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Abstract

species in leaf under 40°C heat conditions.

reciprocal cross.

Background: Heat is one of the major factors that considerably limit rice production. Nagina 22 (N22) is a
deep-rooted, drought and heat tolerant aus rice cultivar. This study reports the characterization of a previously
isolated dark green leaf mutant N22-H-dgl219 (NH219) which showed reduced accumulation of reactive oxygen

The mutant was characterized for several traits in field under ambient (38°C) and heat stress (44°C) conditions by
raising temperature artificially from flowering stage till maturity by covering plants with polythene sheets during
dry season 2011. Yield traits were mapped in 70 F, segregants of IR64 x NH219 and 36 F, segregants of its

Results: Leaf proteome analysis using two-dimensional gel electrophoresis from N22 and NH219 showed distinct
constitutive expression of ribulose bisphosphate carboxylase large chain precursor (EC 4.1.1.39) in NH219 under
ambient growth condition. Heat stress resulted in reduction of all 11 traits except plant height in both N22 and
NH219. The extent of reduction was more in N22 than in NH219. Both pollen viability and spikelet fertility were not
reduced significantly in N22 and NH219 but reduced by 20% in IR64.

Conclusion: NH219 is more tolerant to heat stress than wild type N22 as its percent yield reduction is lesser than
N22. Single marker analysis showed significant association of RM1089 with number of tillers and yield per plant,
RM423 with leaf senescence, RM584 with leaf width and RM229 with yield per plant.
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Background

High temperature is often one of the most limiting fac-
tors affecting plant growth and crop yield in tropical
and sub tropical areas. There is a risk that increased
global temperature will change the optimum sites and
conditions for crop production and thus affect agricul-
ture. Temperature is estimated to increase by 2-4°C by
the end of 21 century as per scenario of Intergovern-
mental Panel on Climate Change (IPCC) and it may be
due to emission of green house gases (Smith and Olesen
2010) and by human activities and natural factors or by
both Eitzinger et al. (2010). Rice is the most important
staple food crop grown in the areas where temperature
is optimum for rice production and heat stress may
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limit sustainable rice production in these areas Tian
et al. (2009). The effect of high temperature on rice
yield depends on several complex factors individually
and in combination including genotype, the growth
stage at which it encounters heat stress, duration of
stress, time of the day/night, the prevalent conditions of
water vapour deficit, wind velocity, radiation, ambient
recovery conditions (Morita et al. 2005, Prasad et al.
2006, Jagadish et al. 2010a,b, Ye et al. 2011, and Zhou
et al. 2012). However, flowering stage is the most heat
sensitive stage as heat stress during this stage results in
loss of yield due to low pollen fertility and low seed set.
QTL have been mapped for heat tolerance in different
rice populations at booting (Zhao et al. 2006) and flow-
ering (Ye et al. 2011, Jagadish et al. 2010a, Zhang et al.
2008, 2009, and Xiao et al. 2011). QTLs for heat toler-
ance are reported on all chromosomes except 6 and 7
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(Cao et al. 2003, Chen et al. 2008, Zhang et al. 2008,
2009, Jagadish et al. 2010a, Xiao et al. 2011).

Mutants are valuable resources for genetic variations in
crop improvement. Historically the use of mutagenesis in
breeding has involved forward genetic screens and the se-
lection of individual mutants with improved traits and
their incorporation into breeding programmes. The novel
genetic variations obtained from either spontaneous or in-
duced mutants using physical or chemical mutagens can
be exploited in crop genetics and their application in func-
tional genomics and molecular breeding (Krishnan et al.
2009, Jiang and Ramachandran 2010). Analysis of genetic
mutations is one of the most effective techniques for inves-
tigating gene function. Genes controlling developmental
and metabolic processes have been discovered in plants by
mutational analysis (Miroslaw and Iwona 2003). Mapping
a novel mutation to a well defined chromosomal region
is an important step in genetic analysis. The International
Rice Functional Genomics Consortium announced the
public availability of more than 200,000 rice mutant lines,
which represent mutations in about half of the known
functional genes mapped for rice to date (Krishnan et al.
2009). Though Nagina 22 (N22) is deep rooted, drought
and heat tolerant aus rice variety (Jagadish et al. 2010b),
there are very few genetic studies using N22 mutants.
Characterization of Ethyl Methane Sulphonate (EMS) in-
duced mutants of N22 for water stress and heat tolerance
was reported by Panigrahy et al. (2011). A dark green leaf
mutant, N22-H-dgl219 (NH219) was isolated under pro-
longed drought. During dark-induced senescence, NH219
maintained higher chlorophyll and carotenoid content and
photochemical efficiency of photosystem II in comparison
with N22. Detached leaves of NH219 accumulated less re-
active oxygen species (H,O, and superoxide radicals) and
maintained higher chlorophyll content than N22 after
40°C heat treatment for 3 days. The present study reports
further characterization of NH219 for heat tolerance
under field conditions in comparison with its wild type
N22. The mutant NH219 was crossed with another moder-
ately heat tolerant variety IR64 (Khush and Virk 2005,
Jagadish et al. 2010b) to map the mutation causing the
drought and heat tolerant phenotype in the mutant and
heat tolerance associate traits. The results of initial map-
ping of mutations in NH219 using F, segregants with ex-
treme phenotype for eight traits derived from both IR64 x
NH219 and its reciprocal cross are also reported.

Results

Characterization of N22, NH279 and IR64 for heat
tolerance

Morphological and physiological traits (plant height, tiller
number, number of panicles, panicle length, yield/plant,
pollen viability, spikelet fertility, chlorophyll a/b ratio (chl
a/b), relative water content (RWC), electron transport rate
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(ETR) and Fv/Fm were studied in N22 and NH219 in field
in 2 sets, one in ambient conditions and the other in heat
stress conditions (Table 1). All the observed trait values in
ambient conditions were higher in mutant compared to
N22 and IR64 except marginal difference in Chl a/b ratio
and ETR. Heat stress resulted in reduction of all observed
traits for all three genotypes except increase in plant
height. However, the extent of reduction was higher in
N22 and IR64 than in NH219. Under heat stress, the in-
crease in plant height was more in NH219 (12.82%) than
in N22 (4.59%). Fv/Fm that indicates photochemical effi-
ciency of PSII reduced in N22 and IR64 by 5.8% and
12.02% respectively but in NH219, no reduction was no-
ticed. Significant reduction in yield per plant was observed
under heat stress conditions in case of both N22 (33%)
and NH219 (23%).

The differences between IR64 and NH219 were not
significant under normal ambient temperature for all ob-
served traits but the results were significant under heat
stress conditions for pollen viability, spikelet fertility and
Fv/Fm ratio. Pollen viability and spikelet fertility were
high in both IR64 and NH219 under normal ambient
temperature. However, in heat stress treatment, pollen
viability and spikelet fertility in IR64 were significantly
lower than in NH219 and N22.

Two-dimensional gel electrophoresis

Proteomic analysis was performed using 2-D gel elec-
trophoresis of leaf samples of N22 and NH219 to deter-
mine if they were constitutively different under ambient
normal growth condition. In all, 54 spots showed differ-
ential expression above 2 fold when the 2 genotypes
were compared. The analysis revealed the presence of a
conspicuously large spot (spot 3) in NH219 which was
absent in N22. The PI value of this protein was 6.22 and
nominal mass (Mr) was 53418. It matched to the score
of 572 RBL_ORYSA (p < 0.05) and with sequence coverage
of 55% with Ribulose bisphosphate carboxylase large chain
precursor (EC 4.1.1.39) (P12089) (Figure 1). The other
spots detected in the gel were not considered as their
score was less than 39 and not significant (p > 0.05).

Single marker analysis in F, mapping population
The 70 F, progeny of IR64 x NH219 cross showed nor-
mal distribution in all measured agronomic traits except
for number of tillers and leaf thickness which were
skewed to the lower side of their mean values (Table 2).
Similarly, in the 36 F, population of NH219 x IR64 cross
the distribution of number of tillers and yield per plant
was skewed to left side of the mean and more progeny
showed lower number of tillers and low yield per plant.
The other traits were normally distributed.

Nine markers showing polymorphism between IR64
and NH219 were initially used for genotyping all the F,
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Table 1 Performance of N22, NH219 and IR64 under ambient and heat stress conditions
Treatment Ambient Condition (38°C) Heat stress condition (44°C) %
Trait Name Genotype Mean SD Min Max Mean SD Min Max R?:‘::;ii?n
value
Plant height (cm) N22 82.80 7.10 72.00 97.00 86.60 378 80.00 91.00 —4.59
NH219 83.85 7.51 71.00 100.00 94.60 477 84.00 100.00 —12.82**
No. of tillers N22 13.05 341 7.00 20.00 9.80 2.94 6.00 15.00 24.90%*
NH219 15.55 431 10.00 26.00 1230 442 7.00 22.00 20.90
No. of panicles N22 12,65 344 7.00 19.00 7.30 1.57 6.00 11.00 42.29**
NH219 15.15 4.16 10.00 26.00 1040 3.34 7.00 18.00 31.35%*
Panicle length (cm) N22 17.10 326 12.00 24.00 13.85 3.02 10.00 18.00 19.01**
NH219 18.75 2.00 15.00 22.00 16.80 225 13.00 20.00 10.40%
Yield/plant (g) N22 1.14 0.04 1.08 1.20 0.76 0.07 0.65 0.85 33.24%*
NH219 145 0.02 141 148 1.1 0.07 1.03 1.20 23.35%*
Pollen viability (%) N22 78.95 4.72 76.08 84.40 746 6.65 68.70 81.80 551
NH219 91.27 2.70 88.17 93.13 88.94 3.27 86.48 92.65 2.55
Spikelet fertility (%) IR64 91.22 020 91.00 9137 7243 1.81 84.09 87.50 20.60%
N22 95.08 2.50 92.31 98.53 90.08 5.13 81.00 93.22 5.26
NH219 96.49 201 93.55 9833 95.95 3.13 91.21 100.00 0.55
IR64 9757 1.28 95.65 99.04 73.20 2.54 69.23 75.53 24.98%*
Chla/b N22 450 0.86 3.68 526 291 1.10 1.66 4.02 3536
NH219 4.02 0.79 3.18 492 3.1 0.62 2.57 3.82 22.60
IR64 3.83 0.66 322 4.50 298 2.12 267 7.25 2211
RWC N22 92.90 1.84 87.88 94.62 90.77 768 75.39 99.54 229
NH219 9243 3.60 86.88 98.78 9141 541 83.20 98.44 1.10
IR64 91.19 583 80.95 98.73 90.3 4.04 87.03 99.51 0.98
ETR N22 2843 6.29 21.70 38.80 21.85 1022 6.70 35.50 23.13*
NH219 2535 2.24 23.50 29.00 214 2.31 18.90 25.30 15.58
IR64 2853 1.18 26.80 29.80 23.85 4.67 15.60 27.00 16.39*
Fv/Fm N22 0.75 0.02 073 0.78 0.71 0.06 061 0.76 5.87
NH219 0.78 0.01 0.77 0.81 0.79 0.01 0.78 0.82 -0.89
IR64 0.78 0.01 0.77 0.79 0.69 0.01 0.77 0.79 12.02%%

Chl Chlorophyll, RWC Relative water content, ETR Electron transport rate.
**Significant at 0.01 level of probability; *Significant at 0.05 level of probability.

plants to know if they segregated in a 1:1 ratio. Two
markers RM584 (chromosome 6) and RM324 (chromo-
some 2) showed 31% and 26% NH219 alleles respectively
and a third marker RM229 (chromosome 11) showed
93% NH219 alleles. Based on SMA (one-way Anova) of
both F, populations, four markers out of 9 showed sig-
nificant differences among IR64 genotype, NH219 geno-
type and heterozygotes (Table 3). The interval plots of
these markers with their significant traits at 95% confi-
dence interval level are shown in Figure 2.

Considering the populations separately, the SMA results
of F, population of cross IR64 x NH219 showed that the
mean leaf width of each genotypic class at locus RM584
was as heterozygote type (1.58) > NH219 genotype (1.25) >

IR64 genotype (1.23). The alleles contributing for leaf width
may come from NH2I9. At marker RM1089, the mean
number of tillers was significant between IR64 genotype
(6.05) and NH219 (3.83) and the mean yield (per plant)
was significant between NH219 (3.35) and heterozygote
(2.04). These results indicate that the alleles for more num-
ber of tillers and high yield come from heat susceptible
parent IR64 and heat tolerant NH219 parent respectively at
SSR locus RM1089. At marker RM423, the leaf senescence
causing allele was contributed from N22 mutant parent as
the mean value of this trait for NH219 genotype (24.2) was
considerably more than that of heterozygote (14.8).

In case of the reciprocal cross NH219 x IR64, only one
marker locus RM229 showed significant difference in
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Figure 1 2D gel electrophoresis picture of leaf proteins of N22 and NH219. The conspicuous protein spot (spot 3) found between 50 kDa
and 60 kDa and pl of 6.2 was identified as the Rubisco large chain precursor (EC 4.1.1.39).

NH219

yield per plant between genotypes with IR64 allele and
those with NH219 allele. The mean of yield at this marker
locus for each genotype class was IR64 type (10.4) > het-
erozygote type (5.25) > NH219 type (2.19). The yield in-
creasing allele is thus derived from the susceptible parent
IR64.

Discussion

N22 is well known as drought and heat tolerant cultivar
and used in breeding programmes for drought tolerance.
(Jagadish et al. 2010b). In the present study, N22 and its
EMS induced dark green leaf mutant, NH219 were further
characterized for morphological and physiological param-
eters under heat stress treatment in field and compared
with N22. Changes in plant architecture play a significant
role in adaptation to heat stress. Plants with panicles sur-
rounded by many leaves can tolerate high temperature
due to transpiration cooling effect of leaves which reduces
the water evaporation from anthers and thereby increases
anther dehiscence (Shah et al. 2011). Increase in plant
height increases transpiration cooling effect and helps in

Table 2 Performance of F, population of IR64 x NH219 and

avoidance from high temperature in mungbean and wheat
(Kumar et al. 2011, Hasanuzzaman et al. 2013). A similar
increase in plant height was observed in N22 and its mu-
tant NH219 under heat stress and the increase was more
in the mutant.

Heat stress resulted in reduction of number of tillers,
number of panicles and panicle length in both N22 and
NH219. However, the extent of reduction was lesser in
NH219 showing its ability to withstand heat stress better.
Pollen viability is an important trait as it is influenced by
high temperature directly before it is shed and post anther
dehiscence less than one hour exposure to temperature
above optimum was sufficient to induce pollen sterility
(Matsui et al. 1997, Jagadish et al. 2007). Zhou et al. (2012)
reported large differences in floret fertility among rice
genotypes subjected to heat stress. High temperature
induced abnormal anther dehiscence leading to reduction
in number of germinated pollen on stigma and resulting in
spikelet sterility. N22 accessions showed significantly
higher spikelet fertility under high temperature when com-
pared with that of Moroberekan, a heat sensitive variety

its reciprocal cross

F, of cross IR64 x NH219 NH219 x IR64
Trait/Source N Mean SD Min  Max  Skew  Kurtosis N Mean SD Min  Max  Skew  Kurtosis
Plant height (cm) 70 7501 17.00 42 123 039 -0.04 36 7837 145 59 17 0.80 0.14
No. of tillers 70 4.64 2.87 1 16 167 353 36 5.09 247 2 12 1.36 1.94
Leaf width (cm) 70 1.26 0.30 0.50 1.80 -0.25 -0.23 36 1.22 0.21 0.80 1.70 0.13 —0.31
SPAD value 70 3382 991 185 582 0.87 0.17 36 3781 149 185 596 -0 -1.88
Leaf temperature (°C) 70 24.27 261 222 303 073 0.00 36 2451 283 202 303 057 -0.53
6 day senescence 70 18.63 11.8 1.50 413 0.21 -1.10 36 20.85 8.53 2.1 374 -0.60 -0.03
Leaf thickness (mm) 70 046 022 019 126 1.36 262 36 044 019 019 092 0.94 0.06
Yield/plant (g) 70 2.52 197 0.00 8.00 0.88 0.34 36 2.59 2.34 03 104 157 2.54
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Table 3 Significant results of single marker analysis of F, population
Trait Marker Chromosome Position (bp) F P SD N
Leaf width RM 584 6 3416595-3416745 347 0.04 0.28 70
6 day senescence RM 423 2 3836613-3836866 5.06 0.01 10.96 70
Number of tillers RM 1089 5 5356155- 5356374 361 0.03 277 70
Yield per plant RM 1089 5 5356155- 5356374 397 0.02 1.79 70
RM 229 1 21019810-21019921 11.96 0 1.83 36

Map position of the marker was based on Nipponbare genomic sequence (RAP-DB, http://rapdb.dna.affrc.go.jp/).

(Rang et al. 2011). Pollen viability and spikelet fertility were
almost similar in N22, NH219 and IR64 under ambient
growth condition, however after heat stress it were main-
tained in the mutant compared to 5% reduction in N22
and 21% reduction in IR64. N22 is a drought and heat tol-
erant variety and the present experiments were carried out
in summer season at DRR, Hyderabad, India where the
peak summer temperature during April and May ranges
from 35 to 42°C. The plants experienced this gradual in-
crease in temperature from the vegetative stage itself and
may have got acclimatized to high temperature. Hence,
even though the plants were exposed to 5-8°C higher
temperature inside the polythene tunnel, there was only
5% reduction in pollen viability and spikelet fertility. Since
gametogenesis takes place much before emergence of the
panicle, it is possible that this critical stage of pollen

formation was not affected in N22 and NH2I19 which
flower a few days earlier than IR64. Further, the increase of
5-8°C inside the tunnel is in case of maximum temperature
(around 12 pm-2 pm). However, in genotypes where an-
thesis, pollen dehiscence and germination occur in the
early hours (before noon) it is possible they escape the ad-
verse impact of heat stress. This could be one reason for
low reduction in pollen viability and seed set. However,
there was significant reduction in yield per plant in both
N22 as well in NH219 in heat stress conditions. Moham-
med and Tarpley (2009) reported that rice plants grown
under high night temperature showed 90% decrease in yield
compared to plants grown under ambient temperature.
High temperature reduced chlorophyll content and the
reduction was more in thermo-sensitive genotypes (Zhou
et al. 2012). The current study revealed decrease in both
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total chlorophyll content and chlorophyll a/b ratio in case
of N22, but an increase in chlorophyll content in NH219
(Panigrahy et al. 2011) and lesser decrease in chlorophyll
a/b ratio. Relative water content in leaf was reduced slightly
in both genotypes which might be due to increased tran-
spiration in heat stress. Wahid and Close (2007) reported
that leaf water potential changed in high temperature con-
ditions even though the soil water supply and relative hu-
midity were normal. The PSII photochemical efficiency
(Fv/Fm) was shown to reduce in rice seedlings in high
temperature (Han et al., 2009). No significant reduction in
Fv/Fm was observed in NH219 due to heat stress indicat-
ing no damage to photosystem II complex or primary
photochemical efficiency which was affected maximum in
the susceptible line IR64 and least in the mutant NH219.

Ribulose bisphosphate carboxylase oxygenase (Rubisco)
is a heat-labile protein in many plant species, limiting
photosynthetic capacity during heat stress (Kurek et al.
2007). However, its increased abundance after heat treat-
ment has been reported in heat tolerant rice species like O.
meridionalis from Australia and its activity is associated
with thermotolerance (Scafaro et al. 2010; Scafaro et al. 2012).
Also transgenic rice over-expressing Rubisco activasel
showed greater photosynthetic activity (Wu et al. 2007).
Regeneration of RuBP was altered in high temperature
due to disruption of electron transport and inactivation of
the oxygen evolving enzymes of PSII (Parry et al. 2013).
The stable chlorophyll thylakoid complexes under water
stress condition and reduced accumulation of reactive
oxygen species under heat treatment has been reported in
NH219 (Panigrahy et al. 2011). The presence of a large
amount of long chain precursor of Rubisco in NH219 in
normal ambient conditions and its absence in wild type
N22 indicates that the precursor in N22 is either unstable
or quickly used up to form large sub unit in N22 but is
more stable or overproduced in NH219 constitutively.
Thus overall heat tolerance of NH219 can be partly ex-
plained by the presence of a large pool of this precursor
which may compensate for the heat stress induced deacti-
vation of large sub unit of Rubisco. Further experiments
on presence of the precursor in heat stress conditions can
confirm this hypothesis. The role of large subunit precur-
sor in heat stress tolerance has not been reported. Study-
ing the turnover in N22 and NH2I9 in heat stress
conditions would help determine its role.

Ye et al. 2011 reported two major QTLs for heat toler-
ance on chromosome 1 and 4, explaining variations in
spikelet fertility in BC;F; and F, populations derived from
IR64 x N22 cross. Four single nucleotide polymorphisms
were linked to heat tolerance based selective genotyping
and single marker analysis. SMA analysis for mapping of
yield related traits showed distinct association of RM229
(chromosome 11) with yield per plant at 0.05% probability
level. This marker was previously reported to be associated
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with yield in BC,F, population of Caiapo an upland O.
sativa japonica variety from Brazil and O. rufipogon
from Malaysia (Moncada et al. 2001). RM229 was also
linked to three QTLs for root growth traits in rice.
(Yue et al. 2006). RM229 is located on physical map at
18407911-18407976 bp and is positioned within the
locus LOC_Os11g32030 (18407869-18410840) and is
flanked by LOC_Os11g23020 on the left and LOC_O
s11g32040 on the right. LOC_Os11g32030 encodes for
the Sex determination protein Tassel seed-2 which is puta-
tively expressed in rice. This gene belongs to short-chain
dehydrogenase/reductase (SDR) family. It is a short chain
alcohol dehyderogenase and is required for stage specific
floral organ abortion (downloaded from GRAMENE,
IRGSP and RAP-DB). Tassel branch of mutants in maize
have been shown to affect yield under drought stress envi-
ronments (Mulungani 2010).

Another locus RM423 was associated with leaf senes-
cence, an important character for heat tolerance to retain
chlorophyll content and thereby photosynthetic efficiency.
However, wild type allele of this locus from O. rufipogon
showed negative phenotypic effect on days to flowering and
1000-seed weight (Cho et al. 2003). RM584 on chromo-
some 6 was significantly associated with leaf width in
present study. It was earlier reported to be associated with
grain yield, spikelet fertility, days to flowering and 1000-
seed weight (Moncada et al. 2001). It is interesting to note
that RM584 is less than 100 base pairs away from RM225
which was reported to be associated with pollen fertility
measured using the same staining procedure as we used
(Xiao et al. 2011). RM1089 on chromosome 5 was signifi-
cantly associated with number of tillers and yield/plant.
Cho et al. 2012 reported RM1089 flanked a QTL for culm
length and days to flowering. Further mapping in this mu-
tant can provide more insights regarding the causal muta-
tion for the mutant phenotype.

Conclusion

We conclude that the EMS induced mutant NH219 can
tolerate heat stress more when compared with its wild
type N22. NH219 showed lesser reduction in yield/plant
and related traits compared to N22. Ribulose bispho-
sphate carboxylase large chain precursor (EC 4.1.1.39)
was present in NH219 leaves and absent in N22 under
ambient growth conditions. Both pollen viability and
spikelet fertility were significantly reduced in IR64 but
not in N22 and NH219. Marker RM1089 was associated
with number of tillers and yield per plant, RM423 with
leaf senescence, RM584 with leaf width and RM229 with
yield per plant, based on single marker analysis of F,
mapping population from the cross between IR64 and
NH219. Dense genotyping of mapping population can
help to map traits related to heat tolerance.
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Methods

Characterization of N22, IR64 and NH219 for heat
tolerance in field conditions

Nagina22 is a well known drought and heat tolerant aus
variety where as IR64 is improved cultivated variety but
reported to be heat susceptible, Jagadish et al. (2010b).
IR64 was used for developing a mapping population.
NH219 is an EMS mutant of N22 (N) which was isolated
in Hyderabad (H) as a dark green leaf mutant (NH_- dgl —
219 = NH219 for short) under prolonged drought in Ms
generation (Panigrahy et al. 2011). Heat stress experiments
were conducted using 3 genotypes (N22, NH219 and
IR64) in DRR field (latitude and longitude: 17° 22'31" N
and 78° 28'27"E) under two environments viz., normal
summer ambient temperature and heat stress conditions
created artificially in the field during - summer season,
2011. For this study, plants were grown in 6 replications
of 2 lines of each genotype and 22 plants per line with spa-
cing of 20 cm x 20 cm. When the plants attained booting
stage (22nd April), plants in 3 replications were covered
with polythene sheet of 1 mm thickness (8-10% radiation
decreased) to provide heat stress till maturity (30th May)
as shown in Additional file 1. The day-night temperature,
relative humidity (RH) and light intensity inside and out-
side polythene sheets were recorded during this period
using thermohygrometer and photometer (N.S. Dimple
Thermometers, Delhi, India). The ambient temperature in
normal conditions was recorded as <41.8°C, > 34.5°C, and
average 38.7°C during day and ~24.9°C night. The RH
under ambient normal conditions was < 87%, > 30%, aver-
age 60.1% and light intensity was 2.74 kW/m> The
temperature inside polythene sheet cover was <50.3°C, >
38.3°C, average 44.6°C during day and ~30.7°C night. The
details of temperature recorded during the experiment are
shown in Figure 3. The RH was 5-8% higher inside the
polythene tunnel than ambient conditions. At physio-
logical maturity, the following morphological traits were

Temperature data
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Figure 3 Maximum and minimum temperature (°C) recorded
3ot during the period of experiment (22 April to May, 2011)
in field under ambient conditions (out) and inside polythene
tunnel (in).
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studied in case of N22 and NH2I19, viz.,, plant height
(length of the tallest tiller upto tip of panicle in cm), num-
ber of tillers, number of panicles (number of panicles with
seeds exceeding 15%), length of panicle (length from neck
to last spikelet of main panicle in c¢m), and yield/plant
(mean weight of filled seeds from 22 plants). At flowering
stage, the following physiological characters were studied
for all three genotypes (N22, NH219 and IR64).

Pollen viability: Pollen were harvested from 3 plants at
random just before dehiscence and were stained on
microscopic slide (200-300 grains counted per micro-
scopic view and 3 views per slide) using 1% aqueous
iodine-potassium iodide (I,KI) solution and analysed at
10x magnification using NIKON Alpha Shot-2 YS2H-
E1112439 microscope. Complete dark staining of pollen
with (I,KI) solution was considered as viable.

Spikelet fertility: Both partially and fully filled spikelets
were considered as filled spikelets. Spikelet fertility was
calculated as the ratio of filled spikelets to total number
of spikelets.

Chlorophyll a/b ratio: Pigments were extracted from
mature leaf tissue by grinding to a fine powder, homoge-
nized in 80% (v/v) acetone, incubated at —20°C for 1 hour
and centrifuged. The absorbance of the supernatant was
measured at 645 and 663 nm using UV-VIS spectropho-
tometer Lambda 35 (Perkin Elmer, MA, USA). Chloro-
phyll a and Chlorophyll b concentration was calculated as:

Chl a=12.25 A663_2~79 A645 ﬂg/ml

Chl b=21.5 A645—5.1 A663 /,tg/ml

Relative water content (RWC): Fresh leaf weight, tur-
gid leaf weight (after soaking leaf in water for 16 hours)
and dry leaf weight (after drying the leaf at 70°C for
72 hours) were measured. RWC was calculated using
the formula;

RWC (%) = (Fresh weight-Dry weight)
x 100/(Turgid weight-Dry weight)

Electron transport rate (ETR), and the ratio of variable
fluorescence to maximum fluorescence (Fv/Fm) for leaf
samples were measured using PAM-210 fluorescence
meter (Walz, Effeltrich, Germany).

Two dimensional gel electrophoresis

Two dimensional (2D) gel electrophoresis was carried out
in three replicates with leaf samples of N22 and NH2I9,
grown in field under normal ambient temperature condi-
tion during wet season. The leaf samples were outsourced
for carrying out 2D gel electrophoresis, identification and
analysis of differentially expressed spots by MS/MS to
Vimta labs, Hyderabad, India.
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Phenotyping of F, population

250 plants from F, populations of IR64 x NH219 and the
reciprocal cross were grown singly in pots in net house
under normal temperature and sunlight during wet season
for phenotyping. Based on phenotype data, 70 and 36 F,
plants were selected from IR64 x NH219 and the reciprocal
cross respectively by including the extreme phenotype
plants for each of the 8 traits. Observations were taken for
eight traits viz., plant height, number of tillers, leaf width,
leaf thickness (thickness of 3" leaf measured using Beta
gauge Model 06-664-16. S/N: 101401673), SPAD value
(SPAD 502 plus, Konika Minolta) on standing crop, six day
senescence of leaf (by measuring SPAD value of leaf on 6th
day after detaching it from plant and keeping it in long test
tube with 30 ml water in dark at normal temperature) and
temperature of leaf (using infrared thermometer, Fischer
Scientific) at the maximum vegetative stage and yield per
plant at maturity stage.

Genotyping of F, population and analysis

Genomic DNA of N22, IR64, NH219 and 70 F, plants of
IR64 x NH219 cross and 36 F, plants of NH219 x IR64
cross was isolated from leaves using Cetyl Trimethyl Am-
monium Bromide extraction buffer. Genotyping was done
for 70 samples of first cross using six SSR markers and 36
samples of second cross using three SSR markers. The
markers were selected based on polymorphism between
IR64 and N22 and also linked to QTLs of different agro-
nomic traits. Single marker analysis (SMA) was done and
the mean of each marker genotype was compared by one
way Anova using MINITAB V14.0 (Minitab Inc., State
College, PA, USA) to find out relation between each
marker and each trait.

Additional file

Additional file 1: Field view of plants covered with polythene sheet
to provide heat stress and uncovered ones serve as control set.
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