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Abstract

Background: A lesion-mimic mutant in rice (Oryza sativa L.), spotted leaf 5 (spl5), displays a
disease-resistance-enhanced phenotype, indicating that SPL5 negatively regulates cell death and resistance
responses. To understand the molecular mechanisms of SPL5 mutation-induced cell death and resistance responses,
a proteomics-based approach was used to identify differentially accumulated proteins between the spl5 mutant
and wild type (WT).

Results: Proteomic data from two-dimensional gel electrophoresis showed that 14 candidate proteins were
significantly up- or down-regulated in the spl5 mutant compared with WT. These proteins are involved in diverse
biological processes including pre-mRNA splicing, amino acid metabolism, photosynthesis, glycolysis, reactive
oxygen species (ROS) metabolism, and defense responses. Two candidate proteins with a significant up-regulation
in spl5 – APX7, a key ROS metabolism enzyme and Chia2a, a pathogenesis-related protein – were further analyzed
by qPCR and enzyme activity assays. Consistent with the proteomic results, both transcript levels and enzyme
activities of APX7 and Chia2a were significantly induced during the course of lesion formation in spl5 leaves.

Conclusions: Many functional proteins involving various metabolisms were likely to be responsible for the lesion
formation of spl5 mutant. Generally, in spl5, the up-regulated proteins involve in defense response or PCD, and the
down-regulated ones involve in amino acid metabolism and photosynthesis. These results may help to gain new
insight into the molecular mechanism underlying spl5-induced cell death and disease resistance in plants.
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Background
In plants, one of the most common and effective defense
responses to pathogen attack is the hypersensitive re-
sponse (HR), which prevents further spread of pathogens
to adjacent cells (Morel and Dangl 1997). Lesion mimic
mutants (lmms), displaying HR-like lesions in the ab-
sence of pathogen attacks, have been identified from
maize (Johal et al. 1995), Arabidopsis (Dietrich et al.
1994), barley (Wolter et al. 1993), and rice (Takahashi
et al. 1999). Most lmms constitutively activate immune
responses, including callose deposition, induction of
Pathogenesis-related (PR) genes, production of reactive
oxygen species (ROS), and accumulation of phytoalexins
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(Staskawicz et al. 1995). Therefore, lmms are very useful
genetic tools to dissect molecular mechanisms of pro-
grammed cell death (PCD) and defense responses in
plants.
In rice, more than 43 lmms have been isolated, most

of which display enhanced resistance to rice blast and/or
bacterial blight pathogens (Takahashi et al. 1999; Yin
et al. 2000; Mizobuchi et al. 2002; Jung et al. 2005; Mori
et al. 2007; Wu et al. 2008; Qiao et al. 2010). So far, at
least 11 lmms have been functionally characterized, in-
cluding spl7 (Yamanouchi et al. 2002), spl11 (Zeng et al.
2004), Spl18 (Mori et al. 2007), spl28 (Qiao et al. 2010),
sl (Fujiwara et al. 2010), ttm1 (Takahashi et al. 2007),
rlin1 (Sun et al. 2011), NPR1 (Chern et al. 2005), lsd1
(Wang et al. 2005), acdr1 (Kim et al. 2009), and edr1
(Shen et al. 2011). Interestingly, these LMM genes en-
code different proteins with distinct functions. For
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Figure 1 A silver-stained 2-DE gel of the proteins extracted
from leaf blades of both WT and spl5 mutant. For IEF, 100 μg of
total proteins was loaded onto pH 3-10 IPG strips (13 cm, nonlinear),
and then transferred to 12.5% SDS-polyacrylamide gel for the
second-dimensional electrophoresis. The protein gel was stained
with silver nitrate solution. Quantitative analysis of digitized images
was carried out using the Image Master software (Amersham, USA).
Arrows indicate spots with more than 2-fold change in spl5 mutant
compared to WT.
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example, SPL7 is a heat stress transcription factor
(Yamanouchi et al. 2002); SPL11 is a E3 ubiquitin ligase
(Zeng et al. 2004); SPL18, a acyltransferase (Mori et al.
2007); SPL28, a clathrin-associated adaptor protein com-
plex 1 medium subunit 1 (Qiao et al. 2010). These find-
ings indicate that numerous proteins with distinct
functions in multiple signaling pathways and/or pro-
cesses are involved to prevent inappropriate activation of
PCD. Thus, lmms have helped to gain an in-depth
insight into regulatory mechanisms of PCD and defense
responses in plants.
Rice spotted leaf 5 (spl5) is a lmm with spontaneous

HR-like lesions on its leaves, and broadly enhanced re-
sistance to rice blast and bacterial blight pathogens (Yin
et al. 2000; Mizobuchi et al. 2002). The spl5 gene was
previously mapped into a 36.4-cM region on rice
chromosome 7 (Iwata et al. 1978). Recently, we finely
mapped and isolated spl5 by a map-based cloning, and
surprisingly, it was found that the protein encoding by
SPL5 gene (GeneBank accessioin: KC128660) shares a
certain degree of homology with a human splicing factor
3b subunit 3 (SF3b3), one subunit of the SF3 protein
complex involved in binding of U2 snRNP to the branch
site in the splicing reaction of pre-mature RNAs (Chen
et al. 2009, Chen et al. 2012). Therefore, it is likely that
the SPL5 regulated cell death and resistance responses
post-transcriptionally.
Two-dimensional gel electrophoresis (2-DE) is a most

commonly used proteomics technology for monitoring glo-
bal changes in protein levels in plants (Agrawal and Rakwal
2006). The comparative proteomics has been used to iden-
tify differentially expressed proteins between wild type
(WT) rice and lmms (Takahashi et al. 2003; Tsunezuka
et al. 2005; Jung et al. 2006; Kang et al. 2007; Kim et al.
2008). However, different defense-related proteins and
metabolic enzymes were found to be differently accumu-
lated during lesion formation in a lmm-specific manner or
in different lmms. For example, two PR proteins (OsPR5
and OsPR10) and three ROS-scavenging enzyames [cata-
lase (CAT), ascorbate peroxidae (APX), and superoxide
dismutase (SOD)] were differentially expressed in the blm
mutant (Jung et al. 2006); Peroxidase, thaumatin-like pro-
tein, probenazole-induced protein (PBZ1) were up-
regulated in the spl1 mutant (Kim et al. 2008).
Here, we compared the protein profiles of spl5 mutant

and WT by 2-DE and found that 14 proteins were differ-
entially accumulated between WT and spl5. Among these
14 proteins, 7 were up-regulated and 7 were down-regu-
lated, respectively, in spl5. The proteins up-regulated in
spl5 are those involved in defense response or PCD, and
the proteins down-regulated in spl5 involved in amino
acid metabolism and photosynthesis. Interestingly, a clear
correlation between levels of protein accumulation and
levels of gene expression (or induction) was observed for
the 7 up-regulated proteins in spl5. However, a corre-
sponding correlation was not observed for the 7 down-
regulated proteins in spl5. Together, our results may help
to understand molecular mechanisms of lesion formation
in spl5.

Results and discussion
2-DE analysis between WT and spl5 mutant
To compare protein expression profiles between WT and
the spl5 mutant, total proteins extracted from fully devel-
oped leaves with lesions from spl5 and the corresponding
leaves from WT were analyzed by 2-DE. After quantitative
analysis, 14 spots with > 2-fold changes (p < 0.05) between
spl5 and WT were identified (Figures 1 and 2). Compared
to those in WT, seven proteins (spots 1, 5, 6, 8, 11, 13, and
14) were up-regulated and seven (spots 2, 3, 4, 7, 9, 10,
and 12) were down-regulated, respectively, in spl5 mutant.
Relative intensities and fold-changes of the spots differen-
tially expressed between spl5 and WT were shown in
Table 1.

Characterization of differentially expressed proteins in
spl5 mutant
The 14 differentially expressed spots represent 14 anno-
tated proteins, which could be categorized into seven
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Figure 2 Magnified regions of 2-DE gels. Numbers at the left of images indicate protein spots showed by arrows in Figure 1 with significantly
differential accumulation levels between spl5 and WT mutant in 2-DE gel analysis.
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functional classes including pre-mRNA splicing, amino
acid metabolism, photosynthesis, glycolysis, ROS metab-
olism, defense-related, and other processes (Table 1).
Interestingly, these proteins are mostly associated with
cell death and defense responses in different organisms.

Pre-mRNA splicing protein
A protein component of RNA spliceosome, thioredoxin-
like protein 4B (TXNL4B, Dim2, or DLP), was down-
regulated in the spl5 mutant. In eukaryotes, the pre-
mRNA splicing that removes intronic sequences is
undertaken by the spliceosome, a macromolecular com-
plex containing four snRNPs (U1, U2, U4/U6, and U5)
and numerous auxiliary proteins (Kramer 1996). DLP
functions in the cell nucleus and interacts with an U5
protein subunit of the spliceosome, and blocking DLP
protein activity leads to insufficient pre-mRNA splicing
(Sun et al. 2004).

Amino-acid metabolism enzymes
In differently expressed proteins, four enzymes including
alanine aminotransferase (ALT; down), aspartate amino-
transferase (AST; up), cysteine synthase (CSase; down),
and S-adenosylmethionine synthetase (SAMS; up)
(Table 1) are involved in amino acid transport and me-
tabolism. SAMS catalyzes the biosynthesis of S-adeno-
sylmethionine, which is a co-substrate for methylation
reactions and serves as substrate for the synthesis of
ethylene and the polyamines (Burstenbinder et al. 2010).
Ethylene is an important hormone involved in plant
responses to various stress situations (e.g. pathogen
attack); and exposure of plants to ethylene can induce
disease resistance (Geraats 2003). Polyamines can con-
tribute to hydrogen peroxide (H2O2) formation in re-
sponse to pathogen infections, which led to increased
necrosis and resistance to disease (Marina et al. 2008;
Moschou et al. 2009; Gonzalez et al. 2011). The up-
regulation of SAMS was also found in the mutant cdr2
(Tsunezuka et al. 2005).
Photosynthesis proteins
Rubisco is a critical enzyme involved in photosynthetic
CO2 assimilation and photorespiratory carbon oxidation.
Rubisco is inactivated by ROS, and degraded during
senescence and oxidative stresses (Ranjan et al. 2001;
Sedigheh et al. 2011). The reduction of the Rubisco large
subunit (Rubisco-L) in spl5 mutant might be caused by
H2O2 over-accumulation (Chen et al. 2012). Moreover,
in the present study we found that Rubisco activases
(Rubisco-A), which catalyze Rubisco activation, were
also down-regulated in spl5 mutant (Table 1). The re-
duction of Rubisco and/or Rubisco-A was also found in
the lmms of spl1 (Kim et al. 2008), spl6 (Kang et al.
2007), crd2 (Tsunezuka et al. 2005), and blm (Jung et al.
2006), suggesting that the reduction in Rubisco and
Rubisco-A accumulation is a shared phenomenon
among lmms.



Table 1 Identification of proteins differentially expressed between WT and spl5 mutant

Function type Spot
id

Homologous protein Score Source Accession Coverage
(%)

pI MM
(kDa)

Change
fold

mRNA
level

mRNA splicing 2 Thioredoxin-like protein 4B 71 O. sativa gi|125576924 25 6.4 23.6 −3.3 -

Amino-acid
metabolism

4 Alanine aminotransferase 187 O. sativa gi|115470235 31 8 54.0 −2.3 -

6 Aspartate aminotransferase 84 O. sativa gi|125541475 15 6.5 50.6 2.0 up

12 Cysteine synthase 86 O. sativa gi|115489664 29 5.3 33.9 −3.9 -

5 S-adenosylmethionine synthetase 93 O. sativa gi|100801534 27 6.5 43.0 2.6 up

Photosynthesis 3 Rubisco large subunit 130 O. sativa gi|115468792 33 8.5 48.4 −2.7 down

9 Rubisco activase 74 O. sativa gi|1778414 28 5.4 48.1 −2.0 -

10 Rubisco activase, chloroplast precursor 174 O. sativa gi|108864712 44 5.1 36.7 −3.1 -

Glycolysis 8 Glyceraldehyde-3-phosphate
dehydrogenase

78 O. sativa gi|115459078 24 7.3 36.9 3.1 up

ROS metabolism 11 Glutathione S-transferase 14 88 O. sativa gi|46276327 33 6.5 30.8 2.1 up

13 Ascorbate peroxidase 7 264 O. sativa gi|116310282 47 6.9 38.2 8.1 up

Defense-related 14 Chitinase Chia2a 81 O. sativa gi|115483206 27 5.4 27.9 3.5 up

Others 1 Retrotransposon Ty3-gypsy subclass 68 O. sativa gi|77556153 16 4.7 29.1 3.0 down

7 Nad-dependent formate
dehydrogenase

164 O. sativa gi|4760553 40 7.2 41.5 −2.2 -

Spot ID refers to the spot identity as given in Figure 2; Accession, protein accession in GenBank (http://www.ncbi.nlm.nih.gov/); Coverage %, the percentage of
sequence coverage; pI, experimental isoelectric points; MM, experimental molecular masses; Change fold, the expression change fold of protein level in spl5
mutant compared to WT; mRNA level, the expression change of mRNA level in spl5 mutant compared to WT.
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Glycolysis protein
A key enzyme of glycolysis, glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH), was up-regulated in spl5 mutant
(Table 1), as also observed in lmms spl1 (Kim et al. 2008)
and cdr2 (Tsunezuka et al. 2005). GAPDH catalyzes the
oxidation of dihydroxyacetone phosphate to glycerol-3-
phosphate. More recently, GAPDH emerged as a multi-
functional protein in several non-metabolic processes,
namely a primary role in apoptosis. S-nitrosylated GAPDH
initiates apoptotic cell death by nuclear translocation fol-
lowing Siah1 binding (Hara et al. 2005); GAPDH accumu-
lates in mitochondria during apoptosis and induces the
pro-apoptotic mitochondrial membrane permeabilization
(Tarze et al. 2007); and it also mediates cell death by its nu-
clear translocation under oxidative stress (Nakajima et al.
2009). Additionally, it was reported that GLY1-encoded
GAPDH plays an important role in plastidal oleic acid-
mediated signaling and resistant signaling in Arabidopsis
(Kachroo et al. 2004, 2005; Chandra-Shekara et al. 2007;
Xia et al. 2009). Compared to WT, Arabidopsis mutant gly1
is much more susceptible to pathogens, while plants with
GLY-1 overexpression have enhanced resistance (Venugopal
et al. 2009). Increased level of GAPDH protein in the spl1,
spl5, and cdr2 mutants suggests that GAPDH may function
in stimulating cell death and defense responses in rice.

ROS metabolism proteins
Two major enzymes of ROS-detoxification, glutathione
S-transferase 14 (GST14) and APX7, were up-regulated
in spl5 mutant (Table 1). ROS, such as superoxide anion
(O2

–) and H2O2, are toxic byproducts of aerobic metabol-
ism (Mittler et al. 2004). Upon pathogen attack, ROS
were immediately induced to kill the infected cells and
also served as a signal to activate the defense response
(Shigeoka et al. 2002). To avoid the oxidative damage to
other cells in plants, the ROS must be scavenged by the
antioxidant enzymes SOD, CAT, APX, or GST etc. H2O2

has been reported to up-regulate expression of APX (Lee
et al. 1999; Morita et al. 1999). According to our previ-
ous results, H2O2 is over-accumulated in leaves of spl5
mutant (Chen et al. 2012). It is likely that the high level
of H2O2 in this mutant induces the HR and increases
the resistance to pathogens. Therefore, up-regulation of
APX7 and GST14 might be responsible for scavenging
excessive accumulation of ROS in spl5 mutant. However,
inductions of APX7 and GST14 were apparently insuffi-
cient to detoxify the overproduction of ROS, which
resulted in cell death in spl5 mutant.

Defense-related protein
A PR protein, Chia2a, was found to be differently expressed
between WT and spl5 mutant (Table 1). Chia2a is a class II
chitinase belonging to the PR-3 group (Muthukrishnan
et al. 2001). Chitinase can break down glycosidic bonds in
chitin, which is the main structural component of fungal
cell walls and insect exoskeletons (Sela-Buurlage et al.
1993). The expression of the chitinase gene was signifi-
cantly stimulated by fungi (Xu et al. 2008). Transgenic
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plants over-expressing chitinase gene showed enhanced re-
sistance to fungal (Brogue et al. 1991; Dunsmuir et al. 1993;
Oldach et al. 2001) and bacterial pathogens (Oldach et al.
2001). It is likely that the increased level of Chia2a is re-
sponsible, at least partially, for the enhanced resistance in
spl5 mutant.
Spot 5
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mRNA level of differentially expressed proteins in spl5
mutant
To assay the mRNA levels of 14 differentially expressed
proteins in spl5 mutant, the semi-quantitative RT-PCRs
were performed. We analyzed the expressions of these
14 genes in WT leaf blades and the three different parts
of spl5 leaf blades, based on the degree of lesion forma-
tion: no lesion (NL), leaf area without any lesions; few
lesions (FL), leaf area with 10–20% lesions; and many
lesions (ML), leaf area with 70–80% lesions (Figure 3a).
As shown in Figure 3b, in spl5 mutant, the expression of
6 genes were induced and 2 genes were suppressed, and
6 genes did not changed at mRNA level.
We compared the genes expression profile to our 2-DE

data (Table 1). Most of the 7 up-regulated proteins (except
spot 1) were transcriptionally induced in spl5 mutant. As
expected, many of them (SAMS, GAPDH, GST14, APX7
and Chia2a) are defense- or PCD-related. It is likely that
the SPL5 protein negatively regulates expression of these
genes at transcriptional level. In contrast, the genes en-
coding down-regulated proteins (except spot 3) did not
change significantly at the transcriptional level in spl5 mu-
tant, and most of these proteins involve in amino-acid me-
tabolism and photosynthesis. Based on the fact that the
SPL5 gene encodes a subunit of splicing factor (Chen
et al. 2012), it is likely that the genes encoding these
down-regulated proteins might be controlled directly or
indirectly by SPL5 through the post-transcriptional
mRNA processing.
Actin

Figure 3 Gene expressions of candidate proteins by semi-
quantitative RT-PCR. (a) Lesion-mimic phenotypes of spl5 mutants.
WT (control), the leaf blades of WT; NL, FL and ML indicate no
lesion, few lesions, and many lesions, respectively, in the leaf blades
of spl5 mutant. Arrows indicate leaf lesions in spl5 mutant. (b) Semi-
quantitative RT-PCR of 14-proteins’ genes in WT leaves and leaf parts
with different lesions of spl5 mutant. The protein ID numbers are
listed in the left of images, and the corresponding gene names are
listed in the right of images. The Actin was used as a reference gene.
Further analysis of APX7 and Chia2a in spl5 mutant
Since the APX7 and Chia2a are directly involved in me-
diating PCD or defense responses, the gene expression
of these proteins were further confirmed by qPCR. The
qPCR results were similar to that of semi-quantitative
RT-PCR (Figure 3b and Figure 4). The expression of
APX7 increased in NL, FL, and ML of spl5 leaves, while
the expression of Chia2a increased only in FL and ML
but not in NL (Figure 4). The expression levels of these
two genes were positively correlated with lesion num-
bers on the leaves of the spl5 mutant. Moreover, we fur-
ther examined enzyme activities of APX and chitinase
both in WT and spl5 mutant. As expected, APX and
chitinase activities were proportional to the number of
lesions on spl5 leaves (Figure 5).
Conclusions
According to our 2-DE data and the proteomic results of
other rice lmms (Takahashi et al. 2003; Tsunezuka et al.
2005; Jung et al. 2006; Kang et al. 2007; Kim et al. 2008),
proteins involved in ROS scavenging, defense responses or
cell death such as SOD (spl1, blm), CAT (spl6, blm), Per-
oxidase (spl1), APX (spl5, blm), GST (cdr2, spl5), were
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Figure 4 qPCR confirmation of gene expression for APX7 and Chia2a. qPCR results for APX7 and Chia2a in the leaf blades of WT (control)
and leaf parts with different degree of lesions of spl5 mutant (see Figure 3a). Single and double asterisks indicate P < 0.05 and P < 0.01 (Student’s
t-test), respectively.
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likely to be induced in lmms, whereas proteins involved in
photosynthesis and glycolysis such as Rubisco (spl1, spl5,
spl6, blm, crd2), Rubisco-A (spl5, spl6), and GAPDH (spl1,
spl5, cdr2) were often deceased in lmms; defense-related
protein like OsPR5 (spl1), OsPR10 (blm), PBZ1 (spl1,
cdr2, blm), Chia2a (spl5) were significantly activated in
lmms. This suggests that the differential accumulation of
these proteins is common features for lmms.
0

2000

4000

6000

WT -NL -LL -M

**
**

40

50

60

70

80

ct
iv

ity
 (

U
/g

)
E

nz
ym

e 
ac

tiv
i

Chitinase
Methods
Plant materials and growth conditions
An original spl5 mutant was screened from a γ-
radiation-mutagenesis population of Norin8 (Oryza
sativa L. ssp. japonica) by Iwata et al. (1978) in Japan.
Zeng et al. (2003) crossed the spl5 mutant with WT
Zhefu802 (a Chinese indica cultivar) through repeated
backcrossing, and produced the mutant Zhefu802spl5/spl5

with spl5 lesion mimic phenotype as used in this study.
The seeds of spl5 mutant and Zhefu802 were germinated
in an incubator at 28°C and then incubated in nutrient
solution (Yoshida et al. 1976) in a growth chamber at
28/24°C (day/night). The nutrient solution was main-
tained at pH 5.6 and refreshed each 5 d. The fully devel-
oped leaves of 60-days-old seedlings were collected from
each plant and immediately frozen in liquid nitrogen
and stored at −80°C.
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Figure 5 Enzyme activities of APX and Chitinase in spl5 mutant.
Leaf parts with different number of lesions of spl5 mutant (see
Figure 3a) were used to analyze enzyme activity: (a) APX and (b)
chitinase. Single and double asterisks indicate P < 0.05 and P < 0.01
(Student’s t-test), respectively.
Protein extraction
Total proteins were extracted from collected leaf samples of
10 plants and independently repeated three times. Leaf blades
were ground in liquid nitrogen, and the tissue powder
produced was immediately suspended in an extraction buffer
containing 9.5 M urea, 4% w/v 3-[(3-cholamidopropyl)
dimethylammonio]-1-propane-sulfonate (CHAPS), 65 mM
dithiothreitol (DTT), and 2% v/v immobilized pH gradient
(IPG) buffer pH 3–10. Crude homogenates were centrifuged
at 4°C (9,000 × g for 30 min). The supernatants were precipi-
tated by 10% TCA for 1 h at −20°C, followed by centrifugation



Table 2 Gene-specific primers for RT-PCR in this study
aSpot id bAccession Forward primer (5’-3’) Reverse primer (5’-3’) c Tm (°C)

1 LOC_Os12g37540 AACAAGGTAGGGATAGTTACTT CCTTGTATGTGGGTTTTTTAGAA 55

2 AK067692 AATGAAATCTTGCTTGCTGC CTAAATCTTCTTGGGACATA 60

3 AK067692 GCCTACTTCTTCACATTCAC ATTTCATTACCTTCACGAGC 55

4 AK067732 ACCCGCTTTATTCTGCTG ATCCTTTTGACACAGTATGG 60

5 AK104875 AGATGCTGTGCTTGATGCCT CAATGACGAAGCGACCAGAT 55

6 AK105059 CAAACAGGGTGAAGAGCCAG CTCGCATTTAGCCAGGGACA 62

7 AK065872 ACGCCGACAAGAATCCCAAC CAATACGACCAGCCCCAACA 60

8 AK064960 TTCATCACCACCGACTACAT AACCCTCAACAATACCAAAC 55

9 AK060847 GAAGCTGAAGAAGCAGGTGACATC CGAAGACGAGCTCACACTGGAAG 55

10 AK104332 ATGGGTGAATTCTGTGGTGAG CCCTTCTTGATGATGTCTGCC 58

11 AK102889 CTCGTTGCGGTAGTGCTGCT AATGAAATCTTGCTTGCTGC 55

12 AK099598 TGGCAGCGAAGACAAACAAC CTGGAAGAGCACCGACGAAA 62

13 AK063934 GCTTGAGATTTGATGTTGAG GTCCTCTGCGTATTTTTCTG 62

14 AK070067 CGACTTCTCCACCCTACTAT ATGATGTTGGTGATGACGCC 55
a Spot identity of protein in 2-D gel image; bmRMA accession of the corresponding protein in GenBank (http://www.ncbi.nlm.nih.gov/), except for spot 1 protein
whose gene accession was only deposited in TIGR database (http://rice.plantbiology.msu.edu/index.shtml); cAnneal temperature of primer pair used in RT-PCR.
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at 13,000× g for 30 min. The pellets were washed twice with
cold acetone and allowed to air dry, and then resuspended
with the extraction buffer and finally stored at −80°C. Protein
contents were determined by the Bradford method (Bradford
1976) using a protein assay reagent (Bio-Rad, USA).
2-DE
Extracted proteins were analyzed by 2-DE and biologic-
ally repeated trice using different samples. For 2-DE, 100
and 500 μg of total proteins were loaded onto analytical
and preparative gels, respectively. The Ettan IPGphor
Isoelectric Focusing System (Amersham, USA) and pH
3–10 IPG strips (13 cm, nonlinear; Amersham) were
used for isoelectric focusing (IEF). The IPG strips were
rehydrated for 12 h in 250 μL of rehydration buffer con-
taining the protein samples. IEF was performed in five
steps: 30 V for 12 h, 500 V for 1 h, 1000 V for 1 h, 8000
V for 8 h, and 500 V for 4 h. The gel strips were equili-
brated for 15 min in equilibration buffer [50 mM Tris–
HCl (pH 8.8), 6 M urea, 2% sodium dodecyl sulfate
(SDS), 30% glycerol, and 1% DTT]. This step was
repeated using the same buffer with 4% iodoacetamide
in place of 1% DTT. The strips were then subjected to
the second-dimensional electrophoresis after transfer
onto 12.5% SDS-polyacrylamide gels. Electrophoresis was
performed using the Hofer SE 600 system (Amersham) at
Table 3 Gene-specific primers for qPCR in this study

Gene name Forward primer (5’-3’)

APX7 ATACGCAGAGGACCAAGAAG

Chia2a CCAACATCATCAACGGCGGC
15 mA per gel until the bromophenol blue reached the
end of the gel. Both the proteins of WT and spl5 mutant
were done 2-DE for 3 gels, respectively.

Gel staining and image analysis
After 2-DE, analytical gels were stained with ammoni-
acal silver nitrate based on the procedure described by
Hochstrasser (1988), and preparative gels were stained
with Coomassie Blue G250 (Bio-Rad). Resulting 2-D gels
were scanned using an UMax Powerlook 2110XL
Scanner (Amersham). The stained protein spots were
detected using software Image Master (Amersham).
After quantitative detection, the intensities of each spot
were normalized by total valid spot intensity. The spots
displaying significant changes were considered to be dif-
ferentially expressed proteins. Expression differences per
protein spot between the spl5 mutant and WT from 3
independent experiments were estimated by t-test (p <
0.05). Protein spots were selected based on the signifi-
cant differences of spots quantities between the spl5 mu-
tant and WT.

In-gel digestion
Protein spots were excised from preparative 2-DE gels
and destained with 100 mM NH4HCO3 and 30% aceto-
nitrile (ACN). After removing the destaining buffer, the
Reverse primer (5’-3’)

CAT CTACGAGCAAGATAAATAGCAGA

AT TTGGGATACTACATCACTACAT
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gel pieces were lyophilized and rehydrated in 30 μL of
50 mM NH4HCO3 containing 50 ng of sequencing
grade, modified trypsin (Promega, USA). After digestion
overnight at 37°C, these peptides were extracted thrice
with 0.1% trifluoroacetic acid (TFA) in 60% ACN, and
extracts were pooled together and lyophilized. Peptide
mixtures were redissolved in 0.1% TFA, desalted and
concentrated using ZipTips from Millipore. Peptide
solution (0.75 mL) was mixed with 0.75 mL of matrix
[α-cyano-4-hydroxycinnamic acid (CHCA) in 30% ACN,
0.1% TFA] spotted on a target disk and allowed to
air dry.
MALDI-TOF/TOF analysis and database searching
Mass spectra were acquired on a MALDI-TOF/TOF mass
spectrometer, the Bruker-Daltonics AutoFlex TOF-TOF
LIFT (Bruker, Germany). Protein database searching was
performed with the MASCOT search engine (http://www.
matrixscience.com) using monoisotopic peaks against the
NCBI nonredundant protein database (http://www.ncbi.
nlm.nih.gov/). The species selected was Oryza sativa.
Semi-quantitative RT-PCR and qPCR
Total RNAs of leaves were isolated by TRIzol Reagent
(Invitrogen, USA). The first-strand synthesis of cDNAs
was carried out by SuperScriptW III First-Strand Synthe-
sis System (Invitrogen) according to the manufacturer’s
instruction. Semi-quantitative RT-PCR was performed
for 25 cycles of 30 s at 94°C, 30 s at 60°C, and 1 min at
72°C. qPCR was performed in StepOne™ Real-Time PCR
System (Applied Biosystems, USA) using the Fast SYBR
Green Master Mix reagent (Applied Biosystems) by the
manufacturer’s instructions, and the thermal cycle used
was as follows: 95°C for 20 s; and 40 cycles of 95°C for 3
s, and 60°C for 30 s. OsRAc1 (GenBank accession:
X16280), a rice constitutively expressed gene of Actin,
was used as a standardization control, using the primer
pair 5’-GGAACTGGTATGGTCAAGGC-3’ and 5’-AGT
CTCATGGATACCCGCAG-3’ for semi--quantitative RT
-PCR, 5’-TGGCATCTCTCAGCACATTCC-3’ and 5’-TG
CACAATGGATGGGTCAGA-3’ for qPCR. Gene-specific
primers of candidate genes for semi-quantitative PCR and
qPCR are listed in Table 2 and Table 3, respectively. Inde-
pendent biological repetitions of each experiment were
performed three times.
Assay of enzyme activities
About 0.5–1 g of leaves were homogenized for activity
assay of APX or chitinase, according to the methods pre-
viously described by Mishra et al. (1993) and Boller et al.
(1983), respectively. Each experiment was independently
repeated three times.
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