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Abstract

for the improvement of abiotic stress tolerance in rice.

Background: Abscisic acid (ABA) plays crucial roles in regulating plant growth and development, especially in
responding to abiotic stress. The pyrabactin resistance-like (PYL) abscisic acid receptor family has been identified
and widely characterized in Arabidopsis. However, PYL families in rice were largely unknown. In the present study,
10 out of 13 PYL orthologs in rice (OsPYL) were isolated and investigated.

Results: Quantitative reverse transcription-polymerase chain reaction (QRT-PCR) analysis showed that expression of
OsPYL genes is tissue-specific and display differential response to ABA treatment, implying their functional diversity. The
interaction between 10 OsPYL members and 5 protein phosphatase 2C in rice (OsPP2C) members was investigated in
yeast two-hybrid and tobacco transient expression assays, and an overall interaction map was generated, which was
suggestive of the diversity and complexity of ABA-sensing signaling in rice. To study the biological function of OsPYLs,
two OsPYL genes (OsPYL3 and OsPYL9) were overexpressed in rice. Phenotypic analysis of OsPYL3 and OsPYL9 transgenic
rice showed that OsPYLs positively regulated the ABA response during the seed germination. More importantly, the
overexpression of OsPYL3 and OsPYL9 substantially improved drought and cold stress tolerance in rice.

Conclusion: Taken together, we comprehensively uncovered the properties of OsPYLs, which may be good candidates
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Background

Abscisic acid (ABA) plays pivotal roles in regulating
plant growth and development, including seed dor-
mancy, germination, and seedling growth. More import-
antly, ABA is the key phytohormone that functions in a
plant’s response to abiotic stressors such as drought,
high salinity, and extreme temperature (Cutler et al.
2010). During abiotic stress, ABA biosynthesis is acti-
vated, resulting in an increase in ABA levels in the plant.
ABA binds to the pyrabactin resistant-like/regulatory
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components of ABA receptors, PYL/RCAR (hereafter re-
ferred to as PYLs for simplicity), an ABA receptor family
that promotes the interaction between PYL with protein
phosphatase 2C (PP2C), which then results in the release
of SNF1-related protein kinase (SnRK)) from the repres-
sion of PP2C. Finally, the active SnRK phosphorylates
and activates downstream transcriptional factors that
promote the expression of ABA-regulated genes. An
ABA signal is then generated, which in turn results in
the acquisition of abiotic stress resistance in plants (Ma
et al. 2009; Park et al. 2009; Cutler et al. 2010; Klingler
et al. 2010). ABA receptor PYL proteins, which contain
a conserved steroidogenic acute regulatory-related lipid
transfer (START) protein domain, are the core compo-
nents of this ABA sensing signaling pathway (Ma et al.
2009; Park et al. 2009). To date, PYL proteins have been
identified from distinct plant species, including Arabidopsis,
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rice, tomato, and soybean, which present highly conserved
PYL-mediated ABA-sensing signaling pathways (Ma et al.
2009; Park et al. 2009; Kim et al. 2012; Bai et al. 2013;
Gonzalez-Guzman et al. 2014; He et al. 2014). The bio-
chemical property and structure of PYLs have been exten-
sively studied in the dicot plant model Arabidopsis (Ma
et al. 2009; Melcher et al. 2009; Klingler et al. 2010; Joshi-
Saha et al. 2011). Some AtPYLs are monomers that facili-
tate interactions with PP2C in the absence of ABA; some
AtPYLs are in a dimeric state and require ABA to form a
complex with PP2C (Hao et al. 2011). Recent studies have
investigated the biological functions of various A¢tPYLs. The
overexpression of AtPYL5 leads to ABA hypersensitivity
during early seedling development, as well as enhanced
drought stress tolerance (Klingler et al. 2010). AtPYLS is in-
volved in root growth and development, which is in line
with its root-specific expression pattern (Antoni et al.
2013). Although AtPYL13 is not an ABA receptor, it can
positively regulate the ABA signaling pathway by interact-
ing with and inhibiting both the PYL receptors and the
PP2C co-receptors (Li et al. 2013; Zhao et al. 2013). AtPY-
L4 forms stable complexes with PP2CA in the absence
of ABA, and the overexpression of AtPYL4*'**T increases a
plant’s sensitivity to ABA-mediated inhibition of germin-
ation and seedling establishment, as well as enhances
drought resistance (Pizzio et al. 2013). In addition, AtPYLs
are largely functionally conserved, and the analysis of
higher order mutants have indicated that AtPYLs regulate
stomatal conductance (Gonzalez-Guzman et al. 2012).

Unlike AtPYLs, information on PYL homologs in rice is
limited. Studies have predicted that rice has 13 OsPYL
members that share high sequence similarity with AtPYLs
(Kim et al. 2012; He et al. 2014). Core components in
ABA signaling, including OsPYLs, OsPP2C, OsSAPK2,
and OsOREB], have been identified in rice, and the ABA
signaling transduction pathway has also been reconsti-
tuted in a protoplast system (Kim et al. 2012). The bio-
chemical properties and structure of OsPYLs have also
been recently reported (He et al. 2014). However, to date,
only OsPYL/RCARS5 has been identified as a positive regu-
lator in seed germination, early seedling growth, and
drought and salt stress tolerance (Kim et al. 2012; Kim
et al. 2014). Other features of OsPYLs such as expression
pattern, subcellular localization, interaction specificity
with OsPP2C, and biological function, have not been
examined.

The present study examined the tissue-specific expres-
sion pattern and distinct response of OsPYL members to
ABA treatment, which was suggestive of its differential
biological function. An overall interaction map between
10 OsPYLs and 5 OsPP2C members indicated that
OsPYLs were selective of their interaction partner, thus
indicating the complexity and specificity of the rice
ABA-sensing signaling pathway. Furthermore, using
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OsPYL3 and OsPYL9, we determined that OsPYLs play
pivotal roles in ABA-mediated inhibition of seed germin-
ation, as well as drought and cold stress tolerance, which
thereby could serve as potential targets for the improve-
ment of abiotic stress tolerance in rice.

Results

Expression Pattern of OsPYL Members

Using the AtPYLs sequence as queries and search in
the rice genome database, a total of 13 OsPYL ortho-
logs were identified in rice. Among these, three
(OsPYL11-13) are thought to be nonfunctional that
were caused by a large fragment deletion in the N or
C terminal of the gene (Kim et al. 2012). To obtain an
overview of the expression pattern of OsPYL members
in different tissues, quantitative RT-PCR was per-
formed. Because of the high level of sequence similar-
ity among OsPYL members, it was difficult to design
primers that could discriminate between OsPYL2 and
OsPYL9, and OsPYL7 and OsPYL8. Most of the
OsPYLs were detected in all tissues, although differen-
tially expressed (Fig. la). OsPYL7/8 was upregulated in
embryos, OsPYL3 and OsPYL5 were upregulated in
leaves, OsPYLI in roots, and OsPYL2/9 in all tissues

(Fig. 1a). These diverse tissue-specific patterns of
OsPYLs were indicative of its diverse biological
functions.

OsPYLs are also differentially expressed after ABA
treatment (Fig. 1b). Some OsPYLs were downregulated
such as OsPYL1, OsPYL2/9, and OsPYL3 (Fig. 1b),
whereas OsPYL4 was upregulated (Fig. 1b). The expres-
sion of OsPYLS, OsPYL7/8, and OsPYLIO was not af-
fected by ABA treatment (Fig. 1b). These findings
suggest that OsPYL members play diverse roles in sens-
ing the ABA signal.

OsPYLs are Localized in the Cytosol and Nucleus

To determine the subcellular localization of OsPYLs,
green fluorescent protein (GFP)-OsPYL fusion proteins
driven by a 35S promoter were transiently expressed in
Nicotiana benthamiana leaves. All tested OsPYLs were
localized in both the cytosol and nucleus (Fig. 2a), which
were consistent with the results involving AtPYL9 and
soybean GmPYL members (Ma et al. 2009; Bai et al.
2013). These results indicated that PYLs of different
plant species are localized in the same cellular regions,
which might partly explain the functional conservation
of PYL proteins as ABA receptors.

OsPYL Members Selectively Interact with OsPP2C
Members

PYL family proteins, as functional ABA receptors, interact
with clade A PP2Cs to form PYL-ABA-PP2C triple com-
plexes that facilitate in the transmission of ABA signals
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Fig. 1 Tissue-specific and ABA-regulated expression of OsPYLs genes. a Tissue-specific expression of OsPYLs was analyzed by quantitative RT-PCR
in roots, leaves, stems, embryo, endosperm and panicles. The expression level of OsPYLs in roots was set as 1 and the fold change was analyzed
method using the rice ubiquitin gene as an internal control. Values represent the mean + SD of three biological replicates.

b ABA-regulated expression of OsPYLs was analyzed by quantitative RT-PCR. Two-week-old seedlings were incubated in liquid MS medium
containing 200 UM ABA for 0, 1, 3 and 6 h. The expression level of OsPYLs at 0 h was set as 1 and the fold change was analyzed via the 27T
method using the rice ubiquitin gene as an internal control. Values represent the mean + SD of three biological replicates
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(Cutler et al. 2010; Joshi-Saha et al. 2011). A total of 10 pre-
dicted clade A OsPP2Cs have been identified in rice (Xue
et al. 2008). In the present study, five clade A OsPP2Cs
were isolated and investigated (Fig. 2b). To determine
whether OsPYLs interacted with these OsPP2Cs, yeast
two-hybrid assays were conducted in the absence or pres-
ence of ABA. The results showed that the interaction be-
tween OsPYLs and OsPP2Cs was selective and specific
(Fig. 3, Additional file 1: Figure S1). Some OsPYLs inter-
acted with all OsPP2C members, except for OsPYL2 and
OsPYL10. Most interactions were ABA-dependent or
ABA-enhanced. A few interactions were ABA-independent

or constitutive such as that observed with OsPYL1 and
OsPP2C53 (Fig. 3). Most OsPYLs strongly interacted with
OsPP2C30 and OsPP2C53 in an ABA-dependent or ABA-
independent manner, respectively (Fig. 3). These results
demonstrated that OsPYLs bind to OsPP2Cs in diverse
fashions and with different intensities. To confirm these in-
teractions in plant cells, BiFC experiments in N. benthami-
ana leaves were performed. The in vivo interaction results
indicated that these could reproduce, as well as validated
the results of the yeast two-hybrid assay (Fig. 4). Based on
the results of the yeast two-hybrid and BiFC assays, an
overall interaction map was generated between the 10
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Fig. 2 (See legend on next page.)
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Fig. 2 Subcellular localization of OsPYLs and OsPP2Cs. Confocal images were taken from Nicotiana benthamiana leaves epidermal cells. Constructs of
(GFP)-OsPYLs (@) and (GFP)-OsPP2Cs (b) driven by the 35S promoter were infiltrated and observed at 3 days later. From left panel to right panel are
GFP image, DAPI dye image, merged image and bright-field image. Empty GFP vector was used as control. The positions of nuclei were shown by

DAPI staining

OsPYLs and 5 OsPP2C members (Fig. 3). These results
provide evidence that the tested OsPYLs were capable of
functioning as ABA receptors, and that the ABA-sensing
mechanism was conserved among different plants.

OsPP2C Determines the Subcellular Localization of the

OsPYLs-OsPP2C Complex in an ABA-independent Manner
The results of the BiFC assay indicated that the sub-
cellular localization of the fused green fluorescent pro-
teins varied among different OsPYLs and OsPP2C
members, and most of the OsPYL-OsPP2C complexes
were localized in the nucleus (Fig. 4), which is not
consistent with the localization of OsPYLs (Fig. 2a).
To explore the underlying mechanism of this activity,
the subcellular localization of five OsPP2C members
was investigated. OsPP2C53 was localized to both the
nucleus and cytosol, whereas other OsPP2C members
were detected only in the nucleus (Fig. 2b). Compara-
tive analysis showed a similarity between the subcellu-
lar localization of OsPP2C members and that of
OsPYLs-OsPP2C complexes (Figs. 2b and 4). In the
BiFC assay, ABA was also injected to test whether
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Fig. 3 Interaction map between OsPYLs and OsPP2Cs. Interaction
between OsPYLs and OsPP2Cs was first examined in yeast two-hybrid,
“~"and "+" indicated without and with ABA supplement. Number of
“*" indicate the interaction strength from weak to strong, one (¥) to
four star (****) represent that the yeast colony can grow on SD/-His
/-Leu/-Trp plate containing different concentration of 3-AT (0, 3.0, 5.0
and 10 mM). X" means no interaction. These interactions were further
confirmed by BiFC in tobacco transient expression system

ABA affected the interaction between OsPYLs and
OsPP2Cs. The results showed that ABA treatment only en-
hanced interaction strength, and did not affect the subcellu-
lar localization of the OsPYL-OsPP2C complexes (Fig. 4).
Consequently, the findings indicated that OsPP2C mem-
bers can determine the subcellular localization of OsPYL-
OsPP2C complexes in an ABA-independent manner.

Overexpression of OsPYL3 and OsPYL9 Confers ABA
Hypersensitivity during Seed Germination

To determine whether OsPYLs are functional ABA re-
ceptors in rice, OsPYL3 and OsPYL9 were selected for
further investigation. Constructs of OsPYL3 and
OsPYL9 driven by the 35S promoter were transformed
into rice, and more than 20 independent transgenic
lines were produced for each gene. Three independent
transgenic lines of each gene were chosen for further
analysis. The expression levels of OsPYL3 and OsPYL9
in the transgenic lines were measured by quantitative
RT-PCR and RT-PCR, respectively (Fig. 5a and b).
OsPYL3 and OsPYL9 were overexpressed in the trans-
genic lines compared to the control lines (Fig. 5a and b).
A seed germination assay was conducted to examine the
ABA-related phenotype of OsPYL3 and OsPYL9 overex-
pression lines. In the absence of ABA, OsPYL3 and
OsPYL9 overexpression lines showed a slight delay in
germination rate, and the OsPYL9 overexpression line
germinated at a slower rate compared to that of the
OsPYL3 overexpression line (Fig. 5c, d, and g). Appli-
cation of different concentrations of ABA showed that
the seed germination rate of the OsPYL3 and OsPYL9
overexpression lines was markedly slower than that of
the controls (Fig. 5¢, e, f, h, and i). OsPYL9 overexpres-
sion lines hardly germinated in a medium containing
3 uM of ABA until 5 days later (Fig. 5i). This finding
indicated that the overexpression of OsPYL3 and
OsPYL9 conferred ABA-hypersensitivity during seed
germination and functioned as an active ABA receptor.
In addition, a higher expression level of OsPYL9 than
that observed with OsPYL3 in embryos may explain its
enhanced phenotype during ABA-regulated seed ger-
mination (Figs. 1a and 5).

Overexpression of OsPYL3 and OsPYL9 Enhances Drought
Stress Tolerance

To further investigate the biological function of OsPYLs,
OsPYL3 and OsPYL9 overexpression lines were subjected
to a drought tolerance assay. Three-week-old seedlings of
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(See figure on previous page.)
Fig. 4 OsPYL3 and OsPYL9 interact with OsPP2Cs in planta. In planta interaction and subcellular localization analysis using agroninfiltrated
Nicotiana benthamiana leaves. The interaction was detected by fluorescence in BiFC analysis. 100 uM ABA was injected at 24 h before

observation. From upper panel to bottom panel are YFP image, DAPI dye image, merged image and bright-field image. The positions of nuclei
were shown by DAPI staining
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Fig. 5 Overexpression of OsPYL3 and OsPYL9 confer ABA hypersensitivity during seed germination. a Quantitative RT-PCR analysis of OsPYL3 in
overexpression transgenic lines. The expression level of OsPYL3 in control line was set as 1 and the fold change was analyzed via the 27"
method using the rice ubiquitin gene as an internal control. Values represent the mean + SD of three biological replicates. b RT-PCR analysis of
OsPYL9 in overexpression transgenic lines. Full length OsPYL9 primer was used and rice ubiquitin transcripts were used as control. ¢ Representative
photographs of seed germination of OsPYL3 and OsPYL9 overexpression transgenic lines. Seeds of control and transgenic lines were grown on
half-strength MS medium containing indicated concentration of ABA for 5 days. Photographs were taken on day 5. (D to I) Germination time
course of OsPYL3 (d-f) and OsPYL9 (g-i) overexpression transgenic lines and control in medium without ABA (d and g), 1 uM ABA (E and H) and

3 UM ABA (f and i). Data show the mean + SD of three replicates. At least 50 seeds per genotype were measured in each replicate




Tian et al. Rice (2015) 8:28 Page 8 of 13

similar sizes showed the capability of withholding water =~ OsPYL9 overexpression lines were turgid and survived; in
for 10 days, control seedling leaves were curved and wilted  contrast, only less than 10 % of the control lines remained
and its seedling had fallen down, whereas OsPYL3 and alive (Fig. 6a—c). These results indicated that the ectopic
OsPYL9 overexpression lines remained upright (Fig. 6a).  expression of OsPYL3 and OsPYL9 enhanced drought

After 7 days of re-watering, over 80 % of the OsPYL3 and  stress tolerance in rice (Fig. 6a—c).
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Fig. 6 Overexpression of OsPYL3 and OsPYL9 exhibit enhanced drought stress tolerance. a Three-week-old OsPYL3 and OsPYL9 overexpression
seedlings were subjected to drought conditions by withholding water and then rewatered. Photographs were taken before drought (upper panel)
and 10 dayays after drought (middle panel), and 7 days after rewatering (bottom panel). b and ¢ Survival rates of the drought treated OsPYL3 (B) and
OsPYL9 () overexpression seedlings after 7 days of rewatering. Values are mean = SD (n = 30 for each replicate) of three independent experiments.

d and e Water loss rate of OsPYL3 d and OsPYL9 (e) overexpression lines. Leaves of the same developmental stages were excised and weighed at
various time points after detachment. Values are means + SD of three individual plants per genotype. Experiments were repeated at least three times
with similar results. (f and g) Relative water content of OsPYL3 (f) and OsPYL9 (g) overexpression lines. Seedling of similar stage was withhold water for

indicated days and used for measure relative water content. Values are means + SD of three individual plants per genotype. Experiments were
repeated three times
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Plants lose water mainly through stomata transpir-
ation. To determine whether stomatal closure is involved
in the enhanced drought tolerance of OsPYL3 and
OsPYL9 overexpression lines, a water-loss assay was per-
formed using detached leaves. The water loss rate of the
OsPYL3 and OsPYL9 overexpression lines was signifi-
cantly slower than that observed in the controls (Fig. 6d
and e). Relative water content (RWC) more accurately
reflects the physiological consequence of cellular water
deficit. Fig. 6e and g shows that with drought stress, the
OsPYL overexpression lines lost water at a slower rate
and have a lower minimum relative water content that
helped the plants survive during severe drought condi-
tions. These results indicated that the OsPYL3 and
OsPYL9 overexpression lines have a faster rate of stoma-
tal closure and were hypersensitive to drought treatment
compared to the controls, thereby contributing to a high
level of drought stress tolerance.

Overexpression of OsPYL3 and OsPYL9 Increases Cold
Stress Tolerance

The rice seedlings were also subjected to cold stress.
To examine whether OsPYLs played a role during cold
stress response, a cold tolerance assay was performed.
Two-week-old rice seedlings of similar size were incu-
bated in a 10 °C growth chamber for 4 days. After
4 days, the leaves of the transgenic lines remained
green and flats, and only the leaf tips were rolled up.
In contrast, the leaves of the control lines were wilted,
rolled up, and dry (Fig. 7a). After 7 days of recovery
at the normal temperature, the survival rate of the
OsPYL3 and OsPYL9 transgenic plant was >50 %, com-
pared to the >95 % death rate of the control lines
(Fig. 7a-c). To evaluate the effect of cold stress on cell
membranes, two-week-old rice seedlings were exposed
to a 10 °C environment, and relative ion leakage was
measured. Without cold treatment, the relative ion
leakage rate of the transgenic lines and control lines
was similar. After 3 days cold treatment, the relative
ion leakage rate of the control lines was 70 %, whereas
that of the OsPYL3 and OsPYL9 overexpression lines
was <10 % (Fig. 7d and e). These findings indicated
that the increased cell membrane stability of OsPYL3
and OsPYL9 overexpression lines during cold stress
partially, if not totally, contributed to the observed en-
hanced tolerance of cold stress. These results indicated
that overexpression of OsPYL3 and OsPYL9 substan-
tially improved cold stress tolerance in rice.

Expression of ABA-Regulated Genes is Enhanced in
OsPYL3 and OsPYL9 Overexpression lines

Because OsPYL3 and OsPYL9 overexpression lines
showed significant drought and cold stress tolerance at
the seedling stage, we were prompted to determine

Page 9 of 13

whether the expression of ABA-regulated genes was also
enhanced in these transgenic lines. Several ABA-
regulated genes (LEA3, RABI6A, and OsABA45) were
selected, and its expressions levels between the control
and OsPYL3 and OsPYL9 overexpression lines in re-
sponse to ABA treatment were compared. Quantitative
RT-PCR analysis indicated that ABA induced the expres-
sion of these genes, which was significantly higher than
that observed in the controls (Fig. 8). Notably, in the ab-
sence of ABA treatment, the expression of these ABA-
regulated genes was still higher in the OsPYL3 and
OsPYL9 overexpression lines than that in the control, in-
dicating that the overexpression of OsPYL3 and OsPYL9
promoted the constitutive expression of ABA-regulated
genes (Fig. 8), which possibly explains the delayed seed
germination of OsPYL3 and OsPYL9 overexpression lines
in the absence of ABA (Fig. 5¢, d, and g). Taken together,
the upregulation of ABA-regulated genes might also
have contributed to the observed ABA hypersensitivity
and the enhanced stress tolerance of the OsPYL3 and
OsPYL9 overexpression lines.

Discussion

Members of the PYL protein family such as the ABA
receptors and the core component in ABA-sensing sig-
naling have been investigated in various plant species,
including Arabidopsis, soybean, rice, and cucumber
(Ma et al. 2009; Wang et al. 2012; Bai et al. 2013; He
et al. 2014; Kim et al. 2014). Compared to the exten-
sive studies on AtPYLs, the property, function, and
mechanism of OsPYLs are largely unknown. In the
present study, based on amino acid sequence analysis of
AtPYLs and predicted OsPYLs in the rice genome annota-
tion project, 10 out of the 13 OsPYLs were cloned and
studied. OsPYLs were differentially expressed in the leaves,
stems, roots, panicles, embryo, and endosperm, and some
OsPYL members showed pronounced tissue-specific ex-
pression patterns (Fig. 1a). OsPYLs also displayed a differ-
ential response to ABA treatment (Fig. 1b). The diverse
expression patterns of OsPYLs were indicative of their
functional diversity. All OsPYLs were localized to the
cytoplasm and nucleus (Fig. 2a), which was consistent
with the results of previous reports on the subcellular
localization of AtPYLs and GmPYLs (Ma et al. 2009;
Bai et al. 2013).

The interaction between the OsPYLs and OsPP2Cs
was investigated in both yeast and tobacco, and an
overall interaction map was generated between 10
OsPYLs and 5 OsPP2C members in the absence or
presence of ABA treatment (Figs. 3 and 4). OsPYLs se-
lectively interacted with OsPP2Cs in ABA-dependent
or ABA-independent manner. Combined with a recent
report that OsPYLs inhibit OsPP2C activity (He et al.
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2014), these data suggest that OsPYLs are functional
rice ABA receptors.

In addition to the discovery of PYLs as ABA recep-
tors, the present study has shown that these proteins
also regulate ABA signaling and improve tolerance to
abiotic stress. Overexpression of AtPYL4 and AtPYLS
leads to enhanced ABA hypersensitivity during seed
germination and improved drought tolerance (Santiago
et al. 2009; Pizzio et al. 2013). In addition, the root-
specific expression of AtPYL8 regulates ABA-mediated
inhibition of root growth (Antoni et al. 2013). How-
ever, information on the biological function of OsPYLs

J

in rice, which is considered a monocot model, is lim-
ited. OsPYL5 has been shown to positively regulate
seed germination and drought stress response (Kim
et al. 2012; Kim et al. 2014). In the present study, trans-
genic rice overexpressing OsPYL3 and OsPYL9 were pro-
duced and analyzed in detail (Fig. 5a and b). First,
overexpression of OsPYL3 and OsPYL9 conferred ABA
hypersensitivity during seed germination (Figs. 5c¢-i). In
addition, overexpression of OsPYL3 and OsPYL9 in the
absence of ABA significantly delayed seed germination,
and OsPYL9 played more important roles, which was con-
sistent with the upregulation of OsPYL9 in the embryo
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method using the rice ubiquitin gene as an internal control. Values

compared to that of OsPYL9 (Fig. 5c¢-i). Second, overex-
pression of OsPYL3 and OsPYL9 enhanced drought stress
tolerance, which can be partly explained by a slower water
loss rate through the stomata in transgenic lines (Fig. 6).
Third, OsPYL3 and OsPYL9 overexpression lines show
increased membrane stability during cold stress and en-
hanced cold stress tolerance (Fig. 7). Last, expression of
ABA-regulated genes in OsPYL3 and OsPYL9 overexpres-
sion lines was significantly higher than that in the controls
(Fig. 8), which accounted for the increased stress tolerance
of transgenic plants. Interestingly, compared to the

controls, OsPYL3 and OsPYL9 overexpression lines did
not show any negative effect on growth, grain yield, and
other observable phenotypes, whereas these were ob-
served in OsPYLS (Kim et al. 2014). One possible explan-
ation for this finding is that OsPYL5 was directed by the
maize ubiquitin promoter, which is a very strong promoter
in monocots, and OsPYL3 and OsPYL9 was directed by
the 35S promoter, whose efficiency was less than that of
ubiquitin in rice. Taken together, these results indicate
that OsPYL3 and OsPYL9 can be used as a target gene for
the improvement of abiotic stress tolerance in rice.
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Conclusions

In the present study, we study the expression pattern of
PYL orthologs in rice (OsPYL), generate an overall inter-
action map between 10 OsPYL members and 5 protein
phosphatase 2C in rice (OsPP2C) members and show
the biological function ofOsPYL3 and OsPYL9. Taken
together, we comprehensively uncovered the properties
of OsPYLs, which may be good candidates for the im-
provement of abiotic stress tolerance in rice.

Methods

Plant materials, and rice transformation

For cloning of OsPYLs and OsPP2Cs genes, Oryza sativa
L. ssp. Japonica cv. Nipponbare was used. The coding
sequence of OsPYLs and OsPP2Cs were cloned from the
c¢DNA using standard PCR-based protocol. The primers
used are listed at Additional file 1: Table S1. Full-length
sequences of OsPYLs and OsPP2Cs were cloned into
pENTR/D-Topo (Invitrogen), resultant constructs were
confirmed by sequencing and saved for later use. To
over express the OsPYLs in rice, OsPYLs was transferred
to pH7WG?2 vector via LR recombination reaction of the
Gateway system. The resultant 35S:OsPYLs constructs,
in which OsPYLs was drived by the cauliflower mosaic
virus (CaMV) 35S promoter, were transferred into Agro-
bacterium tumefaciens EHA105. Finally, OsPYLs were
transformed into Oryza sativa L. ssp. Japonica cv.
Longjing 11 by the Agrobacterium-mediated co-cultiva-
tion method.

Yeast two-hybrid assay

Full-length sequences of OsPYLs and OsPP2Cs were
cloned into pDEST32 or pDEST22 vector via an LR re-
combination reaction and used as baits or preys respect-
ively. The resultant constructs were transformed into
the yeast strain Y2H gold. Presence of the transgenes
was confirmed by growth on a SD/-Leu/-Trp plate. To
assess protein interactions, the transformed yeast cells
were suspended in liquid SD/-Leu/-Trp to ODggo = 1.0.
The suspended cells were spread on plates containing
SD/-His/-Leu/-Trp medium supplied with indicated
concentration of 3-AT (3-amino-1, 2, 4-triazole) and
ABA. The interactions were observed after 4 days of in-
cubation at 30 °C. The experiments were repeated three
times with similar results.

Subcellular localization and Bimolecular fluorescence
complementation in tobacco

For subcellular localization of OsPYLs and OsPP2Cs, full-
length sequences of OsPYLs and OsPP2Cs were cloned
into the pH7WGF vector via an LR recombination reac-
tion, in which the OsPYLs and OsPP2Cs fused with green
fluorescent protein (GFP) was drived by 35S promoter.
For Bimolecular fluorescence complementation (BiFC)
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assays, OsPYLs were fused with the C-terminal portion of
the yellow fluorescent protein (YFP) via an LR recombin-
ation reaction; OsPP2Cs were fused with the N-terminal
portion of the yellow fluorescent protein (YFP) via an LR
recombination reaction. For transient expression, the
fusion constructs were transferred into Agrobacterium
tumefaciens GV3101. Agrobacterium tumefaciens strain
harboring each construct along with the pI9 strain were
infiltrated into 4-week-old N. benthamiana leaves. For
staining of the nuclei, 10 mg/ml 4, 6-diamidino-2-pheny-
lindole (DAPI) was infiltrated into N. benthamiana leaves
3 h before observation. For microscopic analyses, leaf
discs were cut 3 d after infiltration. The fluorescence sig-
nal was observed using confocal microscopy.

Analysis of genes expression

Total RNA was extracted using TRIzol (Invitrogen) and
treated with DNasel. cDNA was synthesized from 2 pg
of total RNA using Superscriptll Reverse Transcriptase.
Real-time PCR was performed with SYBR Green PCR
master mix (TransStart). Data were collected using Bio-
Rad chromo 4 real-time PCR detector. All expressions
were normalized against the Ubiquitin gene. The
primers used are listed at Additional file 1: Table S1.

Germination and abiotic stress tolerance assay

Dehulled seeds were surface-sterilized and planted on
half-strength MS medium supplemented with indicated
concentration of ABA (A1049, Sigma-Aldrich). Seed ger-
mination was defined as the coleoptiles emerged from
the seed and scored every 12 h for 5 days. Three inde-
pendent T3 homologous transgenic lines and the control
Longjing 11 were used for stress tolerance experiments.
For the dehydration treatment, rice plants grown for 3
weeks were withhold water for 10 days and then rehy-
drated and grown under normal conditions for 7 days.
For cold treatment, 14-day-old seedlings were trans-
ferred to 10 °C for 4 days and then returned to normal
growth conditions for 7 days. The survival rates were re-
corded. Approximately 50 seedlings of each line were
used for each experiment, and three replicates of each
experiment were performed. Tests for statistical analysis
between transgenic lines and the controls were per-
formed using Microsoft excel 2007.

Water loss assay and measurement of relative electrolyte
leakage

For water loss assay, leaves of control and OsPYLs trans-
genic plants grown under normal conditions were detached
from 3-week-old seedlings and weighed immediately on a
piece of weighing paper, and then placed on a laboratory
table and weighed at indicated time intervals. Three repli-
cates were performed for each line.
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For relative water content measurement (RWC),
Three-week-old seedlings of control and three independ-
ent OsPYLs transgenic lines were withhold water. The
protocol was as described by (Barrs and Weatherley
1962). RWC was measured until the leaf cannot expand
during dipped in the water.

Two-week-old seedlings of control and three inde-
pendent OsPYLs transgenic lines were transferred into a
10 °C chamber. At 0 d, 2 d and 3 d, 0.5 g of leaves were
harvested from each of ten plants. Leaf fragments were
immersed in 6 mL deionized water and shaken at 100
rpm at 25 °C for 2 h, and electrical conductivity was de-
termined (C1). The samples were then boiled for 20
min, and the total conductivity was determined again
(C2) after cooling to room temperature. Relative ion
leakage (%) was calculated as C1/C2 x 100.

Additional file

Additional file 1: Figure S1. Interaction of OsPYLs and OsPP2Cs in
yeast two-hybrid. Figure S2. Pylogenetic analysis of PYLs family
members in Rice and Arabidopsis. Table S1. Primers used in this
study. (DOCX 8631 kb)
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