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The rice ALS3 encoding a novel pentatricopeptide
repeat protein is required for chloroplast
development and seedling growth
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Abstract

Background: Pentatricopeptide repeat (PPR) proteins play essential roles in modulating the expression of organelle
genes and have expanded greatly in higher plants. However, molecular mechanisms of most rice PPR genes remain
unclear.

Results: In this study, a new rice PPR mutant, asl3 (albino seedling lethality3) exhibits an albino lethal phenotype at
the seedling stage. This albino phenotype was associated with altered photosynthetic-pigment and chloroplast
development. Map-based cloning showed that ASL3 encodes a novel rice PPR protein with 10 tandem PPR motifs,
which localizes to the chloroplast. ASL3 showed tissue-specific expression, as it was highly expressed in the
chlorenchyma, but expressed at much lower levels in roots and panicles. RNAi of ASL3 confirmed that ASL3
plays an essential role in the early development and chloroplast development in rice. Moreover, expression
analysis revealed that the asl3 mutation severely affected the transcriptional levels of important genes associated with
plastid translation machinery and photosynthesis, which may impair photosynthesis and finally led to the seedling
death in asl3 mutant. These results evidenced the important role of ASL3 in the early development of rice, especially
chloroplast development.

Conclusions: The ASL3 gene encoded a novel chloroplast-targeted PPR protein with 10 tandem PPR motifs in rice.
Disruption of the ASL3 would lead to a defective chloroplast and seedling lethality, and affected expression levels of
genes associated with chloroplast development and photosynthesis at early leaf stage of rice.
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Background
The pentatricopeptide repeat (PPR) family was first
recognized from the Arabidopsis thaliana genome sequence
(Small and Peeters 2000). The PPR proteins are character-
ized by a degenerate motif of 35 amino acids that can be
repeated up to 30 times within a single protein. They are
predicted to comprise an array of α helices (Small and
Peeters 2000), placing them in the ‘a-solenoid’ superfamily
that includes tetratricopeptide repeat (TPR) proteins,
ankyrin repeat proteins, HEAT domain proteins and Puf
domain RNA-binding proteins. The PPR proteins can be
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separated into two major subfamilies based on the nature
of their PPR motifs and into several smaller subclasses
based on their C-terminal domain structure (Lurin et al.
2004; O’Toole et al. 2008). Additionally, the genomes of the
parasitic protozoan Trypanosoma brucei, yeast, drosophila,
and human are predicted to contain only 28, 5, 2, and 6
PPR genes, respectively (Lurin et al. 2004; O’Toole et al.
2008; Asano et al. 2013). However, the PPR family
has expanded greatly in higher plants, with 466 members
in Arabidopsis and 477 members in rice, suggesting that
PPR protein genes diversified during the evolution of the
land plants (Lurin et al. 2004; Schmitz-Linneweber and
Small 2008).
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To date, all confirmed physiological roles of PPR
proteins are within mitochondria or chloroplasts (Schmitz-
Linneweber and Small 2008). Most PPR proteins act as
sequence-specific RNA binding factors that are involved in
the post-transcriptional regulation of organelle gene
expression (Delannoy et al. 2007). In chloroplasts,
some PPR proteins have been found to participate in
RNA splicing (Schmitz-Linneweber et al. 2006; de
Longevialle et al. 2007; Ichinose et al. 2012), RNA
processing (Meierhoff et al. 2003; Hattori et al. 2007),
RNA editing (Kotera et al. 2005; Okuda et al. 2007;
Chateigner-Boutin et al. 2008; Cai et al. 2009; Yu et al.
2009; Zhou et al. 2009; Tseng et al. 2010; Sosso et al.
2012), translation (Williams and Barkan, 2003; Tavares-
Carreón et al. 2008), and RNA stability (Yamazaki et al.
2004; Pfalz et al. 2009). Despite the few PPR proteins
of which molecular functions have been characterized
in detail, a lot of work still to be done is to identify the
functions of the other PPR proteins in plant development,
especially in rice.
Functional studies of rice PPR proteins remain very

sparse and a mutation in a PPR gene usually has a strong
phenotypic effect. OsPPR1, including 11 PPR motifs, is the
first report on the rice PPR protein required for the
chloroplast biogenesis (Gothandam et al. 2005). Antisense
transgenic strategy was used to suppress the expression of
OsPPR1 and the resulted transgenic rice showed the
typical phenotypes of chlorophyll-deficient mutants,
albinism and lethality. Another rice PPR protein, YSA, with
16 PPR motifs, is required for chloroplast development in
early seedling leaves, and disruption of its function causes
a seedling stage-specific albino phenotype (Su et al. 2012).
OsV4 encodes a PPR protein targeted to the chloroplast,
which is essential for chloroplast development during
the early leaf stage under cold stress (Gong et al. 2014).
The osv4 mutant exhibits albino phenotype at a restrictive
temperature (20°C) before the 4-leaf stage and gradually
turned green as the leaf number rose, but it is always
green at 32°C.
Here, we isolated a new rice albino seedling lethal

mutant, asl3, which develops albino leaves before the
3-leaf stage, thereafter died. Map-based cloning and
further analysis revealed that ASL3 encodes a novel PPR
protein containing 10 tandem PPR motifs, whose biological
action is required for early chloroplast development and
photosynthesis in rice.

Results
Characterization of the asl3 mutant
The asl3 mutant was a lethal mutant isolated from a
60Co-irradiated population of japonica variety Jiahua1
(WT). All leaves of asl3 seedlings exhibited an albino
phenotype at the seedling stage (Figure 1A,B), and the
seedlings did not survive past the 4-leaf stage because of
no photosynthesis to provide nutrition. In addition, the
accumulation of chlorophyll (Chl) a, b and carotenoid
(Car) were negligible in the asl3 seedlings (Figure 1E),
which was consistent with the albino phenotype.
To investigate chloroplast development in asl3 mutant,

the ultrastructure of chloroplasts at 3-leaf stages were
examined by transmission electron microscopy (TEM). As
expected, the unabridged chloroplast was found in all WT
plants and the grana stacks were dense and well
structured (Figure 2A,B), whereas chloroplast did not
display the usual architecture and had no observable grana
lamella stacks in asl3 mutant (Figure 2C,D). These
observations indicate that the asl3 mutation results in
abnormal development of the chloroplasts.

Map-based cloning of the ASL3 gene
To elucidate the molecular mechanism responsible for
the phenotype of asl3 mutant, map-based cloning was
performed to identify the ASL3 locus. Due to no seeds
could be obtainable in homozygous mutants because of
the seedling-lethality, the crosses of the heterozygous
ASL3/asl3 plants with indica cultivar Pei’ai64S were
conducted to generate a segregation population for gene
mapping. The F1 plants (ASL3/ASL3: ASL3/asl3 = 1:1) from
the crosses were all normal green; however, segregation
occurred in the F2 plants selfed from the heterozy-
gous F1 plants (ASL1/asl1) in the proportion of 3:1
(green: albino = 313:98; χ2 = 0.21; P > 0.05), indicating that
this mutation in asl3 plants is a single recessive locus.
The ASL3 locus was initially mapped to the long arm

of chromosome 1(Chr1) between the molecular markers
RM488 and RM297 by analyzing 160 mutant individuals
(Figure 3A). Then a larger F2 population with 4213
mutant individuals was used for fine mapping. Eight
InDel markers (P1→ P8) were developed between RM488
and RM297. The ASL3 locus was further narrowed
down to a 32-kb region between P3 and P4 (Figure 3B),
which included 3 putative open reading frames (ORFs)
(http://rice.plantbiology.msu.edu) (Figure 3C). All putative
ORFs were sequenced and a 1-bp deletion (G*) was found
in LOC_Os01g48380, causing a premature stop codon
(Figure 3D).

Knockdown of ASL3 displays the lethal phenotypes
To understand whether the function-loss of ASL3 is
responsible for the lethal phenotype in mutant, RNA
interference (RNAi) technology was used to suppress
ASL3 expression in WT plants. A gene-specific fragment
of ASL3 was cloned into an RNAi vector and transgenic
plants were generated via Agrobacterium–mediated trans-
formation. Resultantly, fifty-one RNAi lines showed the
same albino phenotypes as in the asl3 mutant (Figure 1C).
Further, two RNAi transgenic plants with albino pheno-
types were selected for measurement of ASL3 transcript.

http://rice.plantbiology.msu.edu


Figure 2 Transmission electron microscopy of chloroplasts in expanded third leaves: (A) The cell of wild type; (B) An intact chloroplast
in the wild type cell; (C) The cell of an asl3 mutant; (D) An abnormal chloroplast in the asl3 mutant cell. c, chloroplast; g, grana stack.

Figure 1 Characterization of the asl3 mutants at 3-leaf stage: (A) WT plants (Jiahua 1) (B) asl3 mutant plants; (C) RNAi transgenic line
transformed with pTCK303-dsRNAiASL3; (D) RNAi control; (E) The pigment contents in leaves at 3-leaf stage in asl3 mutants are much
lower than that in WT plant. Chlorophyll a (Chla), chlorophyll b (Chlb), total chlorophyll (Chl) and carotenoid (Car).
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Figure 3 Map-Based cloning of ASL3: (A) The ASL3 locus was initially mapped to a region between markers RM488 and RM297 on the
long arm of rice chromosome 1 (Chr.1) with 160 recessive individuals; (B) Fine mapping of ASL3 between BAC1 (AP008207.2) and
BAC2 (AP006867) within a 32-kb region by the markers P3 and P4 using 4,213 mutant individuals; (C) Diagram of the predicted ORFs
and the mutation site; (D) Gene model of ASL3, a 1-bp deletion (G*) in LOC_Os01g48380 results in a premature stop codon.
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The ASL3 transcripts of RNAi lines were significantly
lower than that of the WT plants (Figure 4B). These results
confirmed that RNAi of ASL3 could mimic the phenotypes
of the asl3 mutant.

Characterization of the predicted ASL3
Sequence analysis of the genomic DNA and cDNA revealed
that the ASL3 gene is comprised of 9 exons and 8 introns
and encoded a polypeptide of 994 amino acids with a
calculated molecular mass of 113.05 kD. The functional
domain analysis using TPRpred (Karpenahalli et al. 2007)
reveals that ASL3 is a PPR protein containing 10 PPR
motifs. Although bioinformatics (http://rice.plantbiology.
msu.edu) shows that there is another transcript, we haven’t
detected it by RT-PCR method using specific primers
(data not shown).
Orthologs of ASL3 from Arabidopsis thaliana,

Brachypodium distachyon, Sorghum bicolor and Zea mays
were found in the NCBI database. ASL3 has 42–74%
amino acid sequence identity to the four characterized
orthologs. Among these, ASL3 exhibits maximum sequence
similarity with protein in Brachypodium distachyon, with
74% amino acid identity and it shared 42% peptide identity
with protein from Arabidopsis (Figure 5A). These data
indicated that the ASL3 protein is highly conserved
in higher plants. Eight related proteins were used to
investigate the relationship between ASL3 homologs
in evolutionary history. As shown in Figure 5B, they could
be divided into two groups: (1) the orthologs proteins
from both monocots and dicots are divided clearly into
two subgroups; (2) another two paralogous proteins from
rice and Arabidopsis forms another group.

Subcellular localization of ASL3
The ASL3 protein was predicted to localize to chloroplasts
according to ChloroP (http://www.cbs.dtu.dk/services/
ChloroP/) and TargetP (http://www.cbs.dtu.dk/services/
TargetP/). To examine the actual subcellular localization
of ASL3, the cDNA fragment encoding the N-terminal
region (amino acids 1–249) of the ASL3 was amplified
from WT plants and introduced into the N-terminal of
the GFP gene in the expression vector pMON530-GFP.
The pMON530:CaMV35S:ASL3-GFP plasmid was intro-
duced into tobacco cells using Agrobacterium-mediated
infection method. Meanwhile, empty GFP vector was
used as a control. As a result, the green fluorescent
signals of ASL3-GFP fusion protein perfectly overlapped
with chloroplast autofluorescence in transformed tobacco
mesophyll cells (Figure 6A). By contrast, the epidermis
cells transformed with the empty GFP vector without a
specific targeting sequence had green fluorescent signals
in both plasma membrane, cytoplasm and the nucleus.
Thus, these findings suggest that ASL3 is localized to the
chloroplast (Figure 6B).

Expression pattern of ASL3 gene
Reverse transcription PCR (RT-PCR) was performed to
examine the expression pattern of ASL3. Resultantly, a

http://rice.plantbiology.msu.edu
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Figure 4 Expression analysis of ASL3: (A) RT–PCR analysis of ASL3 in root, young stem, young leaf, flag leaf and panicle of WT.
Rice Actin gene was used as a control; (B) Transcript levels of ASL3 in top leaves sampled from WT, asl3 mutant, RNAi lines at 3-leaf-stage.
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significantly high level of expression was detected in
stems, young leaves and flag-leaves, but a very limited
amount of the transcript was detected in roots and panicles
(Figure 4A), suggesting that the ASL3 mainly functions in
the chlorenchyma. Interestingly, the transcripts of ASL3
had no obvious change in asl3 plants (Figure 4B), showing
that the 1-bp deletion could not affect its transcriptional
expression in asl3 plants.

The transcript expressions of related genes in the
asl3 mutant
To assess the possibility that the impaired chloroplasts
in asl3 mutant may be reflected at the level of related gene
expression, we examined the transcription levels of genes
associated with photosynthesis and chloroplast develop-
ment both in the asl3 mutant and WT plant by qPCR ana-
lysis. The photosynthesis-associated transcripts of plastid
genes, psbA (encoding a reaction center polypeptides) and
rbcL (encoding the large subunit of Rubisco), the nuclear
genes RbcS (encoding the small subunit of Rubisco,
Kyozuka et al. 1993) and Cab1R (encoding the light
harvesting Chla/b-binding protein of PSII), were signifi-
cantly suppressed in the asl3 mutant, which may impair
photosynthesis ability and finally led to the seedling
lethality in mutant (Figure 7).
As for chloroplast-development associated transcripts,

the levels of PEP-dependent transcripts such as rpoB,
rpoC, rpoC2 (encoding three subunits of PEP) were obvi-
ously up-regulated and the expression of the genes
dependent on both PEP and NEP such as 16S rRNA and
23S rRNA, two components of the plastid translation
machinery, declined sharply (Figure 7). In addition, the
expression of OsRpoTp (encoding NEP core subunits,
Hiratsuka et al. 1989) was increased, but the expression
of FtsZ (encoding a component of the plastid division
machinery, Takeuchi et al. 2007) was decreased signifi-
cantly (Figure 7). Overall, the observations indicated that
the asl3 mutation affects the transcriptional expressions
of genes associated with not only photosynthesis but also
the early chloroplast development.

Discussion
ASL3 encodes a chloroplast-targeted PPR protein which is
necessary for the survival of rice
PPR genes constitute a large multigene family in higher
plants. Recent studies have revealed that PPR proteins
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Figure 5 Phylogenic analysis of ASL3 Protein: (A) Amino acid sequence alignment of its homologs Arabidopsis thaliana, Brachypodium
distachyon, Sorghum bicolor and Zea mays. Amino acids fully or semi-conserved are shaded black and gray, respectively; (B) Homologous proteins
similar to ASL3 were used to obtain a phylogenetic tree with the program Mega5.1, which was bootstrapped over 1,000 cycles. Significance values
above a 50% cutoff threshold are indicated near the relative branches.

Lin et al. Rice  (2015) 8:17 Page 6 of 11
are essential for plant growth and development and
most of them are involved in editing, splicing, and regu-
lating the stability of various organellar transcripts
(Schmitz-Linneweber and Small 2008). In contrast to
Arabidopsis PPRs, very little is known about the functions
of rice PPRs. Here, we present a molecular characterization
of the PPR gene, rice ASL3, with 10 PPR motifs. The ASL3
protein was predicted to contain a chloroplast transit
peptide (cTP) in its N-terminal region, suggesting that the
protein is one of the PPRs targeted to chloroplast, and
subcellular localization experiments confirmed this
prediction. Similarly, few PPR genes that contain cTP
were reported in rice such as OsPPR1, YSA, and OsV4
(Gothandam et al. 2005; Su et al. 2012; Gong et al. 2014).
In this study, the lack of rice ASL3 leads to the albino
seedling lethality and attributes to the hindrance of chloro-
plast development (Figure 2C, D) and Chl biosynthesis
(Figure 1E). Furthermore, the ASL3 RNAi transgenic lines
were obtained with reduced expression of ASL3 relative to
WT plants and the albino phenotype was observed at early
growth stages for ASL3 RNAi lines (Figure 1C). These
results show the importance of ASL3 gene. In the previous
studies, osppr4 also showed an albino phenotype with early
seedling lethality and the OsPPR4 possesses 15 PPR
motifs (Asano et al. 2013). The rice osv4 mutant develops
albino leaves initially at a restrictive low temperature
(constant 20°C) but gradually turns green as the plants
grow (Gong et al. 2014). Interestingly, the lack of homologs



Figure 6 Subcellular localization of the ASL3’ protein: (A) A tobacco mesophyll cell expressing ASL3–GFP; (B) A tobacco epidermal cell
expressing GFP alone The scale bar represents 20 μm.
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ASL3 in Arabidopsis leads to embryo lethality rather
than albino seedling lethality (Cushing et al. 2005).
This observation suggests that the functions of some
PPR genes have changed during evolution in spite of
the high conservative property. Taken together, these
results suggest that the ASL3 is a chloroplast-targeted
PPR protein which is essential for the survival of rice.

ASL3 may be involved in the regulation of early
chloroplast development and plastid gene expression
The chloroplast is a semi-autonomous organelle, which
contains about 100 genes, although more than 3,000
proteins function within it (Leister, 2003). Thus, nucleus-
encoded factors play essential roles in the regulation of
Figure 7 Expression analysis of genes associated with chlorophyll bio
real-time PCR. The relative expression level of each gene was normalized
gene at the three-leaf stage in Jiahua1 was set as 1.0 and other samples w
independent experiments.
chloroplast development, which requires the coordinated
expression of both nucleus-encoded and chloroplast-
encoded genes. The processes accompanying chloroplast
development can be divided into three steps in higher
plants (Mullet 1993; Kusumi et al. 2010). The first
step involves the proplastid growth and activation of
plastid DNA synthesis. The second step is the chloroplast
‘build-up’ step, which is characterized by the establish-
ment of transcription/translation apparatus. At this
step, NEP preferentially transcribes plastid genes that
encode elements of the transcription and translation
apparatus (Hajdukiewicz et al. 1997) and the transcription
and translation activity in the chloroplast is dramatically
elevated. The final step is the high level expression of
synthesis, photosynthesis, or chloroplast development by
using Actin as an internal control. The expression level of each
ere calculated accordingly. Error bars (SDs) are based on three
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plastid and nuclear genes encoding photosynthetic appar-
atus. In particular, the plastid genes are exclusively
transcribed by PEP (De Santis-MacIossek et al. 1999).
In asl3 plants, the mutation disrupts the transcripts of

plastid and nuclear genes associated with chloroplast
development (Figure 7). The suppression on the FtsZ
transcripts resulted in the less number of chloroplasts
(Figure 2C), because it is essential in the first step of
chloroplast development. Besides, the transcripts for
NEP component (OsRpoTp) and PEP components (rpoB,
rpoC1 and rpoC2) accumulated to a high level, probably
caused by feedback mechanism (Figure 7). However, tran-
script accumulation of both PEP- and NEP- dependent
genes(16S rRNA, 23S rRNA) and PEP-transcribed plastid
genes (psbA, rbcL) were severely suppressed (Figure 7),
suggesting that, in asl3mutant, accumulation of transcripts
for PEP components did not result in the formation of
functional PEP due to the disruption of transcription/
translation apparatus. Similar conclusions were also
obtained in maize ppr2 mutant considering that PPR2
functions in the synthesis or assembly of one or more
component of the plastid translation machinery (Williams
and Barkan 2003). In addition, the plastid-to-nucleus
signaling pathways in asl3 mutant probably were changed
and finally affected the expressions of nuclear-encoded
genes required for photosynthesis (Cab1R and RbcS).This
result was in accordance with the previous results from v2
mutant (Sugimoto et al. 2004) and another rice albino
mutant, asl1 (Gong et al. 2013).
Most PPR proteins are involved in editing, splicing, and

regulating the stability of various organellar transcripts
(Schmitz-Linneweber and Small 2008). However, those
evidences are mainly obtained in Arabidopsis research
but rarely obtained in rice. Asano et al. (2013) reported
that OsPPR4 is required for splicing of chloroplast tran-
scripts and RNA editing of ndhA. Disruption of OsPPR4
expression led to a strong defect in the splicing of
atpF, ndhA, rpl2, and rps12-2 introns and influences
the splicing of petB and rps16 introns. The rice
DYW-class PPR protein, OGR1, is essential for RNA
editing in rice mitochondria and is required for normal
growth and development (Kim et al. 2009). In this study,
although specific target RNA has not been found yet, our
results still reveal some useful information. For example,
transcript levels of some ribosomal components and
PEP-dependent genes are dramatically reduced in the
albino mutants. Furthermore, our study with the anti-
sense plant demonstrated that the ASL3 gene plays an
important role in the early chloroplast development
of rice. Probably, the ASL3 gene is involved in the
processing of plastid RNA required for the early event of
chloroplast biogenesis. Further genetic and biochemical
studies of ASL3 will be required to gain insight into
its detailed function.
Conclusion
The ASL3 gene encoded a novel chloroplast-targeted PPR
protein with 10 tandem PPR motifs in rice. Disruption of
the ASL3 would lead to a defective chloroplast and seedling
lethality, and affected expression levels of genes associated
with chloroplast development and photosynthesis at early
leaf stage of rice.

Methods
Plant materials and growth conditions
The rice albino mutant asl3 used in this study was isolated
from a 60Co gamma rays irradiated mutant pool of Oryza
sativa cultivar Jiahua1 (WT, japonica rice variety). To gen-
erate a large F2 populations for genetic studies, crosses were
conducted between heterozygous plants (ASL3/asl3) and an
indica cultivar Pei’ai64S. For phenotypic characterization,
pigment content measurement and RNA extraction, seeds
of the WT and asl3 plants were grown in growth chambers
under controlled 12 h of light and 12 h of dark at a constant
temperature of 32°C and humidity of approximately 70%.
The asl3 mutants can be distinguished from the normal
segregants by albino phenotype.

Cloning of ASL3
To map the ASL3 gene, 22 individuals with typical albino
phenotype were screened out from an F2 populations
derived from a cross between the heterozygous plants
(ASL3/ asl3) and Pei’ai64S for linkage analysis. Then a
total of 4213 F2 mutant individuals were selected for
fine-mapping. Genomic DNA was extracted from
young leaves by the CTAB method and analyzed for
cosegregation using available simple sequence repeat
markers (McCouch et al. 2002). New insertion-deletion
(InDel) markers were developed based on the entire
genomic sequences of Nipponbare variety (Goff et al. 2002)
and indica variety 93–11 (Yu et al. 2002). The sequences of
the markers were designed using the PREMIRE5.0 software.
The markers are listed in Additional file 1: Table S1.
Gene prediction was performed using the Rice Genome
Annotation Project (http://rice.plantbiology.msu.edu/
cgi-bin/gbrowse/rice/). The genomic DNA fragments
of candidate genes from the mutant and WT plants were
amplified and sequenced.

RNAi suppression of ASL3
To confirm that ASL3 was the gene associated with the
phenotype observed, RNA interference (RNAi) analysis
was preformed. The construct vector pTCK303 with a
maize ubiquitin promoter and a rice intron was used as
an RNAi vector (Wang et al. 2004). Both anti-sense and
sense versions of a specific 414-bp fragment from the
coding region of the ASL3 were amplified, and succes-
sively inserted into pTCK303, to form the RNAi construct
vector pTCK303-dsRNAiASL3. The primer pairs are

http://rice.plantbiology.msu.edu/cgi-bin/gbrowse/rice/
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5’ CGAGCTCGGTTGGAACCAGACCTCATTGTG 3’,
5’ GACTAGTCACCTTGCAAATCTTCTCGACCT 3’ and
5’ CGGGATCCCGGTTGGAACCAGACCTCATTGTG 3’,
5’ GGGGTACCCCACCTTGCAAATCTTCTCGACCT 3’.
Then, the resultant plasmid and the empty vector were
introduced into Agrobacterium tumefaciens EHA105 and
then used to infect calli of WT plants according to a
published method (Hiei et al. 1994).

Chlorophyll and carotenoid content measurement
Both chlorophyll (Chl) and carotenoid (Car) contents of
the 3-leaf-stage leaves were measured following the
method of Arnon (1949). Briefly, leaves (approximately
0.02 g fresh weight) were cut and marinated in 5 ml of
5:4:1 acetone: ethanol: H2O for 18 h under dark conditions.
Residual plant debris was removed by centrifugation. The
supernatants were analyzed with a DU 800 UV/Vis
Spectrophotometer (Beckman Coulter) at 665, 649 and
470 nm, respectively.

Transmission electron microscopy (TEM) analysis
For TEM analysis, the transverse sections of top leaves
sampled from the 3-leaf-stage WT and asl3 seedlings
grown in a growth chamber at 32°C were fixed in a
solution of 2.5% glutaraldehyde and then fixed in 1%
OsO4. After staining with uranyl acetate, tissues were fur-
ther dehydrated in an ethanol series and finally embedded
in Spurr’s medium prior to ultrathin sectioning. Samples
were stained again and examined with a Hitachi-7650
transmission electron microscope.

Phylogenetic analysis
Homologous sequences of ASL3 were identified using
the Blast search program of the National Center for
Biotechnology Information (NCBI, http://www.ncbi.
nlm.nih.gov/). The functional domain analysis was per-
formed TPRpred (Karpenahalli et al. 2007). The sequences
of PPR domains were aligned using BioXM version 2.6
software and the neighbor-joining tree was generated with
the Poisson correction method with MEGA version 5.1
software. Bootstrap replication (1000 replications) was used
for a statistical support for the nodes in phylogenetic tree.

Subcellular localization
To investigate the subcellular localization of ASL3, the
cDNA fragment encoding the N-terminal region
(amino acids 1–249) of the ASL3 was amplified from
WT plants using primer pair 5’GGAAGATCTTGTGT
GTGTGTGTGTGATG3’, 5’CGGGGTACCAAATGAG
CAACCATACTACC3’ and introduced into vector
pMON530-GFP at the KpnI and BglII sites. Transform-
ation was performed according to the method of Yin et al.
(2012). The GFP fluorescences of the transgenic tobacco
(Nicotiana tabacum) cells were observed under Confocal
Laser Scanning Microscopy (LSM 5 PASCAL; ZEISS,
http://www.zeiss.com). The GFP fluorescence images were
obtained using an argon ion laser with excitation at
488 nm and a 505–530 nm band-pass filter. Chlorophyll
autofluorescence was detected with a 570-nm filter.

RT-PCR and quantitative real-time PCR (qRT-PCR) analysis
Total RNA was extracted from seedling roots, young stems,
young leaves, flag leaves and young panicles using an RNA
Prep Pure Plant kit (Tiangen Co., Beijing, China). For
RT-PCR, first-strand cDNA was reverse transcribed
from total RNA with RT primer mix (oligo dT and
random 6 mers). Real-time PCR was performed using
a SYBR_ Premix Ex TaqTM kit (TaKaRa) on an ABI prism
7900 Real-Time PCR System. The 2-ΔΔCT method was used
to analyze the relative changes in gene expression (Livak
and Schmittgen 2001). The primers for photosynthesis
and chloroplast development associated genes (FtsZ,
OsRpoTp, rpoB, rpoC1, rpoC2, Cab1R, rbcS, RbcL,
psbA, 16S rRNA, 23S rRNA) were listed in Additional file 2:
Table S2. The rice Actin gene was used as a reference
gene in this study.

Additional files

Additional file 1: Table S1. PCR-based molecular markers designed for
fine mapping.

Additional file 2: Table S2. Markers designed for Real-time PCR.
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