ghd7-2 allele (a functional but weaker allele).
Genotyping results from parental lines through this
marker were consistent with DNA sequencing data,
indicating that the marker discriminated A (non-target
allele) and T (Ghd7-1 allele) clearly (Fig. 4a). To re-
place the Ghd7-2 allele with the Ghd7-1 allele in the
Parao background, this marker was used in intermedi-
ate breeding lines derived from a Parao x Habataki
cross (Fig. 4b).

Based on our sequencing data analyses of Ghd7, the
Ghd7-1 allele is common in indica rice varieties. This re-
sult was consistent with the previous reports (Xue et al.
2008; Lu et al. 2012) that Ghd7-1 and Ghd7-2 alleles
were popular in indica and japonica varieties, respect-
ively. So, the fully functional Ghd7-1 allele may be ef-
fective for increasing yield potential in many japonica
varieties which are growing in long-day condition. The
Ghd7-05SNP marker will be helpful to introduce Ghd7-
1 allele into japonica backgrounds.
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Fig. 4 Ghd7 marker. a Agarose gel image analyzed by Ghd7-05SNP
marker from the parental lines. Non-target allele and yield-positive
allele (Ghd7-1) were amplified by Ghd7-05SNP-F/AR primer pairs and
Ghd7-05SNP- F/TR primer pairs, respectively. Habataki and ST12 were
used as the donors of Ghd7-1 allele and Aikawal (japonica-type
variety) was included as a control of Ghd7-2 allele. b Application of
Ghd7-05SNP marker in the intermediate breeding line. Thirteen
BC,F, plants crossed between Parao and Habataki were genotyped
by the marker
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DEP1 Marker

DENSE AND ERECT PANICLE1 (DEPI) encodes a
phosphatidylethanolamine-binding protein-like domain
protein and regulates panicle architecture. The natural
DEP] mutant allele (625-bp deletion on the fifth exon)
encoding C-terminal truncated DEP1 protein increased
grain number per panicle, resulting in increased yield, al-
though panicle length decreased. This allele might be
derived from Italian landrace Balilla and was distributed
to many high-yielding Chinese japonica varieties (Huang
et al. 2009). In order to detect FNP, the forward primer
and the reverse primer of the DEP1-indell marker were
located upstream and downstream of the 625-bp dele-
tion on the fifth exon, respectively (Fig. 5a). As a result,
the difference in PCR product sizes will be 625 bp be-
tween the yield-positive allele and the non-target allele.
The Turkish high-yielding variety Osmancik-97 was used
as the donor of DEPI. The DEP1-indell marker was
tested in the donor and 12 recipients, and it discrimi-
nated DEPI alleles clearly (Fig. 5b). But, when it was ap-
plied to intermediate breeding lines, the band intensity
of the non-target allele (1031 bp) was markedly lower
than that of the positive allele (406 bp) in heterozygotes
(plant #2, 3, 5, 6, 7, 10, and 12 in Fig. 5d). To solve the
problem of the marker, we developed the tri-primer PCR
method, which contained the two primers of DEP1-

1kb

Y
[ |

Osmancik-97 *

PSBRc82
NSICRc158
NSICRc222
NSICRc238
PR37951
IRO5N412
IR04A115

<« P (406 bp)

DEP1-indellP

4 P (406 bp)
c iS4
N (310 bp)

DEP1-indell- F /R
DEP1-indell- F /R / 625F

o=z zZ 2z
oo oM

3 PN
4 PP

=
& .
~ DEP1-indell

n ©

PP
| 9N
10 PN
12 PN
13 PP

S < N

d S——— — — ——

DEP1-indell- F /R

| 11NN

<« N(1031 bp
<« P (406 bp)

DEP1-indel1P

= s 4 P (406 bp)

e —— -
DEPL-indell- F /R / 625F

Fig. 5 DEPT marker. a Gene structure of DEPT. FNP (625-bp indel)
was shown with the unfilled box on the fifth exon. The location and
direction of marker primers (DEP1-indel1-F/R/625F) are mapped on
the gene structure. b-c Agarose gel images of PCR with DEP1-indel1
marker (b) and DEP1-indel1P marker (c) from the parents. d-e
Application of DEP1-indel1 marker (d) and DEP1-indel1P marker
(e) in the intermediate breeding line. Thirteen BC,F, plants
derived from NSIC Rc158 x Osmancik-97 cross were genotyped
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indell marker (DEP1-indell-F/R) and additional non-
target allele-specific primer (DEP1-indel1-625F) (Fig. 5a).
As a consequence, the band size of the non-target allele
decreased from 1031 bp to 310 bp. The new marker
(DEP1-indel1P) worked well in parental lines (Fig. 5¢) as
well as in heterozygotic plants from intermediate breed-
ing lines (Fig. 5e).

Like our DEP1-indell marker, the previously reported
DEPI1 marker (Xu et al. 2014) also showed similar re-
sults: that the marker was no problem in homozygous
plants but the PCR band intensity was quite different be-
tween two alleles in heterozygotes. This phenomenon
was caused by the difference in PCR amplification effi-
ciency between two different PCR products in the same
reaction tube during PCR cycling. Usually, this occurs
when the gap between two PCR products is large (sev-
eral hundred base pairs) such as the DEP1-indell
marker (625-bp gap) or the indel region contains diffi-
cult PCR sequences such as high G-C sequence or
inverted repeat sequence. Generally, the longer PCR
product and the difficult PCR region show lower ampli-
fication efficiency, resulting in a weaker band in agarose
gel. To achieve similar PCR efficiency between non-
target allele and yield-positive allele, we reduced the gap
from 625 bp to 96 bp by adding DEP1-indell-625F pri-
mer (Fig. 5a), resulting in a tri-primer PCR system
(DEP1-indell-F/R/625F). Eventually, the DEP1-indellP
marker generated similar band intensity between non-
target allele and positive-allele bands in heterozygotes
(Fig. 5e). The marker will be more effective for MAS of
the DEPI gene than previous marker.

SPIKE/LSCHL4/NAL1/GPS Markers

SPIKELET NUMBER (SPIKE), LSCHL4, and GPS are al-
lelic to Narrow leafl (NALI) encoding a plant-specific
protein with unknown biochemical function (Qi et al
2008; Fujita et al. 2013; Takai et al. 2013; Zhang et al.
2014). The NALI gene was originally identified through
characterization of a classic rice dwarf mutant, nall (Qi
et al. 2008), and the other alleles were characterized by
QTLs with map-based cloning by independent research
groups. The SPIKE allele from tropical japonica landrace
Daringan and the LSCHL4 allele from temperate japon-
ica variety Nipponbare increased grain number per pan-
icle and grain yield in indica backgrounds (Fujita et al.
2013; Zhang et al. 2014). The protein coding sequences
of NAL1I were identical among japonica varieties (Daringan,
Nipponbare, and Koshikari) and among indica varieties
(IR64, 93-11, and Takanari), respectively. The NALI-
japonica allele and the NALI-indica allele were distin-
guished by three SNPs causing amino acid change in
CDS (Fujita et al. 2013; Takai et al. 2013; Zhang et al.
2014). Based on the sequence analysis of NALI gene,
16 cultivars were classified into five haplotypes (Takai
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et al. 2013). Our WGS data showed that Habataki,
NSIC Rc222, and NSIC Rc238 had the same DNA se-
quences as the NALI-Takanari allele (Type 1) (Additional
file 4: Figure S4). In the case of NSIC Rc158, several SNPs
were newly found but the deduced amino acids were the
same as those of the NALI-Takanari allele (Type 1). So,
these three recipients may need the NALI- japonica allele
to increase yield potential. We developed three allele-
specific PCR markers: the SPIKE-01SNP marker detecting
G/A SNP on the third exon, the SPIKE-03SNP marker de-
tecting G/A SNP on the fifth exon, and the SPIKE-indel3
marker detecting a 20-bp indel in the promoter region
(1.9 kb distance from the start codon). These three
markers were tested in the donor line and 12 recipients
(Fig. 6a-c). Among the 12 recipients, CT5805 and Parao
showed the same band pattern as the SPIKE donor line
(YP9), suggesting that the two varieties had the yield posi-
tive NALI- japonica allele (Type 5). Therefore, we need to
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Fig. 6 SPIKE markers. a-c Agarose gel images analyzed by three SPIKE
markers from the parental lines. The SPIKE-01SNP marker discriminated
G/A SNP located on the third exon using two separated PCRs
(SPIKE-01SNP- GF/R primer set and SPIKE-01SNP-AF/R primer set)
(@). The SPIKE-03SNP marker detected the G/A SNP on the fifth exon
using two separated PCRs (SPIKE-03SNP-F/GR primer set and SPIKE-
03SNP-F/AR primer set) (b). The SPIKE-indel3 marker distinguished a
20-bp indel located in the promoter region (c). YP9 was used as a
donor line of SPIKE gene. d-f Application of the SPIKE-01SNP marker
(d), the SPIKE-O3SNP marker (e), and the SPIKE-indel3 marker (f) in the
intermediate breeding line. Thirteen BC,F, plants derived from PSB
Rc82 x YP9 cross were genotyped by the three markers, respectively
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introduce the NALI-Type 5 allele into 10 recipients. The
breeding line (BC,F;) derived from a PSB Rc82 x YP9
cross was analyzed by the three SPIKE markers (Fig. 6d-f).
As expected, the three markers showed the same results
among markers. In conclusion, the SPIKE markers are ef-
fective for introducing a Type 5 allele in an indica
background.

The yield-positive NALI allele originated from japonica-
type varieties and this allele increased yield in several
indica-type cultivars (Fujita et al. 2013; Zhang et al. 2014).
In the 12 recurrent parents, only two lines (CT5805 and
Parao) had the yield-positive NALI allele. This result indi-
cates that the NALI-japonica allele will be effective in
many indica cultivars for increasing yield. Here, we devel-
oped three gene-tagged markers, SPIKE-01SNP marker,
SPIKE-03SNP marker, and SPIKE-indel3 marker, discrim-
inating the japonica allele and indica allele. These markers
will be useful for MAS of NALI alleles. Through WGS
data analysis, we found new two haplotypes (Type 6 and
Type 7) to the NALI gene (Additional file 4: Figure S4).
Line ST6 producing high grain number per panicle needs
to be tested to determine whether it is superior to or has
the same allele as the japonica allele because an additional
amino acid change was found on the fifth exon in ST6.

GS5 Markers

Abundant transcripts of GS5, encoding a putative serine
carboxypeptidase, in the hull (palea/lemma) before head-
ing and in the developing endosperm enhanced grain
width and grain weight. Through sequence analysis of
the GS5 promoter (2 kb upstream from the start codon)
from 35 cultivars, the sequences were divided into three
groups: wide grain (WQG) allele, medium grain (MG) al-
lele, and narrow grain (NG) allele (Li et al. 2011). First,
we checked the GSS alleles using WGS data analysis.
The sequences of GS5 of Habataki, ST12, NSIC Rc222,
and NSIC Rc238 were the same as those of GS5-NG al-
lele. NSIC Rc158 and ST6 belonged to the GS5-MG al-
lele and GS5-WG allele, respectively. Through PCR
product sequencing of GS5 promoter region, GS5 alleles
were determined from 12 recipients. Parao belonged to
the GS5-WG allele and NSIC Rc158, PR38012, CT5803,
CT5805, and Irgad27 belonged to the GS5-MG allele.
Based on the sequence alignment of GS5 promoter, we
selected the MG-specific 4-bp indel and the WG-
specific C/T SNP to design the GS5-indell marker and
the GS5-03SNP marker, respectively (Fig. 7a). The GS5-
indell marker produced a 63-bp band (MG allele) and a
67-bp band (WG or NG). The 4-bp difference could not
be separated properly in agarose gel. After PCR amplifi-
cation from the parental lines, the PCR products were
analyzed by high-resolution electrophoresis such as
PAGE (data not shown) or capillary electrophoresis
using Fragment Analyzer (Fig. 7b). The genotyping
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Fig. 7 GS5 markers. a The selected DNA polymorphisms in the GS5
promoter region for marker development. The location of the 4-bp
indel is 320-bp distance from the translation initiation codon. The
C/T SNP was used for designing GS5-03SNP (PCR-gel-based marker)
and GS5-03SNP-FD (Fluidigm genotyping marker) markers. b Capillary
electrophoresis image from the parental lines analyzed by the
GS5-indelT marker. Aikawal and ST6 were used as donors of GS5-WG
allele. The WG, MG, and NG alleles of the GS5 gene were designated as
W, M, and N, respectively. ¢ Agarose gel image analyzed by the GS5-
03SNP marker from the parental lines. d Application of the GS5-03SNP
marker in intermediate breeding line. Fourteen BC,F, plants derived
from PR37951 x ST6 cross were tested

result was consistent with the DNA sequencing data. To
select the WG allele, we developed the GS5-03SNP
marker. Genotyping PCR was performed with four
primers (GS5-03SNP-OPF/OPR/TEF/CR) from the paren-
tal lines and electrophoresis was done in agarose gel
(Fig. 7c). The genotype result was consistent with se-
quencing data, indicating that the marker data were reli-
able. The marker was also validated in intermediate
breeding line and discriminated SNPs properly (Fig. 7d).

The GS5 promoter sequences of our parental lines
were classified into the existing three GS5 alleles (WG,
MG, and NG) (Li et al. 2011). In the 12 recurrent parent
lines, the numbers of WG, MG, and NG alleles were
one, five, and six accessions, respectively. This result in-
dicated that many indica varieties had MG or NG alleles.
To increase grain size, WG or MG alleles of GS5 need
to be introduced in indica cultivars. The GS5-indell
marker and the GS5-03SNP marker will be helpful for
this purpose. For the GS5-03SNP marker, the largest
band (499 bp) generated by common outer primers was
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weaker than the allele-specific bands (257 bp and 291
bp) (Fig. 7c-d). This could be caused by the difference in
PCR efficiency between/among bands in one tube. How-
ever, this is not a problem because there was no band
intensity difference between two allele-specific bands in
heterozygotes (Fig. 7d).

TGW6 Marker

TGW6, encoding a novel protein having hydrolase activ-
ity from IAA-glucose into IAA and glucose, regulates
grain weight through controlling both source ability and
sink size. TGW6 is a single-exon gene and the loss-of-
function allele caused by a 1-bp deletion in CDS in
Kasalath increased grain weight (Ishimaru et al. 2013).
We developed the TGW6-1d marker detecting FNP (1-
bp deletion) to select a yield-positive allele (TGW6-Kasa-
lath allele). The marker consisted of two sets of primers
(TGW6-1d-F/NR for the non-target allele and TGW6-
1d-F/PR for the yield-positive allele) and it was tested in
the donor line (Kasalath) and 12 recipients. All geno-
types were determined clearly by this marker and only
Kasalath had the yield-positive TGW6 allele among our
breeding materials (Fig. 8a). The marker also functioned
properly in intermediate breeding lines (Fig. 8b).

The loss-of-function allele of the TGW6 gene caused
by a 1-bp deletion enhanced grain weight. Among the
69 cultivars, only four varieties had the TGW6-Kasalath
allele, suggesting that the yield-positive allele is a rare al-
lele (Ishimaru et al. 2013). A similar result was observed
in our study. All 12 recipients had the non-yield-positive
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Fig. 8 TGW6 marker. a Agarose gel images analyzed by TGWeé-1d
marker from the donor line (Kasalath) and 12 recipients. The alleles
of the TGW6 gene were determined by TGW6-1d-F/NR primer set
detecting the non-target allele and TGW6-1d-F/PR primer set detecting
the yield-positive allele. b Application of TGW6-1d marker in intermediate
breeding line. Thirteen BC,F, plants derived from PR38012 x Kasalath
cross were tested
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TGWE6 allele. Therefore, the TGW6-Kasalath allele may
be effective for increasing grain weight in most cultivars
throughout indica- and japonica-type varieties. The
TGW6-1d marker detecting the FNP will be useful for
introducing the TGW6-Kasalath allele through MAS.

High-throughput Genotyping Markers Using Fluidigm
SNP Genotyping Platform

Currently, several high-throughput genotyping platforms
using a fluorescence detection system are available in rice
(Thomson 2014). We also developed fluorescence-labeled
allele-specific markers using Fluidigm SNP genotyping
platform for high-throughput MAS of yield-related genes.
For the Gnla gene, three SNPs in the promoter region
(Fig. 1a) were discriminated by Gnla-19SNP-FD, Gnla-
18SNP-FD, and Gnla-17SNP-FD markers (Fig. 9). For the
OsSPL14 gene, the ST12-specific SNP in the promoter re-
gion and the Aikawal-specific SNP on the third exon
(Fig. 2a) were detected by SPL14-04SNP-FD marker and
SPL14-12SNP-FD marker, respectively. In the Ghd7 gene,
the 521st nucleotide (A/T) in CDS was used for develop-
ing the Ghd7-05SNP-FD marker. We developed the GS5-
01SNP-FD marker distinguishing T (NG allele)/C (MG or
WG allele) SNP in the GS5 promoter region (1594-nu-
cleotide upstream from the start codon of H94 line, Gen-
Bank accession no. JN256057). And, for selection of the
GS5-WG@G allele, the GS5-03SNP-FD marker was devel-
oped. For the GS3 gene, FNP (C/A SNP) on the second
exon was used for developing the GS3-01SNP-FD marker.
All markers were tested in 47 samples consisting of 39 ac-
cessions (Fig.9; Additional file 5: Table S1). Among these,
ST12 and Aikawal were unique at the SPL14-04SNP-FD
marker and SPL14-12SNP-FD marker, respectively (Fig. 9).
The genotyping results were consistent with the DNA se-
quencing data as well as the PCR-gel-based allele-specific
markers developed in this study.

In marker-assisted breeding, breeders sometimes han-
dle several hundred samples and/or many markers. Usu-
ally, MAS should be finished before flowering to make a
backcross or a cross between different gene sources for
gene pyramiding. In this case, high-throughput genotyp-
ing systems are very helpful. Here, we employed Flui-
digm SNP genotyping system. In this system, 24-192
samples can be analyzed with 24-96 customized markers
simultaneously. After PCR, fluorescence from the allele-
specific PCR products can be detected without gel elec-
trophoresis, and data calling can be computed rapidly.
We developed nine Fluidigm SNP markers for five yield-
related genes. These markers will be useful for high-
throughput genotyping of yield-related genes in rice.

Conclusion
Here, we described the procedures of SNP/indel marker
development for yield-enhancing genes, including allele

Page 12 of 17

determination of target genes in the recurrent parental
lines, DNA polymorphism screening using WGS and
Sanger sequencing techniques, the selection of DNA
polymorphisms for marker designing, and marker valid-
ation. This procedure can be applied to designing
markers for other agronomic traits. For rapid improve-
ment of genetic yield potential in rice, we need to evalu-
ate and use the previously identified yield-enhancing
genes in local favorite cultivar backgrounds. The allele-
specific markers for yield-enhancing genes shown in this
study will be very helpful for MAS of yield-enhancing
traits/genes. Through whole-genome sequencing, we iden-
tified some new haplotypes for some yield-enhancing
genes such as the SCM2-ST6 allele and SPIKE-ST6 allele.
For the same gene, the alleles superior to the previously
identified alleles can be found. Therefore, if the new allele
was found in an advanced phenotype line such as ST6, the
effect of the new allele needs to be tested. To increase rice
productivity, the identification of new yield-enhancing
genes, isolation of superior alleles of previously identified
genes, marker development of the genes for MAS, evalu-
ation of the effect of the genes/alleles, and their use in ac-
tual breeding programs should be performed rapidly and
updated continuously.

Methods

Plant Materials

Habataki, ST12, ST6, Aikawal, YP9, Osmancik-97, and
Kasalath varieties were used as donors of yield-positive
alleles of yield-related genes. In addition, 12 elite indica
varieties originating from the International Rice Research
Institute (IRRI), Philippines, and International Center for
Tropical Agriculture (CIAT), Colombia, were used as re-
cipients to increase genetic yield potential through the
introduction or pyramiding of yield-enhancing genes
(Table 1). Seeds of the donor lines Habataki, ST12, ST6,
Aikawal, and Kasalath were obtained from the Bioscience
and Biotechnology Center, Nagoya University, Japan, and
seeds of Osmancik-97 were obtained from Trakya Agri-
cultural Research Institute, Edirne, Turkey. The plants
were grown in the IRRI paddy field, Laguna, Philippines,
in 2012-2015. To introduce the yield-positive alleles of
yield-related genes, crosses were made between the donor
lines and recipients followed by selfing, backcrossing, and
crossing with other cross combinations in the same back-
ground, based on the breeding plan. The markers we de-
veloped were applied to intermediate breeding lines for
MAS.

Whole-genome Sequencing and Comparative Sequence
Analysis

In order to identify nucleotide polymorphisms of yield-
enhancing genes between the donors and recipients,
WGS was performed using Illumina HiSeq 2000 by the
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Yale Genomics Center (Connecticut, USA) for three do-
nors (Habataki, ST6, and ST12) and three recipients
(NSIC Rc158, NSIC Rc222, and NSIC Rc238). The se-
quencing results yielded 609,301,492 reads in all. Total
mapped reads ranged from 47.65 % to 57.69 % and from
50.29 % to 5842 % against Nipponbare and 93-11

genomes, respectively. Uniquely mapped reads were on
average 42.01 % (Additional file 6: Table S2). The short
reads were aligned against the Nipponbare genome
(MSU v7). The SNP and indel polymorphisms were
screened using IGV software (Robinson et al. 2011;
https://www.broadinstitute.org/igv/).
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PCR Product Sequencing

To confirm DNA polymorphisms obtained by WGS and
to determine the alleles of yield-related genes from 12
recipients, the PCR products containing putative FNPs
or donor-specific polymorphisms for yield-related genes
were sequenced by the Sanger method. Genomic DNAs
were extracted from 12 recipients and four donors
(Habataki, ST12, ST6, and Aikawal) using the CTAB
method (Kim et al. 2011) and PCR amplification was
performed for Gnla, OsSPL14, SCM2, Ghd7, and GS5
genes. The primers for preparation of PCR product and
DNA sequencing are listed in Additional file 7: Table S3.
DNA sequencing reactions were performed with BigDye
terminator sequencing kit v3.1 (Applied Biosystems,
www.appliedbiosystems.com/), and then the se-
quences were determined by Applied Biosystems
3730x]I DNA analyzer by Macrogen Inc., Republic of
Korea (www.macrogen.com/).

Development of Allele-specific Markers

The DNA sequences of yield-related genes were ob-
tained from NCBI GenBank (www.ncbinlm.nih.gov/)
using the accession codes presented in the original pa-
pers (Ashikari et al. 2005; Ikeda et al. 2007; Xue et al.
2008; Huang et al. 2009; Miura et al. 2010; Li et al. 2011;
Ishimaru et al. 2013; Takai et al. 2013). To find DNA
polymorphsims between the donors and recipients, mul-
tiple sequence alignments were performed using BioEdit
software (Hall 1999). Special DNA variations such as
ENP, putative FNP, donor-specific polymorphisms, and
polymorphisms between the donors and recipients were
selected for marker designing. For indel variation, the
forward and reverse primers covered the indel region.
When the gap was small (less than 20 bp), we reduced
PCR product size (<120 bp) to increase the degree of
band separation in agarose gel. To discriminate SNP-
type DNA polymorphisms, first we used the tetra-primer
PCR method (Ye et al. 2001). This type of marker can
reveal a SNP by one PCR reaction with four primers.
The Gnla-17 SNP marker and GS5-03 SNP marker were
developed based on this method. Secondly the separated
allele-specific PCR method was used to design the other
markers. This method requires two separate PCR reac-
tions with allele-1-specific primer and allele-2-specific
primer, respectively, to define the SNP. Actually, we tried
the tetra-primer PCR method for all SNP polymor-
phisms because of its convenience, but the results from
some testing markers were unstable among trials. So, we
accepted the separated allele-specific PCR method. To
increase allele-specific primer annealing, an artificial-
mismatched nucleotide was given near the 3’ end of the
allele-specific primer (Hayashi et al. 2004). For better
understanding, the designing of the Gnla-17 SNP marker
and the SPIKE-01 SNP marker are shown in Additional
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file 2: Figure S2. The primer information for allele-specific
markers is presented in Table 2.

DNA Preparation, PCR with Allele-specific Markers, and
Electrophoresis

Leaf samples were collected from the intermediate
breeding lines in the paddy field. Fresh or stored leaf
(-20 °C) was cut at about 4 cm long and was placed into
a 2-mL tube with a steel ball. Then, the tubes were fro-
zen in liquid nitrogen and leaf tissues were ground with
the 2010 Geno/Grinder (www.spexsampleprep.com). In
each tube, 200 uL of DNA extraction buffer (100 mM
Tris-HCI, pH 9.5, 1 M KCI, 10 mM EDTA, pH 8.0) was
added and the samples were incubated at 65°C for 30
min. The samples were diluted by adding 1 mL of water
and centrifuged for 10 min at the maximum speed. The
supernatant was transferred into a 96-well plate and
stored at 4 °C for further uses. All genotyping markers
followed the PCR conditions mentioned below. The 20-uL
PCR solution contained 1x PCR buffer, 200 uM of each
dNTP, 0.25 uM of each primer, 1.5 uL of supernatant
(template DNA), and 1 unit of Tag DNA polymerase.
Thermal cycles were programmed as follows: 94 °C, 3
min; 35 cycles of 95°C for 25 s; 55 °C for 25 s; and 72 °C
for 35 s, concluding with 72 °C for 5 min. The PCR prod-
ucts amplified with Gnla-indell marker, SCM2-indell
marker, and SPIKE-indel3 marker were electrophoresed in
4 % agarose gel and the others in 2.5 % agarose gel. In the
case of GS5-indell marker, its PCR products (63 bp/67
bp) could not be separated properly in agarose gel. So, it
was analyzed by 8 % polyacrylamide gel electrophoresis
(PAGE) or capillary electrophoresis.

High-throughput Capillary Electrophoresis

Gel electrophoresis requires some labor and time be-
cause of manual gel preparation and hand loading of
PCR products. Currently, automated high-throughput
capillary electrophoresis instruments are available and
are helpful for handling a huge number of samples.
Here, we used Fragment Analyzer (Advanced Analytical
Technologies Inc., www.aati-us.com/) that supports
ready-to-use polymer (gel), automated sample loading,
and data calling. The PCR products produced by the
GS5-indell marker and the SCM2-indell marker were
analyzed by Fragment Analyzer.

Fluidigm SNP Genotyping

We selected nine SNPs from five yield-related genes to
design Fluidigm SNP genotyping markers. The se-
quences, including both 250-bp upstream and 250-bp
downstream of the target SNP, were sent to Fluidigm
(Assay_Design_Group@fluidigm.com) and the Fluidigm
SNP genotyping markers consisting of specific target
amplification (STA) primer, locus-specific (LS) primer,
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Table 2 Primer information of the allele-specific markers for eight yield-enhancing genes
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Marker DNA polymorphism Primer Primer sequence (5' to 3')°
Gnla-17SNP G/A SNP in promoter Gnla-17SNP-OPF TCGCAGGCACTGCACTTCA
Gn1la-17SNP-OPR GCCACCCTAGGTTTGATTCC
Gn1a-17SNP-AF CATACCTAGCGTTCTATGCtGA
Gn1a-17SNP-GR GGAAGATAAAGAAATTTCACATaCC
Gnla-indel3 ~70-bp indel near the 3'UTR Gnla-indel3-F GATCTAGATGCTCCAAAGTCC
Gnla-indel3-R CTGTACGTACGTGCACGTAG
Gnla-indell 16-bp indel in the 5'UTR Gnla-indel1-F GCCACCTTGTCCCTTCTACA
Gnla-indel1-R TGCCATCCTGACCTGCTCT
SPL14-04SNP C/T SNP in promoter SPL14-04SNP-F TAGCCATAGCTTCTGCGTGA
SPL14-04SNP-CR ACCGTGCTTACCGCCLGG
SPL14-04SNP-TR ACCGTGCTTACCGCCtGA
SPL14-12SNP C/A SNP on the third exon SPL14-12SNP-R CAAGTGAGACTTCATGTGGT
SPL14-12SNP-CF ACCGACTCGAGCTGTGLTC
SPL14-12SNP-F GTTCAGAAGCTTTACGTTGGA
SPL14-12SNP-AR GCTGGGTTGACAGAAGAGALAT
SCM2-indel1 12-bp indel in promoter SCM2-indel1-F GGAAATGATGAACACTGTCCA
SCM2-indel1-R GTTTGTCTCAGCTCTGATCTG
Ghd7-055NP A/T SNP on the second exon Ghd7-05SNP-F TGCTTATGCGTACATCTGGAT
Ghd7-05SNP-AR TGGGTTCAAGCTCTCCaCAT
Ghd7-05SNP-TR TGGGTTCAAGCTCTCCaCAA
DEP1-indel1P DEP1-indel1-F GCAAGTGCTCACCCAAGTG
625-bp indel on the fifth exon DEP1-indel1-R GTTCGAACTTAATCAAAGGCCT
DEP1-indel1-625F CACGACGCAGTGCTTCAGCT
SPIKE-01SNP G/A SNP on the third exon SPIKE-O1SNP-GF GGTTGGTTTCCTCACTAAACG
SPIKE-0TSNP-AF GGTTGGTTTCCTCACTAAaCA
SPIKE-01SNP-R ATGGGAACTAGGAAGCAGGA
SPIKE-03SNP G/A SNP on the fifth exon SPIKE-O3SNP-F CTACTCGACCGTCTGGAAC
SPIKE-03SNP-GR TGGCTCGAAGATCTCTTCLAC
SPIKE-O3SNP-AR TGGCTCGAAGATCTCTTCLAT
SPIKE-indel3 ~20-bp indel in promoter SPIKE-indel3-F GGAGAGACATGGACGGCT
SPIKE-indel3-R TGGTGGCGATCATGCTGC
GS5-indel1 4-bp indel in promoter GS5-indel1-F CTAACTCCCATGGAATTACTAG
GS5-indel1-R GGAAAGCGAAACTGATTGACA
GS5-03SNP T/C SNP in promoter GS5-03SNP-OPF ACTTTCAACTAAAGTGATATTACCTC
GS5-03SNP-OPR TCTATATATCCATCGTCCATGGTG
GS5-03SNP-TF CGCAGCCTAACTACCTAAGTAGCT
GS5-03SNP-CR ACATGCGTGCCAATATTCCTGTALTG
TGW6-1d 1-bp indel on the first exon TGW6-1d-F GCCAACTGATCAGACTGAG
TGWe-1d-NR CGTGGGGAGAGTCGATCC
TGWe-1d-PR CGTGGGGAGAGTCGATCG

Lower case nucleotide near the 3' end of allele-specific primer represents the artificial mismatched nucleotide for increasing allele specificity during primer annealing

step of PCR.
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and two allele-specific primers were designed (Additional
file 8: Table S4). Forty-seven genomic DNAs were pre-
pared from 39 rice accessions using the CTAB method
(Kim et al. 2011). Genotyping was performed following
the Fluidigm SNP genotyping manual by the IRRI geno-
typing service laboratory (gsl@irri.org). Briefly, the target
region was amplified with STA primer and LS primer
under a thermal cycler. The diluted PCR products from
47 samples, nine Fluidigm SNP markers, and PCR re-
agents were simultaneously mated in FR48.48 Dynamic
array by IFC Controller. Then, PCR was performed in
EC1™ Cycler, and finally the fluorescence signals from the
end PCR products were read under EP1™™ Reader.

Statement

I confirm that we have followed the guide lines of the
government of Philippines and the policies of IRRI for
growing rice plants and carrying out research for this
study.

Additional files

Additional file 1: Figure S1. Screening of DNA polymorphisms in the
Gnla gene using WGS data. Sequencing reads were aligned to the
reference genome sequence (IRGSP-1.0). Note that the GnTa gene lay on
the opposite strand of the reference sequence. Screen-captured images
of IGV software showed nucleotide variations that were used for marker
development. (A) Three SNPs located in the Gnla promoter region were
shown with their genomic location on chromosome 1. Chr1: 5276405,
Chr1: 5276521, and Chr1: 5276591 SNPs were used for Gn1a-17SNP/Gn1a-
17SNP-FD, Gn1a-18SNP-FD, and Gn1a-19SNP-FD markers, respectively. (B)
About a 70-bp deletion (red circles) near the 3" UTR of Gnla was found
in varieties NSIC Rc158 and NSIC Rc238. This indel was used for designing
the Gnla-indel3 marker. (DOC 178 kb)

Additional file 2: Figure S2. Marker designing schemes for SNP-type
polymorphisms. (A) Schematic presentation of the tetra-primer PCR
method for designing Gnla-17SNP marker. The target SNPs, G and A, are
highlighted in each genome and its surrounding sequences are represented
with the allele-specific primers (pink, G allele-specific primer; green, A
allele-specific primer). Actually, the SNP is determined by the last nucleotide
(filled triangle) of the allele-specific primer. Proper annealing of the last
nucleotide of the primer (the 3’ end) is very important for PCR amplification
because Tag DNA polymerase start polymerization at that nucleotide through
adding dNTP. For instance, the A allele-specific primer (green) can be
annealed to the G allele genome but the efficiency of DNA polymerization
will be very low because of no annealing of the 3" end of the primer,
resulting in no PCR band or a very weak band. To increase allele specificity,
we gave an artificial mismatched nucleotide near the 3" end (second or third
nucleotide from the 3" end) of the allele-specific primer (lowercase with
underlined nucleotide in Figure). Primer combination of the Gnla-17SNP
marker, its predicted band size, and deduced gel image depending on
genotypes were presented. (B) Schematic presentation of the separated
allele-specific PCR method for designing the SPIKE-01SNP marker. To
discriminate G/A SNP, the SPIKE-01SNP marker consisted of two PCRs (PCR
#1, SPIKE-01SNP-GF/R; PCR #2, SPIKE-01SNP-AF/R). Between the G
allele-specific primer (pink) and A allele-specific primer (green), only the last
nucleotide of each allele-specific primer (filled triangle) is different. To
increase allele specificity, the artificial mismatched nucleotide near the 3" end
was given in the allele-specific primer. PCRs were performed with each
allele-specific primer and common reverse primer. Primer combinations of
the SPIKE-01SNP marker, its predicted band size, and deduced gel image
depending on genotypes were presented. (C) The effect of artificial
mismatched nucleotide near the 3" end of the allele-specific primer. As an
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example, the SPIKE-01SNP marker was designed without the artificial
mismatched nucleotide in allele-specific primers that were shown on the gel
image. Non-allele-specific PCR amplifications were obtained with
these primers. Using artificial mismatch, we obtained allele-specific
PCR amplifications (Fig. 6a). (DOC 240 kb)

Additional file 3: Figure S3. Screening of ST12-specific DNA variation
in the OsSPL14 promoter region through WGS data analysis. Note that
the OsSPL14 gene lay on the opposite strand of the reference sequence.
The reference genome sequence was shown at the bottom of the image.
Screen-captured image of IGV software showed an ST12-specific SNP
located at the Chr 8: 25282790 nucleotide position (IRGSP-1.0). (DOC 77 kb)

Additional file 4: Figure S4. Haplotype analysis of the NALT gene from
six varieties using WGS data according to the previously analyzed NALT
haplotypes (Takai et al. 2013). The nucleotide position was calculated
based on the previous report (1 = the starting nucleotide of 5" UTR in
Takanari) and newly identified polymorphisms in this study were highlighted
by red characters. The 1640-position nucleotide (G/A) and the 2884-position
nucleotide (G/A) were used for designing the SPIKE-01SNP marker and
SPIKE-03 SNP marker, respectively. S.S, synonymous nucleotide substitution.
(DOC 78 kb)

Additional file 5: Table S1. Summary of Fluidigm SNP genotyping
results. (DOC 90 kb)

Additional file 6: Table S2. Summary of whole-genome sequencing of
six varieties. (DOC 47 kb)

Additional file 7: Table S3. Primers for preparation of PCR products
and PCR product sequencing. (DOC 35 kb)

Additional file 8: Table S4. Markers for Fluidigm SNP genotyping
platform. (DOC 36 kb)
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