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Abstract

Background: Rice endosperm is composed of aleurone cells in the outermost layers and starchy endosperm cells
in the inner part. The aleurone layer accumulates lipids, whereas starchy endosperm mainly accumulates starch.
During the ripening stage, the starch accumulation rate is known to be asynchronous, depending on the position
of the starchy endosperm. Different physiological and molecular mechanisms are hypothesized to underlie the
qualitative and quantitative differences in storage products among developing rice endosperm tissues.

Results: Target cells in aleurone layers and starchy endosperm were isolated by laser microdissection (LM), and RNAs
were extracted from each endosperm tissue in the early storage phase. Genes important for carbohydrate metabolism
in developing endosperm were analyzed using gRT-PCR, and some of the genes showed specific localization in either
tissue of the endosperm. Aleurone layer-specific gene expression of a sucrose transporter, OsSUTT, suggested that

the gene functions in sucrose uptake into aleurone cells. The expression levels of ADP-glucose pyrophosphorylase
(AGPL2 and AGPS2b) in each endosperm tissue spatially corresponded to the distribution of starch granules differentially
observed among endosperm tissues. By contrast, expressions of genes for sucrose cleavage—hexokinase, UDP-glucose
pyrophosphorylase, and phosphoglucomutase—were observed in all endosperm tissues tested. Aleurone cells
predominantly expressed mRNAs for the TCA cycle and oxidative phosphorylation. This finding was supported
by the presence of oxygen (8 % concentration) and large numbers of mitochondria in the aleurone layers.

In contrast, oxygen was absent and only a few mitochondria were observed in the starchy endosperm. Genes for
carbon fixation and the GS/GOGAT cycle were expressed highly in aleurone cells compared to starchy endosperm.

Conclusions: The transcript level of AGPL2 and AGPS2b encoding ADP-glucose pyrophosphorylase appears to regulate
the asynchronous development of starch granules in developing caryopses. Aleurone cells appear to generate, at least
partially, ATP via aerobic respiration as observed from specific expression of identified genes and large numbers of
mitochondria. The LM-based expression analysis and physiological experiments provide insight into the molecular
basis of the spatial and nutritional differences between rice aleurone cells and starchy endosperm cells.
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Background

Endosperm accumulates large amounts of nutrients,
including starch, proteins, lipids, and minerals, during
the ripening stage. Rice (Oryza sativa L.) is the staple
food of nearly half of the world’s population (Carriger
and Vallee 2007). Rice endosperm is used not only as a
source of carbohydrate (mainly starch) energy in the form
of steamed rice, but also as a source of oils.

Rice endosperm consists of aleurone cells and starchy
endosperm. Lipid is accumulated in aleurone -cells,
whereas starch is accumulated in starchy endosperm,
starting at 5 days after flowering (DAF) (Hoshikawa
1967). Temporal changes in expression of genes for
carbohydrate-metabolizing enzymes are closely associated
with seed development and sugar status. At the pre-
storage phase in rice, the ratio of hexose to sucrose is
high, but it starts decreasing with the onset of the storage
phase (Ishimaru et al. 2005). Sucrose is the dominant
sugar transported into endosperm in the storage phase.
Concomitantly, genes important in starch accumulation
begin to be expressed at 5 DAF with the onset of starch
accumulation. Sucrose is apoplastically unloaded into
endosperm from maternal tissues by sucrose transporters.
The rice sucrose transporter gene family comprises
five genes, OsSUTI-5 (Aoki et al. 2003). Among these
five OsSUT genes, OsSUT1 is expressed after 5 DAF
(Hirose et al. 1997; Hirose et al. 2002) in aleurone
cells in developing endosperm (Furbank et al. 2001;
Ishimaru et al. 2007) and plays a critical role in starch
accumulation in endosperm (Scofield et al. 2002). After
uptake by a sucrose transporter, sucrose is metabolized by
sucrose-cleavage enzymes including cell wall invertase
and sucrose synthase. These enzymes are crucial for
development, growth, and carbon partitioning to sink
organs in plants (Sturm and Tang 1999). In rice, eight
genes encoding cell wall invertase have been identified,
with only OsCIN2 expressed in developing endosperm
(Cho et al. 2005). Functional analysis of a rice grain
incomplete filling 1 (GIFI) mutant has revealed that the
cause is a single mutation in OsCIN2 (Wang et al. 2008).
For sucrose synthase, six genes have been identified and
spatio-temporal expression in organs has been well char-
acterized. SUS3 and SUS4 are expressed predominantly in
developing grains, indicating potential roles in carbon
allocation in filling grains (Hirose et al. 2008). Hexokinase
(HXK), UDP-glucose pyrophosphorylase, and phosphoglu-
comutase (PGM) act at an intermediate metabolic step
between sucrose cleavage and starch biosynthesis. Ten
HXK genes have been cloned, of which five, HXK2, HXK4,
HXKS5, HXK6, and HXKS, are expressed at a higher level in
endosperm than in pericarp, suggesting their role in endo-
sperm (Cho et al. 2006). Two isoforms of UDP-glucose
pyrophosphorylase, Osligpl and Osligp2, have been cloned
in rice (Chen et al. 2007). Inactivation of Osligpl causes
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grain chalkiness in addition to genic male sterility (Koh
et al. 1999; Woo et al. 2008). All of the genes associ-
ated with starch biosynthesis, including ADP-glucose
pyrophosphorylase (Ohdan et al. 2005), plastid translo-
cator (Toyota et al. 2006), starch synthase (Hirose
and Terao 2004), branching enzyme, starch debranching
enzyme, phosphorylase, and disproportionating enzyme
(Ohdan et al. 2005) have been cloned, and some of them
are expressed concomitantly with the onset of endosperm
starch accumulation at 5 DAF (Hirose and Terao 2004;
Ohdan et al. 2005; Toyota et al. 2006). Genetic ana-
lyses using mutants and gene manipulation of starch
biosynthesis-related genes have revealed the critical role(s)
of some genes in grain phenotypes and starch properties
in rice endosperm (Lee et al. 2007; Fujita et al. 2006;
Fujita 2014; Umemoto et al. 2004; Fujita et al. 2007;
Ryoo et al. 2007; Itoh et al. 2003; Satoh et al. 2003;
Satoh et al. 2008; Nishi et al. 2001).

Histological studies have revealed the time course of
development of storage product in rice developing endo-
sperm. Aleurone cells begin their differentiation at 4-5
DAF in the outermost endosperm, whereas active starch
accumulation starts in the center of the endosperm at
5 DAF (Hoshikawa 1968; Ishimaru et al. 2003). Starch
accumulation proceeds asynchronously depending on the
region. During the early storage phase, starch rapidly
accumulates around the center of the endosperm, whereas
in the peripheral starchy endosperm, starch accumulation
proceeds at a slower rate until the late storage phase
(Hoshikawa 1968). Nitrogen and mineral contents are
higher in peripheral endosperm layers corresponding to
aleurone cells (Itani et al. 2002). Thus, storage products
are quantitatively and qualitatively different depending on
their position in the rice endosperm. In barley and
maize, histochemical studies have revealed that the
oxygen gradient in the endosperm tissues is associated
with energy status and the accumulation of storage
products. In barley kernels, oxygen-rich regions in the
lateral and peripheral endosperm begin starch accumula-
tion first in endosperm tissues under high-ATP condi-
tions, whereas the hypoxic region in the inner endosperm
accumulates starch at the later stage (Rolletschek et al.
2004). In developing maize kernels, the oil-storing embryo
is in a high-O, state with high levels of metabolites of
glycolytic intermediates and the mitochondrial TCA cycle
and with some pools of amino acids (Rolletschek et al.
2005). Thus, in maize and barley, oxygen status differs
among endosperm tissues and is closely linked with the
accumulation of storage products. However, the quantifi-
cation of mRNAs of carbohydrate-metabolizing enzymes,
described above as important genes for starch accu-
mulation in rice endosperm, was performed using
RNAs extracted from whole developing caryopses. No
attempt has yet been made to elucidate the asynchronous
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development of starch among rice endosperm tissues at
molecular level. In addition, the oxygen gradient in the
developing endosperm is not yet known in rice.

To advance our understanding at the molecular level
of positional differences in storage products (lipid and
starch) and the starch-accumulating rate in developing
rice endosperm, expression analysis by dissection of tar-
geted endosperm tissues is desirable. However, manual
dissection of specific tissues is difficult, because aleurone
cells and starchy endosperm are structurally connected and
very soft in the early storage phase. Laser microdissection
(LM) is a powerful tool for isolating targeted individual cells
from heterogeneous tissue viewed under a microscope,
using an intense laser beam (Emmert-Buck et al. 1996).
With LM, we previously succeeded in developing a
method for obtaining high-quality RNA from developing
rice endosperm, facilitating precise expression analysis
(Ishimaru et al. 2007).

In the present study, LM was applied to dissect endo-
sperm tissues at the early storage phase, 7 DAF, when the
differentiation of aleurone layers and starchy endosperm
is already distinct (Ishimaru et al. 2003) and the degree of
starch accumulation varies with endosperm region
(Hoshikawa 1968). Using RNAs extracted from each
endosperm tissue, qRT-PCR analysis was performed to
quantify the expression levels of genes for carbohydrate-
metabolizing enzymes. In addition, oxygen concentrations
were measured in the developing rice endosperm to deter-
mine whether O, gradients are coupled with different
metabolic pathways among endosperm tissues.

Results

Microscopic observation of starch granules and lipids in
the endosperm

Under stereomicroscopic observation, the endosperm
showed a uniform milky-white color (Fig. 1a), but morph-
ology was qualitatively and quantitatively different among
tissues observed with higher magnification. At 7 DAF,
the starchy endosperm in the central region (SEC)
accumulated much more starch than the starchy
endosperm in the lateral regions (SEL) (Fig. 1b). In
mature grain, iodine staining was lighter in SEL than in
SEC (Fig. 1g). The surrounding outermost cell layer(s)
were not stained with iodine solution (Fig. 1c, d, e, g).
These cell layer(s) were identified as aleurone cells that
were stained with Sudan IV with the accumulation of
lipids at maturity (Fig. 1f, h). We defined the dorsal side of
aleurone cells as AL (Fig. 1d).

Transmission electron microscopic observation of
endosperm cells

The development of organelles in endosperm cells at
7DAF was observed by transmission electron microscopy
(TEM). Typical differences were observed in mitochondria

Page 3 of 15

in AL and in starch granules in endosperm cells (Fig. 2a
and b). The mitochondria in the cells of developing
endosperm were quantified along a dorso-ventral axis
(the lateral regions of the endosperm are not included
in this axis). In the first and second cell layers of the
AL, approximately 25 mitochondria were observed
per image (310.2 um? Fig. 2a, c), but mitochondrial
density decreased by half in the third cell layer of the
AL (Fig. 2c) and dropped to one fourth in the fifth
cell layer of the starchy endosperm compared with the
outermost AL cells (Fig. 2b, c). A similar number of mito-
chondria were observed below cell layers 5 to 7 (Fig. 2).

Oxygen concentration of developing endosperm along a
dorso-ventral axis

In view of the differential distribution of mitochondria
in the endosperm cell layers, oxygen concentration
profiles along the dorso-ventral axis (SEL is not located
on the x axis in Fig. 3) in developing rice caryopses at 7
DAF were investigated using a Clark-type O, microelec-
trode according to the method of Shimamura et al. (2010).
We found that the oxygen concentration decreased
steeply as the microelectrode was being inserted deeper
into the starchy endosperm. In particular, 8 % oxygen was
observed at 200 pm from the surface of the caryopsis
(the pericarp), a region corresponding to the dorsal
side of AL (Fig. 3). When the electrode was inserted
to a depth greater than 300 um, where the microelectrode
had already passed through the AL region and reached the
inner starchy endosperm, oxygen concentration was lower
than 2 % (Fig. 3). At 1200 pm, a region corresponding to
the SEC, oxygen was absent.

LM for endosperm cells at 7 DAF and identity

confirmation of dissected tissues by qRT-PCR

An overview of developing endosperm at 7 DAF is
shown in Fig. 4a and b. AL (Fig. 4c, d), SEC (Fig. 4e),
and SEL (Fig. 4e, f) were isolated by LM. We note that
the aleurone cell layer at the outermost endosperm cells
in the lateral regions was not isolated during dissection of
the SEL (Fig. 4e, f). High-quality RNA, with RNA integrity
number (RIN) > 7.0, was obtained from dissected tissues
(Additional file 1: Table S1). The identities of dissected
tissues were confirmed by qRT-PCR using primers for
tissue-specific mRNAs for oleosin, 16 kDa isoform R16
(NCBIL: AF022148), a structural protein found in oil bodies
involved with lipid accumulation, and starch debranching
enzyme (SDBE, Nakamura et al. 1996; NCBI: D50602),
which specifically degrades amylopectin (Table 1). Expres-
sion values from quantitative RT-PCR were normalized to
the transcript level of 185 rRNA (Kim et al. 2003;
Additional file 2: Figure S1). The mRNAs for oleosin,
16 kDa isoform and SDBE were supposed to be markers
specific for AL and starchy endosperm, respectively,
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(b—d), and 500 um (e-h)

Fig. 1 Observation of endosperm cells at 7 DAF (a-d) and in mature grain (e-h). a Median transversal section. b Microscopic observation of
starchy endosperm at the center (SEC) and lateral side (SEL) stained with iodine. ¢, d Microscopic observation of endosperm at the dorsal side
stained with iodine (c) and post-stained with toluindine blue-O (d). Matured grain stained with iodine (e, g) and Sudan IV (f, h). AL alurone cells, d
dorsal side, dv dorsal vascular bundle, / lateral side, ne nucellar epidermis, np nucellar projection, pe pericarp, v ventral side. Bar: 1 mm (a), 200 um

because of the specific localization of starch granules
and lipids in the endosperm (Fig. 1). Transcripts of
oleosin, 16 kDa isoform R16, were detectable only in
AL, whereas those of SDBE were at almost negligible
levels in AL (Additional file 3: Figure S2A). The tran-
script level of SDBE was higher in the SEC than in
the SEL (Additional file 3: Figure S2B) consistent with
the gradients shown by iodine staining (Fig. 1b). These
results confirmed the precise dissection of targeted
endosperm tissues.

qRT-PCR for genes associated with sucrose transport,
sucrose cleavage, and starch biosynthesis

Transcription levels of genes associated with sucrose
transport (Hirose et al. 1997), sucrose cleavage (cell
wall invertase; Cho et al. 2005 and sucrose synthase;
Hirose et al. 2008), hexokinase (Cho et al. 2006), UDP-
glucose pyrophosphorylase (Chen et al. 2007), phospho-
glucomutase (Akiyama et al. unpublished), and plastidis
translocator (Toyota et al. 2006) and starch biosynthesis
(Hirose and Terao 2004; Ohdan et al. 2005) during rice
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Fig. 2 TEM observation of the outermost aleurone cell (a) and central starchy endosperm (b) and number of mitochondria along a dorso-ventral
axis (c). Mt mitochondria, St starch, ER endoplasmic reticulum, Vc vacuole, Cw cell wall, Ob oil body, P proplastid. Bar, 2 um
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grain filling were evaluated. The selected genes are consid-
ered to play dominant roles in the developing endosperm
among gene families with high expression or critical roles
in grain phenotype and starch properties, according to
previous genetic studies (see review by Fujita 2014, Table 2,
and Background).

The expression of OsSUT1 was specific to aleurone cells
and undetectable in the SEL and SEC. The expression levels
were contrasting among the genes for sucrose-cleavage
enzymes. The highest expression levels for OsCINZ,
OsSUS3, and OsSUS4 were observed in AL, SEL, and SEC,
respectively (Fig. 5).

A major role of hexokinase (OsHXK) genes in rice
developing endosperm has not yet been clarified by
genetic approaches, but the genes OsHXK2, OsHXK4,
OsHXKS, OsHXK6, and OsHXK8 were selected in view of
their preferential expression in developing endosperm,

based on the report of Cho et al. (2006). OsHXK4 and
OsHXKS were expressed predominantly in SEC and AL,
respectively. The expression of OsHXK2 and OsHXK6
was observed in all tissues, but preferentially in AL
and SEL, respectively. The expression of OsHXK8 was
higher in SEL and SEC compared to AL. Expression
of Oslgpl and phosphoglucomutase was observed in
all tissues.

The expression of genes for starch biosynthesis was
variable. Expression was at low level (with values below
25) in AL for all genes except OsSSIla and OsISAI. The
expression of OsAGPL2 and OsAGPS2b, OsBT1-1, OsSSI,
OsSSIlla, and OsPHOL was preferential in SEC. The
expression of genes for OsSSIla, OsBEI, and OsBEIIb
was relatively high (with values over 60) in the SEL and
highest in the SEC. The expression of genes for OsGBSSI
and OsISAI was highest in SEL among endosperm
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Depth from the surface of the pericarp (um)

Fig. 3 Oxygen concentration (%) profile along a dorso-ventral axis of a developing caryopsis at 7 DAF. The x-axis indicates the approximate
position where the microelectrode was inserted. The white enclosed circle at 200-um depth corresponds to the position of dorsal aleurone cells.
An oxygen concentration profile was obtained from three kernels and values at each depth were averaged

600 800 1000 1200

tissues tested. We also investigated the expression of
disproportionating enzyme (OsDPEI; Ohdan et al. 2005),
which plays a critical role in building the amylopectin
structure in Chlamydomonas reinhardtii (Colleoni et al.
1999). The expression of OsDPE1 was undetectable in any
tissues at 7DAF (data not shown), possibly because
the transcript level abruptly decreases after 5DAF in
the developing caryopsis (Ohdan et al. 2005).

gRT-PCR of genes associated with CO, fixation, the TCA
cycle, oxidative phosphorylation, and the GS/GOGAT cycle
The presence of oxygen (8 %) in the AL (Fig. 3), sug-
gested the high expression of genes associated with
aerobic respiration. In addition to the expression of
genes for TCA cycle and oxidative phosphorylation,
the expression of genes associated with CO, fixation
and the GS/GOGAT cycle, a metabolic step is close
to the TCA cycle and oxidative phosphorylation, was
evaluated (Table 3; Fig. 6). Some of the selected genes
have not yet been characterized, but they appear in
NCBI (http://www.ncbi.nlm.nih.gov/nuccore/) and RAP-DB
(http://rapdb.dna.affrc.go.jp/) as our target genes based
on their sequence similarity to genes in other plant species
(Table 3).

All the genes analyzed showed highest expression in
AL, and their expression levels decreased in the order
SEL > SEC (Fig. 6). Some of the genes were localized pre-
dominantly in the AL (Osppcl, Acetyl-CoA carboxylase,
genes for the TCA cycle, NADH-ubiquinone oxidoreductase
subunit PSST, GS1;1, OsGDH1.2).

Discussion

Transcripts associated with metabolic steps from sucrose
transport to starch biosynthesis were differentially
distributed in developing endosperm

Genetic analyses using mutants and gene manipulation
have revealed the critical role(s) of genes for carbohydrate-
metabolizing enzymes in kernel phenotypes and starch
properties (Table 2). In this study, LM was applied to
the AL, SEL and SEC (Fig. 4) to quantify the distribution
of transcripts at metabolic steps from sucrose trans-
port to starch biosynthesis, relative to their spatial
distribution in starch granules among tissues in the early
storage phase (Fig. 1).

The transcript of sucrose transporter 1 (OsSUTI;
Hirose et al. 1997) was specific to AL, as we reported
previously for AL and SEC (Ishimaru et al. 2007).
This study showed negligible expression in SEL (Fig. 5).
An anti-sense transformant of OsSUT1 showed impaired
grain filling (Scofield et al. 2002). The specific localization
of OsSUT1I in AL (Fig. 5) suggests the critical function of
aleurone cells for uptake of sucrose into developing
endosperm tissues for starch accumulation. Our LM-based
expression analysis revealed the specific localization of
OsCIN2 in AL among endosperm tissues as that of OsSUTI
(Fig. 5). A mutation of OsCIN2 (gifl) causes slower grain
filling and chalky phenotype of the kernel with aberrant
amyloplast formation, indicating that hexoses catalyzed
by OsCIN2 function as an important carbon energy source
for grain development in rice (Wang et al. 2008). The
specific distribution of OsCIN2 in AL (Fig. 5) was spatially
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white arrowheads, magnified in e and f). Bar: 200 um
.

Fig. 4 Microdissection of endosperm tissues. a Median transverse section. b Microdissection of aleurone cells from the dorsal side (AL; black
arrow, magnified in ¢ and d), starchy endosperm from the center region (SEC; black arrowhead, magnified in e and f) and lateral regions (SEL;

J

inconsistent with starch accumulation in the starchy
endosperm, such as in SEL and SEC. OsCIN2 in AL is
expected to contribute to the partitioning of hexoses to
the inner endosperm tissues for starch accumulation in
SEL and SEC. The organ expression analysis of OsSUS3
and OsSUS4 revealed their predominant localization
in the developing caryopsis, especially in the endo-
sperm, after the onset of starch accumulation at 5
DAF (Hirose et al. 2008). Our LM-based expression

analysis found OsSUS3 and OsSUS4 to be localized
mainly in the SEL and SEC, respectively (Fig. 5). The
expression profile of the sucrose-cleavage genes OsCIN2,
OsSUS3, and OsSUS4 was spatially complemented in the
developing endosperm. The cleavage of sucrose in the
developing endosperm is necessary for generating a
sucrose gradient to maintain sink strength (Sturm and
Tang 1999). The results suggest that OsCIN2, OsSUS3, and
OsSUS4 contribute to sink strength by cleaving sucrose in

Table 1 Internal control and marker genes for aleurone cells and starchy endosperm

Category NCBI accession number  Description Reference
Internal control X00755 185 rRNA Kim et al. 2003
Marker for aleurone cells AF022148 16 kDa oleosin isoform R16  NCBI%; Medina and Quatrano, unpublished.

Marker for starchy endosperm ~ D50602

Starch debranching enzyme

Pullulanase; Nakamura et al. 1996, OsPUL; Ohdan et al. 2005

?Direct submission to The National Center for Biotechnology Information (NCBI)
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Table 2 Information on the genes related to sucrose transport, sucrose cleavage, intermediate metabolic steps and starch

biosynthesis

Category

Accession No. Description

Reference

Major changes in grain appearance and
starch properties with the mutant and
genetic manipulation of gene

Sucrose transport and D87819

cleavage

AKO072276

AK100306
AK102158

Metabolic step between DQ116384

sucrose cleavage and
starch biosynthesis

DQ116386
DQ116387
DQ116388
DQ116390
AB062606

AF455812
U66041

Starch biosynthesis
AK103906
AK107368

D16202

AF419099

AY100469

X62134

D11082

D16201

AB093426

AK063766

Sucrose transporter (SUTT)

Cell wall invertase 2

Sucrose synthase 3
Sucrose synthase 4

Hexokinase 2

Hexokinase 4
Hexokinase 5
Hexokinase 6
Hexokinase 8

UDP-glucose
pyrophosphorylase

Phosphoglucomutase

ADP-glucose pyrophosphorylase

large subunit

ADP-glucose pyrophosphorylase

small subunit

ADP-glucose transporter

Soluble starch synthase 1

Soluble starch synthase II-3

Soluble starch synthase -2

Granule-bound starch synthase |

Starch branching enzyme |

Starch branching enzyme lib

Starch debranching enzyme:
Isoamylase |

Plastidial phosphorylase

OsSUTT; Hirose et al. 1997
OsCIN2; Cho et al. 2005

SUS3; Hirose et al. 2008
SUS4; Hirose et al. 2008
OsHXK2; Cho et al. 2006

OsHXK4; Cho et al. 2006
OsHXKS5; Cho et al. 2006
OsHXK6; Cho et al. 2006
OsHXK8; Cho et al. 2006

UGPase; Abe et al. 2002,
OsUgp1; Chen et al. 2007,
UGPasel; Woo et al. 2008

NCBI®; Akiyama, unpublished.

OsAGPL2; Ohdan et al. 2005;
Lee et al. 2007

OsAGPS2b; Ohdan et al. 2005;
Lee et al. 2007

OsBT1-1; Toyota et al. 2006

SSS; Baba et al. 1993, SSI;
Hirose and Terao 2004,
OsSSI; Ohdan et al. 2005

SSII-3; Hirose and Terao 2004,
SSlla; Ohdan et al. 2005

SSlHI-2; Hirose and Terao 2004,
OsSSllI-2; Dian et al. 2005,
OsSSllla; Ohdan et al. 2005

Okagaki 1992, GBSSI;
Hirose and Terao 2004,
OsGBSSI; Ohdan et al. 2005

RBEI; Mizuno et al. 1992,
OsBE1; Ohdan et al. 2005

RBEII; Mizuno et al. 1993,
OsBEllb; Ohdan et al. 2005
OsISAT; Ohdan et al. 2005

OsPHOL; Ohdan et al. 2005

Impaired grain filling (Scofield et al. 2002)

Chalky phenotype with abnormal
amyloplast (gif1; Wang et al. 2008)

Chalky phenotype (Koh et al. 1999)

shrunken phenotype (Lee et al. 2007)
shrunken phenotype (Lee et al. 2007)

brittle phenotype (maize; Shannon et al.
1998, barley; Patron et al. 2004)

Altered fine structure of amylopectin
(Fujita et al. 2006)

Altered fine structure of amylopectin
(alk; Umemoto et al. 2004)

White-cored chalky phenotype and
altered fine structure of amylopectin
(Fujita et al. 2007, flo5; Ryoo et al. 2007)

waxy phenotype with the absence of
amylose (Itoh et al. 2003)

Altered fine structure of amylopectin
(sbel; Satoh et al. 2003)

Chalky phenotype and altered fine
structure of amylopectin (amylose-
extender; Nishi et al. 2001)

sugary phenotype (sugary-1;
Kubo et al. 1999a)

shrunken to pseudonormal phenotypes
(phot; Satoh et al. 2008), protein
phosphorylation in amyloplast

(wheat; Tetlow et al. 2004)

“Direct submission to The National Center for Biotechnology Information (NCBI)

different locations in developing endosperm tissues. With
respect to the expression profile for hexokinase, OsHXK4
and OsHXKS5 showed predominant expression in SEC and
AL, respectively. For OsHXK2, a gradient in expression

level was observed from AL to SEC in descending order.
OsHXK6 and OsHXKS8 showed highest expression level in
SEL and SEC, respectively, and relatively high expression
was observed remaining two tissues. Transcripts of
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Qrose transport/cleavage

V

AL SEL SEC

OsSUT1
OsCIN2
OsSUS3
OsSUS4

Metabolic step between sucrose
cleavage and starch biosynthesis

AL SEL SEC

OsHXK?2
OsHXK4
OsHXK5
OsHXK6
OsHXKS
OsUgpl
Phosphoglucomutase

< Starch biosynthesis

AL SEL SEC

Y

OsAGPL?2
OsAGPS2b
OsBTI-1
OsSSI
OsSSila
OsSSIla
OsGBSSI
OsBEI
OsBEIIb
OsISA1
OsPHOL

0 50 100

Fig. 5 qRT-PCR analysis of sucrose transport, sucrose cleavage,
intermediate metabolic steps and starch biosynthesis. Values are
shown in a sequential color chart from 0 (green) to 100 (red). The
tissue with the highest value among endosperm tissues was
adjusted to 100. The values are means of three biological replicates.
The accession numbers and primer pairs for each gene are given

in Table 2
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OslUgpl and phosphoglucomutase were highest in AL and
SEC, respectively, and relatively high expression was
observed in the remaining two tissues. Thus, the expres-
sion of each gene appeared to be functional in a different
space in hexokinase. Osligpl and phosphoglucomutase are
assumed to generate metabolites for subsequent starch
biosynthesis in all three regions: AL, SEL, and SEC.

With respect to genes for starch biosynthesis, expres-
sion was low in AL, and the highest values, except for
OsGBSSI and OsISAI, were observed in SEC (Fig. 5).
Expression of OsAGPL2, OsAGPS2b, OsBT1-1, OsSSI, and
SSIlla was low in SEL, whereas expression of OsSSila,
OsGBSSI, OsBEIL, OsBEIIb, and OsPHOL was relatively
high (with values over 60) in SEL. T-DNA insertion into
either OsSAGPL2 or OsAGPS2b resulted in a shrunken
phenotype of rice kernels with impaired grain filling
(Lee et al. 2007). Mutant plants of brittle-1 in maize
(Shannon et al. 1998) and lys5 in barley (Patron et al. 2004,
show drastically decreased kernel dry weight, owing to
the absence of a plastidial ADP-glucose transporter.
The gradient of transcript abundance for OsAGPL2,
OsAGPS2b, and OsBT1-1 was consistent with the gradient
of starch accumulation among AL, SEL, and SEC (Fig. 1),
suggesting the in vivo regulation of starch accumulation
by these genes at the transcriptional level. For starch
synthase (both soluble and granule-bound type), starch
branching enzymes, and starch debranching enzyme,
greater attention has been paid to the effects of genes on
starch properties such as amylopectin structure and
amylose formation. Relatively high levels of expression
of OsSSIla, OsGBSSI, OsBEI, OsBEIIb, OsISAI, and
OsPHOL in SEL suggest that these genes are responsible
for the production of amylopectin and amylose in SEL at
the transcriptional level. The subcellular location of
OsAGPL2 and OsAGPS2b is cytosolic (Sikka et al. 2001),
whereas that of OsBT1-1, a gene for a starch synthase
branching enzyme, and starch debranching enzyme is
plastidial. In addition, the metabolic step of ADP-glucose
pyrophosphorylase is located upstream from that of
starch synthase, starch branching enzyme, and starch
debranching enzyme. In SEL, the substrate of ADP-glucose
may be deficient in plastids, owing to the very low level of
cytosolic OsAGPL2 and OsAGPS2b. Starch biosynthesis in
the cereal endosperm is a complex process engaged
with many genes (Fig. 5). Overall results of expression
of genes associated with metabolic steps from sucrose
transport to starch biosynthesis revealed the clear
differences in the distribution of transcripts in the de-
veloping endosperm. The LM-based expression analysis
conducted in this study provided the novel finding that
the clear gradient of transcripts of OsAGPL2 and
OsAGPS2b may be responsible for the large difference in
starch accumulation among AL, SEL, and SEC in the early
storage phase.
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Table 3 Information on the genes related to carbon fixation, TCA cycle, oxidative phosphorylation and GS/GOGAT cycle

Reference

RAP-DB?; Similar to Acetyl-coenzyme A carboxylase.
(Os05t0295300-01)

Osppct; Yamamoto et al. 2014

NCBI®: Silva et al. Unpublished.

RAP-DB? Similar to Aconitate hydratase, cytoplasmic
(Citrate hydro-lyase) (Aconitase). (Os03t0136900-01).
Similar to Aconitate hydratase 2, mitochondrial.
(0s03t0136900-02)

Koyama et al. 1999

RAP-DB?; Similar to 2-oxoglutarate dehydrogenase,
E1 component. (0s07t0695800-01)

RAP-DB?; Similar to Succinyl-CoA synthetase, beta chain.
(0s02t0621700-01)

SDHB; Kubo et al. 1999b
MDH; Lin et al. 2003
RAP-DB?; Similar to Malate dehydrogenase. (Os05t0574400-01)

RAP-DB? Similar to NADH-ubiquinone oxidoreductase 75 kDa
subunit, mitochondrial precursor. (0s03t0713400-01); Similar
to NADH-ubiquinone oxidoreductase 75 kDa subunit.
(0s03t0713400-02); Similar to NADH-ubiquinone
oxidoreductase 75 kDa subunit. (Os03t0713400-03)

RAP-DB?; NADH-ubiquinone oxidoreductase subunit PSST
(Fragment). (Os05t0533700-01)

RAP-DB?; Similar to Cytochrome b-c1 complex subunit 8.
(0s06t0175900-01)

0sGog1; Mattana et al. Unpublished®.

GS1; Sakamoto et al. 1989, GS1;1; Tabuchi et al. 2005
GSr; Sakamoto et al. 1989, GS1;2; Tabuchi et al. 2005

Category Accession No.  Description
Carbon fixation AK059261 Acetyl CoA carboxylase
AF271995 Phosphoenolpyruvate
carboxylase 1
TCA cycle AF302906 Citrate synthase
AK067183 Aconitase
AF155333 NADP-isocitrate dehydrogenase
AK100482 Oxoglutarate dehydrogenase
AK103525 Succinyl-CoA synthetase
AB017428 Succinate dehydrogenase
AF444195 Malate dehydrogenase 1
AK073698 Malate dehydrogenase 2
Oxidative phosphorylation  AK058713 NADH-ubiquinone oxidoreductase
AK243655 NADH-ubiquinone
oxidoreductase
subunit PSST
AK119716 Cytochrome b-c1 complex
subunit 8
GS/GOGAT cycle Y12594 Ferredoxin-dependent glutamate
synthase (FA-GOGAT)
X14245 Cytosolic glutamine synthetase 1;1
X14244 Cytosolic glutamine synthetase 1,2
AB008845 NADH dependent Glutamate Synthase
AY332470 Glutamate dehydrogenase

Goto et al. 1998
OsGDH1.2; Qiu et al. 2009

“The Rice Annotation Project Database
bDirect submission to The National Center for Biotechnology Information (NCBI)

Aleurone cells are inferred to generate ATP by aerobic
respiration during the early storage phase

Aleurone cells do not contain starch, but contain lipids
(Fig. le and f). Our LM-based expression analysis
showed the specific localization of oleosin, 16 kDa
isoform R16, in AL (Additional file 3: Figure S2), and the
low level of transcripts for starch biosynthesis in AL
(Fig. 5). The expression analysis is consistent with the
large amount of lipid and the absence of starch in AL
(Fig. 1c). In developing maize, oxygen concentration is
maintained at the high level in the oil-storing embryo,
corresponding to the steady-state levels of glycolytic
intermediates and those of the TCA cycle, as well as free
amino acids (Rolletschek et al. 2005). In the present
study, we investigated the spatial distribution of oxygen
(Fig. 3) and transcripts of genes associated with carbon
fixation, the TCA cycle, oxidative phosphorylation, and

the GS/GOGAT cycle (Fig. 6). Oxygen was detectable in
the outermost endosperm cells corresponding to the
aleurone layers at 8 % (Fig. 3). All the genes exam-
ined in Table 3 were expressed dominantly in AL
(Fig. 6), supporting the findings in maize embryo
(Rolletschek et al. 2005) with respect to oxygen con-
centration and metabolites in oil-storage tissue. In the
present study, we identified clear gradients in the
number of mitochondria from the AL to the SEC in
descending order (Fig. 2). Oparka et al. (1981) reported
the presence of mitochondria in the aleurone and
sub-aleurone layers with TEM observation. The present
quantitative investigation showed that the profile of oxygen
distribution agrees well with the gradient in numbers of
mitochondria in rice endosperm in the early storage phase.
Xu et al. (2008) reported that accumulation of proteins
associated with the TCA cycle increased during 6-10 DAF
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Fig. 6 qRT-PCR analysis for carbon fixation, TCA cycle, oxidative phosphorylation, and GS/GOGAT cycle. Succinate dehydrogenase is also classified
as a gene for oxidative phosphorylation. The sequential color chart refers to Fig. 4. The accession numbers and primer pairs for each gene are
given in Table 3

(in the early storage phase), based on proteomic analysis of  of hypoxia (Fig. 3). Energy production for starch accumu-
developing rice kernels. Thus, mitochondria localized in  lation may be different between barley and rice, given the
the oxygen-rich cells of AL are expected to contribute  differences in oxygen availability in the starch-storing tis-
to ATP generation through aerobic respiration, thereby sue in the early storage phase. SEC is assumed to produce
assisting the initial formation and accumulation of lipids ~ ATP via anaerobic respiration to supply energy for starch
via expression of genes listed in Table 3. In barley, development in the absence of oxygen (Fig. 3). Whether
starch accumulation is initiated in the lateral region, gradients in oxygen concentration are coupled with the
where the tissues retain a high level of oxygen sup-  differences in storage product between endosperm tissues
plied by photosynthesis in the surrounding pericarp  (ie. lipids in aleurone cells and starch in starchy endo-
(Rolleschek et al. 2004). In rice, starch accumulation is ini-  sperm) through the different process of energy production
tiated in the center of the endosperm (Fig. 1b), where the is still elusive. Further evidence are required to reveal the
tissue is most distant from the pericarp and in a condition  relationship between the energy production and biological
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process of storage product accumulation in the different
positions of developing endosperm. Knockout mutants of
cytosolic glutamine synthetase 1;1 showed a signifi-
cant reduction in rice kernel weight (Tabuchi et al.
2005), indicating the involvement of this gene in car-
bon partitioning through nitrogen metabolism in the
AL. The function of cytosolic glutamine synthetase
1;1 in the developing endosperm is still unclear, but
there may be physiological linkages between nitrogen
metabolism in aleurone cells and starch synthesis in
starchy endosperm.

Conclusions

We revealed the expression pattern of carbohydrate-
metabolizing genes in the different positions of developing
endosperm with an assistance of LM. The expression of
OsSUT1 was specific to the AL, and the expression of
sucrose-cleavage enzymes such as OsCINI, OsSUS3, and
OsSUS4 was preferential in AL, SEL and SEC, respectively.
The gradients of transcript abundance for OsAGPL2
and OsAGPS2b were assumed to be associated with
the differential spatial distribution of starch granules
among endosperm tissues in the early storage phase. These
results in carbohydrate-metabolizing genes suggested the
roles of each gene in carbon partitioning and starch
synthesis in the different positions of developing endo-
sperm. The presence of oxygen and large number of
mitochondria in AL were consistent with the predominant
expression of genes involved in TCA cycles and oxidative
phosphorylation, inferring the energy production via
aerobic respiration at least in part in AL. The LM-based
expression analysis conducted in this study expanded
molecular and physiological knowledge on the pos-
itional differences in starch accumulation and energy
production in the developing rice endosperm in the
early storage phase.

Methods

Plant materials

Oryza sativa cv. Koshihikari (a Japonica rice variety)
was used. Seeds were sown in a nursery box filled with
soil, and 4 weeks-old seedlings were transplanted into
0.02 m” pots. As a basal dressing, 0.5, 2.3, and 2.2 g each
of N, P,Os, and K,O was applied, and 0.4 g of nitrogen
per pot was applied as a top dressing approximately
two weeks before heading. At the booting stage,
plants were transferred into a naturally illuminated
temperature-controlled chamber. Day (13 h) and night
(11 h) air temperatures were maintained at 26 and
20 °C, respectively until maturity. Spikelets were marked
on the flowering day. Caryopses at 7 DAF located on the
four primary rachis branches counted from the top of the
panicles were used in all experiments.
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Laser microdissection (LM)

Four developing rice caryopses were collected from one
panicle. Three biological replicates (panicles) were prepared
from three rice plants. The preparation of specimens for
LM followed Ishimaru et al. (2007). Briefly, the developing
caryopses were immediately fixed with an ice-cold mixture
of 3:1 ethanol: acetic acid, and embedded with 2 % carboxy-
methylcellulose. Transverse sections (8 um thickness) were
made at the median part of the developing caryopses with a
cryomicrotome (Leica, CM1850). Aleurone cells at the
dorsal side (AL) and starchy endosperm in the center (SEC)
and the lateral regions (SEL) were microdissected with an
AS LMD system (Leica Microsystems, Wetzlar, Germany).

RNA extraction, quantification, and quality check

Total RNA was extracted with a Picopure RNA isolation
kit (Molecular Devices, Sunnyvale, CA) using DNase L.
Quantification of total RNA was determined by the
fluorescence based method, using a RiboGreen RNA
Quantification kit (Molecular Probes, Eugene, OR).
The integrity of RNA from aleurone cells and starchy
endosperm was assessed using a 2100 Bioanalyzer
(Agilent technologies, Santa Clara, CA). The average
RNA integrity number (RIN) with clear rRNA peaks
from each tissue exceeded 7.0 for the three biological
replications (Additional file 1: Table S1).

cDNA synthesis and quantitative RT-PCR

Quantitative RT-PCR was performed following Ishimaru
et al. (2009) with three biological replications. Total RNA
(10 ng) was amplified and cDNA was synthesized with a
WT-Ovation™ RNA Amplification System (NuGEN
technologies Inc., San Carlos, CA) according to the manu-
facturer’s instructions. For quantitative RT-PCR, SYBR
Premix Ex Taq (TaKaRa Bio Inc, Shiga, Japan) was used
with a real time RT-PCR system (7500 Real Time PCR
System, Applied Biosystems, Foster, CA). Gene-specific
primer pairs were designed with Primer 3 (version 0.4.0.,
http://frodo.wi.mit.edu/primer3/) or taken from previous
reports (Additional file 4: Table S2). Dissociation curves
confirmed the presence of a single amplicon in each PCR.
cDNA of each gene was further amplified with Taq
polymerase (ExTag; TaKaRa Bio Inc), and PCR products
were sequenced to confirm that the fragments were the
targeted gene. For each gene, the highest value in a
given tissue was adjusted to 100 after normalization
with the transcript level of 18S rRNA (Kim et al. 2003;
Additional file 2: Figure S1), and relative values less than
100 were determined for two other tissues.

Oxygen concentration in developing caryopses

Oxygen concentration in developing caryopses was mea-
sured following Shimamura et al. (2010). Immediately
after the detachment of the developing caryopsis from
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the glume, the caryopsis was placed in an aluminum
block and fixed with dental silicone impression material
(Provil novo light, Heraeus Kulzer GmbH, Germany).
The base of the rachilla was covered with dental silicone
impression material to prevent an inflow of external air
after detachment. The impression material hardened
within 2 min. A Clark-type O, microelectrode (OX-25,
Unisence A/S, Denmark) with a guard cathode and a
tip diameter of 25 pm was inserted into a developing
caryopsis at 50-pum intervals along a dorso-ventral axis.
The microelectrode was connected to a pA meter
(PA2000, Unisense A/S) and output was logged at 5-s
intervals on a computer using an analog-to digital
converter (ADC-16, Pico Technology, UK). The electrode
was calibrated in air before measurement and in O,-free
N,. The experiment was conducted at a temperature of
25 °C and 12 pmol m™> s™! photon flux density. Three
developing caryopses sampled from different panicles were
used. O, concentrations obtained from three developing
caryopses were averaged.

Microscopic observation

Stereo microscope

Median transverse sections (1.0-1.5 mm thickness) of
developing caryopses and matured grain were manually
cut with a sharp razor. Sectioned mature kernels were
immersed into a solution of 2 % KI and 0.4 % I, or 2 %
Sudan IV (w/v) in 70 % ethanol for staining starch or
lipid, respectively. After staining, specimens were viewed
under a stereomicroscope (SZX12, Olympus, Japan), and
immediately photographed.

Light microscope

Developing caryopses were immersed in FAA (formalin:
acetic acid: 70 % ethanol=1: 1: 18), dehydrated in an
ethanol series, and embedded in Technovit 7100 (Heraeus
Kulzer GmbH, Hanau, Germany). Sections 3 pm thick
were cut with a microtome (HM335E, Leica Microsystems,
Germany). Sections were stained with a solution of 2 % KI
and 0.4 % I, to observe starch granules and the same speci-
mens were then stained again with 0.1 % toluidine blue-O
to observe median transverse endosperm.

Transmission electron microscope (TEM)

Developing caryopses at 7 DAF were hand-cut into
1.0 mm-thick sections at the median with a sharp razor
and immediately fixed with ice-cold 4.0 % paraformalde-
hyde and 2.0 % glutaraldehyde for 3 h. Specimens were
fixed again overnight at 4 °C. After washing with 100 mM
phosphate buffer (pH 7.2), the specimens were post-fixed
with 1 % osmium tetroxide overnight at 4 °C. They were
then washed with distilled water, dehydrated in an ethanol
series, and embedded in Spurr’s resin (Spurr Low Viscosity
Embedding kit, Polyscience Inc., Warrington, PA). Sections
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200 nm thick were cut with glass knives with an ultrami-
crotome (MT2-B, Sorvall, Newtown, CT) at the median
part of the specimen. Sections were stained with TI blue
(Nissin EM, Tokyo, Japan) for 2 h and with lead citrate for
7 min, and viewed under an H-7100 transmission electron
microscope (Hitachi, Tokyo, Japan) at 75 kV. Mitochondria
were counted from the images at x3500 magnification
on 76 x50 mm films (310.2 pum?). Mean values were
calculated with 13-29 independent images (cells) from
two biological replications.

Additional files

Additional file 1: Table S1. RNA integrity number (RIN) used for
gRT-PCR analysis.

Additional file 2: Figure S1. qRT-PCR for 185 rRNA. The gene accession
numbers and primer pairs are shown in Table 1. Values are the means of
three biological replications. The value in each tissue was used for the
normalization.

Additional file 3: Figure S2. qRT-PCR for 16 kDa oleosin (A) and starch

debranching enzyme (B; SDBE). The gene accession numbers and primer pairs
are shown in Table 1. Values are the means of three biological replications.

Additional file 4: Table S2. Gene-specific primers used in this study.
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