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Application of resequencing to rice genomics,
functional genomics and evolutionary analysis
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Abstract

Rice is a model system used for crop genomics studies. The completion of the rice genome draft sequences in
2002 not only accelerated functional genome studies, but also initiated a new era of resequencing rice genomes.
Based on the reference genome in rice, next-generation sequencing (NGS) using the high-throughput sequencing
system can efficiently accomplish whole genome resequencing of various genetic populations and diverse germplasm
resources. Resequencing technology has been effectively utilized in evolutionary analysis, rice genomics and functional
genomics studies. This technique is beneficial for both bridging the knowledge gap between genotype and phenotype
and facilitating molecular breeding via gene design in rice. Here, we also discuss the limitation,
application and future prospects of rice resequencing.
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Introduction
Rice is one of the most important staple crops world-
wide as well as a model monocot used in genomics re-
search. The world population has already exceeded
seven billion and is still growing, while the amount of
land suitable for agriculture is decreasing due to a var-
iety of factors such as rapid climate change. To meet the
global food demands of nine billion people by 2050, im-
provements in molecular genetics will be important to
increase rice yield in the post-genomics era (Miura et al.
2011; Huang et al. 2013).
In 2002, draft genomic sequences of two rice subspecies,

O. sativa ssp. japonica (Nipponbare) and O. sativa ssp.
indica (93–11), were released (Yu et al. 2002; Goff et al.
2002); and subsequently, the International Rice Genome
Sequencing Project (2005) completed the final genome
sequence of Nipponbare. These achievements have not only
greatly accelerated functional genomics research, but also
provided a reference genome for resequencing rice
genomes using high-throughput sequencing technologies
(Gao et al. 2012; Feuillet et al. 2011). New sequencing tech-
nologies are also known as next-generation sequencing
(NGS), which makes reference to the first generation of
Sanger sequencing technology. Three mainstream NGS
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platforms, i.e., Illumina/Solexa, Roche/454 and ABI/SOLiD
sequencing, which are known collectively as high-
throughput sequencing, can generate large amounts of
data in a single run and analyze more than 100 kb of
DNA (Ansorge 2009).
The advent of NGS technologies has greatly enhanced

rice functional genomics and molecular breeding studies
(Xie et al. 2010; Gao et al. 2012). The model system has
been readily adapted to the new sequencing technologies,
as rice is a self-fertilizing plant with the smallest completed
high-quality genome among cereal crops. Furthermore,
abundant diverse rice germplasm resources are available for
genome-wide association studies (GWAS) and evolutionary
analysis (Guo et al. 2004; Huang et al. 2012a). With the re-
lease of the complete bacterial artificial chromosome (BAC)
physical map for the aus rice cultivar ‘Kasalath’ and an up-
dated version of the whole genome sequence for the indica
rice variety ’93-11’ (Kanamori et al. 2013; Gao et al. 2013),
at least three references are now available together with the
japonica ‘Nipponbare’ sequence. These advantages have en-
abled researchers to perform accurate alignments of short
sequence reads produced by NGS with the reference ge-
nomes, as well as detailed genetic polymorphism analysis of
rice in an efficient manner (Han and Huang 2013). Using
information from these studies, researchers have now suc-
ceeded in characterizing genomic variation, identifying
QTLs (quantitative trait loci) by GWAS, investigating the
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origin of cultivated rice and performing molecular breeding
studies.
In this review, we briefly review the progress of the appli-

cation of rice genome resequencing to studies of genome
diversification, genotyping, gene identification and culti-
vated rice origin. We highlight the improved parental gen-
ome sequences, effective genetic mapping and genotyping
techniques involving deep resequencing of an RIL (recom-
binant inbred line) population of the super hybrid rice
Liang-You-Pei-Jiu (LYP9) (Gao et al. 2013). Additionally,
we discuss the future of rice resequencing.

Review
Genetic diversity and genome variation analysis of rice
germplasm
Rice has more than 100,000 accession germplasm resources
including Asian cultivated rice, African cultivated rice and
22 wild rice species (The International Rice Genebank:
http://irri.org/our-work/research/genetic-diversity), which
are indispensable genetic resources for further improve-
ment of cultivated rice varieties. Recently, rice molecular
biology research has been involved in exploring genetic di-
versity and exploiting genome variation in rice germplasm.
Genetic variation can be assayed using a variety of molecu-
lar markers, including structure variation (SV) markers
such as insertions/deletions (InDels) and copy number
variations (CNV). Resequencing can be used to identify
genetic variation within a species and to assess the popu-
lation structure and the pattern of linkage disequilibrium.
Resequencing a key germplasm subset representing vari-
ous geographically distributed populations can provide
scientists with in-depth knowledge of the range of genome
variation and genetic diversity within the population based
on sequence databases.
Numerous diverse rice germplasm resources that have

been used to detect genome variation are shown in
Table 1 (Subbaiyan et al. 2012; Jeong et al. 2013). Kojima
et al. (2005) detected 554 alleles from 332 accessions of
cultivated rice based on a genome-wide RFLP survey,
and developed a rice diversity research set of 69 acces-
sions of germplasm, including two reference varieties,
Nipponbare and Kasalath. McNally et al. (2009) identi-
fied 160,000 genome-wide SNPs in 20 diverse rice var-
ieties via microarray-based resequencing and discovered
their introgression patterns and pedigree relationships.
Zhao et al. (2011) genotyped 44,100 SNP variants across
413 accessions of O. sativa collected from 82 countries
for genetic structure analysis and cross-population-based
mapping. Huang et al. (2010) resequenced 517 indica sub-
species of Chinese rice landraces with approximately one-
fold-coverage Illumina sequencing. A total of 3,625,200
non-redundant SNPs were identified, resulting in an aver-
age of 9.32 SNPs per kb, with 167,514 SNPs located in the
coding regions of 25,409 annotated genes. A high-density
SNP map and haplotype map (HapMap) of the rice gen-
ome was constructed using a novel data-imputation
method. Subsequently, Huang et al. (2012b) extended this
methodology to a larger, and more diverse, sample of 950
worldwide rice varieties, including indica and japonica
subspecies. In the non-repeated regions, 4,109,366 non-
singleton SNPs and 191,476 non-redundant InDels ran-
ging from 1 bp to 376 bp in size were identified in genic
regions. The authors investigated the worldwide rice
population structure and constructed a neighbor-joining
tree involving five divergent groups: indica, aus, temper-
ate japonica, tropical japonica and intermediate, which
were consistent with the five-distinct-groups detected by
Garries et al. (2005). The authors resequenced an elite
Japanese rice cultivar, Koshihikari, corresponding to
80.1% identity with the Nipponbare sequence, and lead-
ing to the identification of 67,051 SNPs. They also geno-
typed 151 representative Japanese cultivars using 1,917
SNPs to clarify the dynamics of the pedigree haplotypes
(Yamamoto et al. 2010). Based on genome-wide SNP ana-
lysis, these studies revealed relationships among landraces
and modern varieties of rice, and genetic diversity that can
be used for breeding programs in rice.
Genome diversity has increasingly been identified in wild

rice. Wing et al. (2005) constructed bacterial artificial
chromosome and/or sequence tag connector (BAC/STC)-
based physical maps of 11 wild and one cultivated rice
species for alignment with the rice reference genome.
Resequencing the wild species of the genus Oryza has enor-
mous potential in identifying approaches to increase agri-
cultural productivity of the cultivated rice species O. sativa
and O. glaberrima. Xu et al. (2012) directly resequenced 50
accessions of cultivated and wild rice, and identified
genome-wide variation patterns including the identification
of more than 6.5 million high-quality SNPs, 808,000 InDels,
94,700 SVs (>100 bp) and 1,676 CNVs. In another study, 66
accessions from three taxa (22 each from O. sativa indica,
O. sativa japonica and O. rufipogon) were chosen for whole
genome sequencing (He et al. 2011). Huang et al. (2012a)
also generated genome sequences from 446 geographically
diverse accessions of the wild rice species O. rufipogon, the
immediate ancestral progenitor of cultivated rice, and from
1,083 cultivated indica and japonica varieties, to construct
a comprehensive map of rice genome variation. A total of
7,970,359 non-singleton SNPs were identified from the
1,529 available rice genome sequences, the ancestral alleles
of 9.3% of which are identical to those of O. rufipogon.
These genotype data and population genetics analyses pro-
vide insights into the relationships between rice diversity
and domestication processes.
The NGS strategy also provides new opportunities for

RNA sequence diversity analysis or epigenomic studies
in rice. The functional complexity of the rice transcrip-
tome and its contribution to phenotype remains to be
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Table 1 Application and information of resequencing in rice

Materials Depth of
sequencing

SNPs Research purposes References

132 RILs of a super hybrid rice >4× 171,847 Improving parental genome sequences Gao et al. 2013

Liang-You-Pei-Jiu >36× for parents Dissecting yield-associated loci

1083 cultivated rice* >1 ~ 50× 7,970,359 Domestication analysis of cultivated rice Huang et al. 2012a

446 wild rice Identifying agronomic QTL

40 cultivated rice > 15× 6,500,000 Identifying agronomic QTL Xu et al. 2012

10 wild rice Domestication analysis

950 cultivated rice >1× 4,109,366 GWAS study of flowering time and grain
yield traits

Huang et al. 2012b

517 rice landraces >1× 3,625,200 GWAS study of 14 agronomic traits Huang et al. 2010

150 RILs of Nipponbare/93-11 >20× 1,226,791 Large-scale gene discovery Huang et al. 2009

Identifying 49 QTLs for 14 agronomic traits Wang et al. 2011

128 CSSLs of Nipponbare/93-11 >0.13× 7,680,000 QTL mapping for culm length Xu et al. 2010

High-throughput genotyping

5 cultivated rice >58× 1,154,063 Genetic diverse analysis Jeong et al. 2013

A restorer line 7302R >13× 307,627 Genetic variation identification Li et al. 2012

4 other cultivated rice

241 RILs of a hybrid rice Shanyou 63 > 0.06× 270,820 QTL detection for grains Yu et al. 2011

40 RILs of Nortai/Hitomebore (bulked) >6× 161,563 Rapid QTL mapping Takagi et al. 2013

50 F2 lines of Dunghan Shali/
Hitomebore

781 F2 lines of R1128/Nipponbare >16× 74,329 Genetic analysis for super hybrid rice Duan et al. 2013

Koshihikari 15.7× 67,051 Evaluate the dynamics of the genome
composition

Yamamoto et al.
2010

*1083 accessions of cultivated rice cultivars in the ref. of Huang et al. (2012a) include the 950 accessions of cultivated rice in the ref. of Huang et al. (2012b),
which include the 517 accessions of rice landraces in the ref. of Huang et al. (2010).
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fully elucidated. Gene expression microarrays have been
used traditionally for high-throughput measurements of
gene expression levels (Jiao et al. 2005; Furutani et al.
2006; Li et al. 2006b; Satoh et al. 2007). Recently, with
the development of the next-generation high-throughput
DNA sequencing technologies, RNA-seq has shown ad-
vantages over microarrays by allowing accurate, efficient
and reproducible estimations of transcript abundance
of either known or unknown transcripts with a larger
dynamic range using less RNA sample (Wilhelm et al.
2008; Fullwood et al. 2009). Furthermore, RNA-seq can
detect genes expressed at low levels and refine the struc-
ture of transcripts (Wang et al. 2009; Wilhelm and
Landry 2009). Using high-throughput paired-end RNA-
seq, a substantial number of novel transcripts and exons
have been detected, and a far greater amount of alterna-
tive splicing has been identified that was shown previ-
ously (Zhang et al. 2010). The updated research focused
on comparative analyses of the epigenome and compre-
hensive analyses of the eQTL (He et al. 2010; Lu et al.
2010). Additionally, NGS strategy has been applied recently
in massive program of sequencing of small RNA popula-
tions from different rice tissues. Jeong et al. (2011) also
identified 76 new rice miRNAs that play critical roles in a
variety of developmental processes. Wang et al. (2012) se-
quenced an accession of O. rufipogon to c. 55× coverage,
identified miRNAs using small RNAs generated from three
different tissues of O. rufipogon and identified miRNA tar-
gets in O. rufipogon by degradome sequencing. The authors
found that rice miRNA genes have experienced a complex
evolutionary process during domestication. This plethora of
genetic diversity RNA data is also an important genetic
resource for rice breeding.

Evolution analysis based on resequencing
Cultivated rice is thought to have been domesticated
from wild rice thousands of years ago. However, the
evolutionary origins and domestication processes of
cultivated rice have long been debated. A wide range of
genetic and archeological studies have been carried out
to investigate rice phylogenetics and the demographic
history of rice domestication. Some population genet-
ics studies have indicated that indica and japonica
originated independently, and some demographic ana-
lyses have suggested that domesticated rice has a single
origin (Kovach et al. 2007; Molina et al. 2011). With
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the development of NGS technologies, analysis of the
global diversity of rice germplasm and sequencing-
based genome variation analysis can provide in-depth
insights into rice domestication.
Recently, Huang et al. (2012a) systematically constructed

a comprehensive map of rice genome variation with
6,119,311 SNPs using the 1,529 rice genome sequences.
Phylogenetic tree analysis indicated that O. sativa and
japonica are descended from O. rufipogon-I and Or-III (the
O. rufipogon species were classified into three types, i.e.,
Or-1, Or-II and Or-III), respectively. A total of 213,188
indica-japonica-differentiated SNPs were found, and only
9,595 SNPs were fixed between O. rufipogon and O. sativa.
The differentiation was enhanced during domestication,
with the divergence index Fst expanding from 0.18 in O.
rufipogon to 0.55 in O. sativa. The level of genetic differen-
tiation between indica and Or-I was modest (Fst = 0.17),
and that is 0.36 in japonica. The authors found that only
about 33% of the genetic diversity of Or-III persisted in ja-
ponica. Moreover, indica contains approximately 75% of
the genetic diversity observed in Or-I. In a search for signa-
tures of selection, the authors identified 32 selective sweeps
in the rice genome and 55 domestication loci by searching
for signatures of domestication using an integrated genom-
ics approach. The authors detected a series of gene intro-
gression events. The most well-characterized domestication
genes, such as Bh4, PROG1, sh4, qSW5 and OsCl, were
among the 55 loci detected in the total population (Zhu
et al. 2011; Shomura et al. 2008; Saitoh et al. 2004). How-
ever, an additional three genes, qSH1, Waxy and Rc, were
detected only in the japonica panel. SNP-based phylogen-
etic tree analysis showed that the middle region of the Pearl
River district in Guangxi Province, southern China, is prob-
ably the origin of development of cultivated rice. It can be
speculated that japonica was possibly first domesticated
and then crossed with local wild rice in Southeast Asia to
generate indica.
Also Xu et al. (2012), used a haplotype map of 6.5

million SNPs from 50 rice genome sequences to identify
thousands of genes with significantly lower diversity in
cultivated rice than that in wild rice; these genes repre-
sent candidate regions selected during domestication. A
total of 73 candidate genes that underwent sweeps in
both japonica and indica were identified by comparing
polymorphism levels in cultivated and wild species.
These polymorphism levels were calculated by the re-
duction of diversity values (ROD = 1 − πcul/πwild), based
on the ratio of the diversity in cultivated rice to the di-
versity in wild rice. Two well-known rice domestication
genes, prog1 (Jin et al. 2008; Tan et al. 2008) and sh4
(Li et al. 2006a), were successfully identified in the puta-
tive artificial selection gene set. Gene families related to
morphology, growth and transcriptional regulation were
enriched among many of the candidate genes. All of
these functionally uncharacterized or unknown candi-
date genes related to artificial selection provide useful
guidance for rapidly identifying genes of agronomic signifi-
cance in rice. Population structure and phylogenetic ana-
lyses not only support the hypothesis that japonica and
indica were domesticated independently, but they also sug-
gest that japonica was domesticated from the Chinese
strain of Oryza rufipogon. The data generated in this study
provide a valuable resource for rice improvement.

QTL/gene identification by sequencing-based genotyping
in rice
The majority of important agronomic traits in rice are
controlled by multiple genes (namely, QTLs). QTL map-
ping is important for understanding the mechanisms
underlying complex agronomic traits via genotyping and
phenotyping of a classical population (RIL, DH or BCF2)
derived from a cross between two cultivars. Conventional
QTL mapping is a powerful method for QTL identification
and cloning; however, compared with resequencing-based
linkage maps or bin maps, it is generally regarded as a
time-consuming and laborious process because lower reso-
lution linkage maps are constructed with low-throughput
molecular markers (usually simple sequence repeats, SSR)
(Huang et al. 2012b). Therefore, sequencing-based genotyp-
ing provides a more powerful tool for large-scale QTL/gene
discovery.
Gao et al. (2013) resequenced and genotyped 132 core

RILs derived from a cross between the two rice varieties
PA64s and 93–11 to construct a SNP-based ultra-high-
density linkage map using the NGS method. A total of
43 yield-associated QTLs, including 20 newly identified
QTLs, were mapped using a 3,524-SNPs linkage map. Ten
QTLs were further mapped using a larger RIL population
and two QTLs, qSN8 and qSPB1, were delimited to
regions each covering one candidate yield-related gene,
DTH8 and LAX1 (Table 2). This precise QTL mapping
from core to larger RIL populations using a sequencing-
based approach will greatly facilitate QTL cloning and
molecular breeding.
Wang et al. (2011) resequenced 150 RILs of 93-11/

Nipponbare to construct SNP-based ultra-high-density
linkage maps and identified 49 QTLs for 14 agronomic
traits. Xu et al. (2010) resequenced 128 CSSLs of 93-11/
Nipponbare to construct a bin map. Nine QTLs for
culm length were fine-mapped and one QTL was located
in a 791,655-bp region containing the rice “green revolu-
tion” gene sd1. Xie et al. (2010) sequenced 238 RILs of
Zhenshan 97/Minghui 63 and constructed a 209,240-
SNPs genetic map. Using the SNP bin map, Yu et al.
(2011) identified 22 QTLs for four yield traits. The map-
ping interval of GS3 for grain length was narrowed down
from a 6.0-Mb region in the RFLP/SSR genetic map to a
197-kb region. This indicated that the high-density SNP



Table 2 Key allelic loci fine-mapped using the NGS method in rice

Trait QTL Chromosome Mapping materials Reference Allelic loci

Tiller angle qTA-9 9 Nipponbare/93-11 Wang et al. 2011 TAC1 (Yu et al. 2007)

Plant height qPH-1 1 Nipponbare/93-11 Wang et al. 2011 SD1 (Sasaki et al. 2002)

Flag leaf width qFLW-4 4 Nipponbare/93-11 Wang et al. 2011 NAL1 (Qi et al. 2008)

Grain length qGL-3 3 Nipponbare/93-11; PA64s/93-11;
Zhenshan 97/Minghui 63

Wang et al. 2011; Gao et al.
2013; Yu et al. 2011

GS3 (Fan et al. 2006)

Grain width qGW-5 5 Nipponbare/93-11 Wang et al. 2011 qSW5 (Shomura et al.
2008)

Heading date qHD8 8 PA64s/93-11 Gao et al. 2013 DTH8 (Wei et al. 2010)

Plant height qPH5 5 PA64s/93-11 Gao et al. 2013 EUI1 (Luo et al. 2006)

Plant height qPH12 12 PA64s/93-11 Gao et al. 2013 NRL1 (Hu et al. 2010)

Effective tiller number qETN4 4 PA64s/93-11 Gao et al. 2013 HTD1 (Zou et al. 2005)

Secondary panicle
branch No.

qSPB1 1 PA64s/93-11 Gao et al. 2013 LAX1 (Komatsu et al. 2001)

Seed set qSS12 12 PA64s/93-11 Gao et al. 2013 P/TMS12-1 (Zhou et al.
2012)

Hull color Domesticaton
sweeps

4 Natural population Huang et al. 2012a Bh4 (Zhu et al. 2011)

Tiller angle Domesticaton
sweeps

7 Natural population Huang et al. 2012a;
Xu et al. 2012

PROG1 (Jin et al. 2008;
Tan et al. 2008)

Seed shattering Domesticaton
sweeps

4 Natural population Huang et al. 2012a Sh4 (Li et al. 2006a)

Grain width Domesticaton
sweeps

5 Natural population Huang et al. 2012a qSW5 (Shomura et al.
2008)

Leaf sheath color &
apiculus color

Domesticaton
sweeps

6 Natural population Huang et al. 2012a OsC1 (Saitoh et al.
2004)

Seed shattering Domesticaton
sweeps

1 Natural japonica population Huang et al. 2012a qSH1 (Konishi et al.
2006)

Grain quality Domesticaton
sweeps

6 Natural japonica population Huang et al. 2012a Waxy (Wang et al.
1995)

Pericarp color Domesticaton
sweeps

7 Natural japonica population Huang et al. 2012a Rc (Sweeney et al.
2006)

Grain width gw5, kgw5 5 Zhenshan 97/Minghui 63 Yu et al. 2011 GW5/qSW5 (Shomura
et al. 2008)

Pigmentation qPIG6 6 Zhenshan 97/Minghui 63 Yu et al. 2011 OsC1 (Saitoh et al.
2004)

Gelatinization
temperature

qGT6 6 517 rice landraces Huang et al. 2010 ALK (Gao et al. 2003)

Plant height qPH1-3 1 R1128/Nipponbare Duan et al. 2013 Sd1 (Sasaki et al. 2002)

Heading date qPBN6-2 6 R1128/Nipponbare Duan et al. 2013 Hd1 (Yano et al. 2000)

Early heading date qPBN10-1 10 R1128/Nipponbare Duan et al. 2013 Ehd1 (Doi et al. 2004)

Grain number 1 qGN1-1 1 R1128/Nipponbare Duan et al. 2013 Gn1 (Ashikari et al.
2005)

Ideal plant
architecture

qPL8-1 8 R1128/Nipponbare Duan et al. 2013 IPA1 (Jiao et al. 2010)
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bin map could improve the power of QTL detection.
Compared with the PCR-based marker method, the
sequencing-based method was faster and more precise
for the determination of the recombination breakpoint,
achieving a resolution of 40 kb recombinant block on
average (Wang et al. 2011).
Sequencing-based GWAS has recently been applied as
a high-throughput QTL mapping method to dissect
agronomic traits in a variety of rice germplasm re-
sources. Han and Huang et al. (2013) published a brief
scheme from a typical sequence-based GWAS involving
the identification of high-quality haplotypes to associate



Guo et al. Rice 2014, 7:4 Page 6 of 10
http://www.thericejournal.com/content/7/1/4
molecular markers with phenotypes accurately. QTL
mapping by GWAS in rice germplasm can be used as a
complementary strategy for classical biparental cross-
mapping of dissecting complex traits, but it seems to be
effective only for genes with large effects.
Using the GWAS method, Huang et al. (2010) identified

49 QTLs for 14 agronomic traits via resequencing 517 rice
landraces. Six loci were confirmed to be close to previously
identified genes. They later used 950 worldwide rice var-
ieties and identified 32 new loci associated with flowering
time and 10 with grain-related traits, indicating that
the use of a larger sample size increases the power to
detect trait-associated QTLs using GWAS (Huang et al.
2012b). Zhao et al. (2011) identified dozens of common
variants influencing 34 complex traits via resequencing
413 diverse accessions of O. sativa. These GWAS re-
search platforms in rice directly link molecular variation
in genes and metabolic pathways with the germplasm
resources, accelerating varietal development and crop
improvement.
Large-scale genome sequencing can also be used for

rapid mapping of rare and spontaneous mutations using
resequencing technologies. The SHOREmap pipeline de-
veloped for this purpose has been incorporated into sev-
eral modules and performs various functions, from
mapping to de novo marker identification through deep
sequencing, as well as annotation of candidate mutations
in Arabidopsis (Schneeberger and Weigel 2011). MutMap
(mutation map), or Next-Generation Mapping (NGM), is a
method for rapid isolation of mutant genes based on whole
genome resequencing of small pooled DNA from an F2 or
F3 segregating population (Austin et al. 2011; Abe et al.
2012a). Yang (2013) used bulked segregant analysis (BSA),
combined with NGS (referred to as NGS-BSA) to identified
six QTLs for cold tolerance at the seedling stage via rese-
quencing DNA pools from 385 extremely tolerant F3 indi-
viduals of Nipponbare/LPBG. QTL-seq is another method
for rapid identification of QTLs by resequencing RILs or F2
genetic populations composed of 20–50 individuals per
population showing extreme opposites in trait values for a
given phenotype in segregating progeny. Takagi et al.
(2013) identified two QTLs for seedling vigor using 531 F2
individuals of Dunghan Shali/Hitomebore. Two loci were
confirmed to be close to the previously reported QTLs
qPHS3-2S and qPHS-1 (Yano et al. 2012; Abe et al. 2012b).
QTL-seq can generally be applied in population genomics
studies to rapidly identify genomic regions that have under-
gone artificial or natural selective sweeps.

Improvement of biparental genome sequences of a
hybrid rice
Hybrid rice breeding has great potential for improving
rice yield. Our research group has resequenced 132 RILs
derived from a cross between PA64s and 93–11, the
parents of the pioneer super hybrid rice LYP9, together
with their parents using Solexa sequencing technologies.
We generated 244 GB of raw data, with approximately
four-fold depth per RIL, 48-fold depth for PA64s and
36-fold depth for 93–11. A linkage map was constructed
with an average interval of approximately 0.392 cM be-
tween recombinant blocks (Gao et al. 2013).
Based on the constructed map of the graphic genotypes,

we distinguished the reads from 132 LYP9 RILs to fill in
the remaining gaps in the PA64s genome sequence. A total
of 29.3 Mb new sequences were used to fill in the gaps. In
the non-repeated regions, 36,033 loci with homozygous ge-
notypes were identified as single base errors. Using the
Sanger strategy, the genome sequence of PA64s now com-
prises 382 Mb.
Similarly, we also updated the published 93–11 genome

sequences, which comprise 423 Mb, including 369.8 Mb
quality sequences located on chromosomes, filling in ap-
proximately 3.8 Mb of new sequences to cover 1,493 gaps.
Using the linkage map obtained from the RILs, we rea-
ligned the PDRs (parental derived reads) to the 93–11 gen-
ome sequence and corrected 62,650 SNP errors (Figure 1).
The high-quality genome sequences of PA64s and 93–11
were improved by RIL linkage mapping, providing the basis
for detailed genetic analysis. Therefore, resequencing a
segregating population can be used to improve multiple ref-
erence genome sequences. The improved sequence infor-
mation, which was uploaded to the rice genome website
(http://rice.genomics.org.cn/rice/), may be beneficial for im-
proving super hybrid rice (Gao et al. 2013).

Future perspectives
The birth of NGS technologies is a landmark event in
functional genomics, creating a new era of rice rese-
quencing in a highly accelerated manner based on the
high-quality rice reference genomes. It provides the large
amount of genome sequencing data available in rice, in-
cluding more than 1,500 one-fold rice genome sequences
from natural populations and thousands of low-fold gen-
ome sequences from various rice lines of crossed-based
genetic populations of DH, RILs F2 or ILs (introgression
lines) (Tables 1 and 2), even the increasing reference gen-
ome sequences such as Nipponbare, 9311, and Kasalath
(Kanamori et al. 2013). The genome sequences of PA64s
and GLA4 are further improving. Furthermore, increasing
numbers of rice germplasm resources and genetic materials
are being resequenced; for example, the International Rice
Research Institute (IRRI), Chinese Academy of Agricultural
Sciences (CAAS) and Beijing Genomics Institute (BGI) –
Shenzhen, have collaboratively been resequencing 3,000
accessions of global rice germplasm from the IRRI gene-
bank since 2010. The increasing amount of sequenced
genome information has been applied broadly in analyses
of genetic diversity, genome variation, RNA sequences

http://rice.genomics.org.cn/rice/


Figure 1 An example of falsely anchored scaffolds revealed by linkage map and syntenic analysis. The region of falsely anchored
scaffolds disturbed the normal linkage relationships in the graphic map of the genotypes and was not supported by normal syntenic analysis
with the reference.
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and domestication processes, even in cultivars improve-
ment. The resequencing-based method shows a series of
obvious advantages; it is approximately 20-times faster in
terms of data collection and 35-times more precise in de-
tecting recombination breakpoints, compared to genetic
mapping with PCR-based markers (Huang et al. 2009).
However, one of the major drawbacks that limit the use of
NGS technology, especially in de novo sequencing, is the
short sequencing read lengths. Owing to significant inter-
and intra-species chromosomal structural changes in-
duced in rice by InDels, duplications, inversions, translo-
cations and transpositions (Wu et al. 2009; Hurwitz et al.
2010; Lin et al. 2012), assembly and mapping of NGS
short-read sequences is complex and relatively difficult.
High-quality sequencing approaches have been suggested
in conjunction with high-throughput sequencing for
comparative genomics analyses and genome evolution
studies (Alkan et al. 2011). A technology which com-
bines the massive throughput of the NGS with the long
read lengths achieved by electrophoresis-based Sanger
sequencing, would enable rapid, high-quality produc-
tion of de novo genome sequences (Hert et al. 2008).
Future directions in the field of DNA sequencing are
the ability to use individual molecules without any library
preparation or amplification, the identification of specific
nucleotide modifications, and generation of longer se-
quence reads (Kircher and Kelso 2010). Therefore, it is
necessary to develop multiple sequencing approaches
and platforms, including the third-generation long read
technologies, high-quality long-insert clones and new
assembly algorithms.
Despite the advantages of efficiency in resequencing,

the availability of a series of reasonable and adequate
genetic resources is a prerequisite for the implementa-
tion of this technology. More than 100,000 accessions of
diverse rice germplasm in global genebanks are available,
but in fact, genetic diversity in modern rice cultivars
has become increasingly narrow. In order to enhance
the identification and use of the genetic diversity
in rice, Frankel (1984) proposed the development of
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“core collections” for effective use of these germplasm.
Subsequently, a series of “core collections” has been de-
veloped based on agro-morphological or biochemical
traits and ecogeographical information as well as mo-
lecular markers and genome information (Kojima et al.
2005; Huang et al. 2009). Kojima et al. (2005) developed
a rice diversity research set of germplasm (RDRS) from
the NIAS (National Institute of Agrobiological Sciences,
Japan) Genebank for in-depth genetic diversity analysis
via development of genetic materials, such as substitute
backcrossed lines or chromosome introgression lines.
Yamamoto et al. (2010) clarified the dynamics of the
pedigree haplotypes using 151 representative Japanese
cultivars and 1,917 polymorphism SNPs between Nip-
ponbare and Koshihikari. This information can be used
to predict particular haplotypes associated with desirable
phenotypes during the Japanese rice breeding process,
and help in using such haplotype blocks for rice improve-
ment. Sampling and population sizes directly affect genome
variation analysis; therefore, Huang et al. (2012a) used more
germplasm resources and a larger natural population to
detect genome variation. Using this approach, at least
7,970,359 SNPs were identified from 1,529 genome se-
quences that were successfully used in the search for
signatures of selection. We sequenced LYP9 RILs, and
established an ideal platform for molecular breeding.
Accumulated data on the various traits and on genome
polymorphism in the collection will be beneficial for the
construction of a genotype-phenotype database and will
enhance the efficient use of rice genetic resources for
the development of new cultivars.
Broadening genetic diversity in rice is one of the most

important breeding measures required for overcoming
the bottleneck in increasing yield. Discovering valuable
genes and alleles from the global rice germplasm de-
mands a long-term collective effort to increasing genetic
diversity. The currently available genome information in-
dicates that much more natural allelic variations are
present in wild rice than in domesticated rice. Breeders
have mainly utilized intersubspecies heterosis and elite
genes of wild rice germplasm to broaden genetic diversity,
such as hybrid rice sterility lines Zhenshan97A with the
wild rice CMS-DA (cytoplasmic male sterility) gene and
the indica sterile line PA64s on a japonica background.
The functional allelic loci obtained from sequencing-based
GWAS mapping have greatly accelerated diverse germ-
plasm mining and molecular breeding. More than 700
cloned rice genes and the sequencing-based GWAS loci
will help fulfill the ultimate goal of determining the func-
tion of every gene in the rice genome in future through a
highly coordinated effort facilitated by the International
Rice Functional Genomics Project (IRFGP) (Zhang et al.
2008; Ikeda et al. 2013). The identification of the functional
genes in cultivated rice and the high degree of natural allelic
variation in wild rice will be beneficial for developing elite
super rice varieties such as new idiotype super rice with
indica-japonica heterosis (Liu et al. 2012; Guo and Ye
2014) or green super rice (Zhang 2007) through genome
selection or molecular breeding via gene design.

Conclusion
In this review, we summarize the current status of whole
genome resequencing of diverse germplasm resources in
rice using NGS technology. More than 1,500 accessions
of rice germplasm resources from natural populations
and thousands of various rice lines of biparental popula-
tions have been resequenced, and effectively utilized in evo-
lutionary analysis, rice genomics and functional genomics
studies. We discuss the limitations, application and future
prospects of rice resequencing.
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