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Abstract

and drought tolerance.

Science Partnership) phenotyping network.

Background: Early vigour (biomass accumulation) is a useful but complex trait in rainfed rice (Oryza sativa L). Little
is known on trade-offs with drought tolerance. This study explored the relevance of (sugar) metabolic and
morphogenetic traits to describe the genetic diversity of rice early vigour and its phenotypic plasticity under
drought conditions. A greenhouse experiment was conducted to characterize on a panel of 43 rice genotypes
plant morphogenesis and sugar concentration in expanded (source) and expanding (sink) leaves.

Results: Across genotypes in control treatment, leaf starch concentration was negatively correlated with
organogenetic development rate (DR, defined as leaf appearance rate on main stem). Genotypes with small leaves
had high DR and tiller number but low leaf starch concentration. Under drought, vigorous genotypes showed
stronger growth reduction. Starch concentration decreased in source leaves, by contrast with soluble sugars and
with that observed in sink leaves. Accordingly, genotypes were grouped in three clusters differing in constitutive
vigour, starch storage and growth maintenance under drought showing a trade off between constitutive vigour

Conclusions: It was therefore suggested that non structural carbohydrates, particularly starch, were relevant
markers of early vigour. Their relevance as markers of growth maintenance under drought needs to be further
explored. Results are discussed regarding novel process based traits to be introduced in the GRiSP (Global Rice

Keywords: Sativa rice, Early vigour, Drought regulation, Development rate, Leaf size, Non structural carbohydrates

Background

Rice production is limited by water availability in rainfed
rice (Oryza sativa L.) ecosystems. Progress in developing
improved, drought adapted cultivars has been slow dur-
ing the last decades. Understanding plant diversity is
relevant to assess plant behaviour in relation to adapta-
tion to drought-prone environments (Alonso-Blanco
et al. 2009). Originating from flood-prone ecosystems
frequently exposed to drought, where it was domesti-
cated, rice was selected for various rainfed environments
including dryland (upland, free draining, aerobic) and
rainfed lowland ecosystems which are at least temporar-
ily flooded. This resulted in large genetic and phenotypic
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diversity, of high value today to breeding for drought
tolerance and yield potential traits (Ni et al. 2002).
During early vegetative growth crop stand is estab-
lished, tillers are formed and organs for resource cap-
ture (leaf canopy and root system) are deployed. These
processes also affect resources available during later
crop development phases (Finch-Savage et al. 2010),
for example through delays of flowering and maturity
that can extend the growth cycle into the dry season
(Wopereis et al. 1996). During the vegetative phase
rapid ground cover achieved with early vigour (Poorter
and De Jong 1999; Shipley 2006; Dingkuhn et al. 1999)
can reduce soil evaporation, accelerate root access to
soil water and nitrogen, and reduce competition with
weeds (Zhao et al. 2006). Early vigour may also accel-
erate depletion of soil water reserves, making less
water available for later crop stages (Zhang et al.
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2005). However in aerobic environments early vigour
is associated with yield stability (Okami et al. 2011).

High relative growth rate (RGR, g.g"'.°Cd™") during ex-
ponential growth before canopy closure, conveyed by the
plant’s ability to translate a given biomass gain into max-
imal new gain commonly defines early vigour (Dingkuhn
et al. 1999; Poorter and De Jong 1999; Shipley 2006).
Early vigour depends on both assimilate source (light
capture and photosynthetic rate) and the sink constituted
by structural growth (leaf appearance rate, potential size
and tiller outgrowth). A recent study conducted under
non-limiting resources (Rebolledo et al. 2012; Luquet
et al. 2012) identified organogenetic developmental rate
(DR = 1/phyllochron), together with tillering ability and
leaf size, as major genotypic determinant of rice early
vigour. The results suggested trade-offs between organ
number and size. Across a large number of genotypes,
DR was positively correlated with tillering and negatively
with leaf size and leaf starch concentration. The authors
hypothesised that the lower starch concentrations
observed in leaves of vigorous, high-DR genotypes reflect
source-limited behaviour caused by strong internal de-
mand for assimilates. Component traits of early vigour
are thus in part physiologically linked in terms of trade-
offs, but may also be linked genetically (ter Steege et al.
2005; Granier and Tardieu 2009).

The interest of metabolomics for plant phenotyping has
been less explored (Fernie and Schauer 2009), although
they might reveal genotypic variation in terms of growth
and adaptation strategies (Stitt et al. 2010) or physiological
processes (Ishimaru et al. 2007). The role of non structural
carbohydrates (NSC) as markers of genotypic growth pat-
tern was previously demonstrated: on Arabidopsis, Sulpice
et al. (2009) reported a negative correlation between seed-
ling growth and starch accumulation and on Medicago
trucatula Vandecasteele et al. (2011) reported a negative
correlation between seedling vigour and sucrose:rafinose
ratio. Metabolic component traits demonstrated also their
interest to discriminate genotypes for drought response
mechanisms (Shao et al. 2009; Verslues and Juenger
2011), which is thought to be particularly relevant for
vegetative stage drought (Cabuslay et al. 2002; Jahn et al.
2011).

Under drought, both structural growth (sink) and as-
similation (source) processes are down regulated, result-
ing in changed source-sink relations that may depend on
environment and genotype. Plant passes from a carbon
(C) source to sink limited situation as the reduction of
organ growth and development (i.e. sink activity)
appears to happen earlier than C starvation under water
deficit conditions (Muller et al. 2011). Previous data
(Luquet et al. 2008) showed in rice seedlings that
drought causes a decrease in source leaf starch concen-
tration, whereas in sink leaves and the apex, starch and
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sucrose accumulate. The latter is associated with an in-
crease in cell wall invertase activity but a decrease in
hexose concentration. Thus, under drought, apex tissues
actively import C but use it more for reserve accumula-
tion than for growth. Meanwhile other studies demon-
strated that sugars act also as a signal under water
stress, participating in the regulation of organ growth
and development (Liu et al. 2004; Rolland et al. 2006;
Stitt et al. 2007; Ramel et al. 2009). Accordingly, NSC
are intrinsically related to early vigour and its mainten-
ance under drought. This raises the question whether
plant phenomics research, in the quest for efficient mo-
lecular breeding tools for drought tolerance, defined in
this study as the maintenance of biomass accumulation
during rice early growth, should consider metabolic mar-
kers such as sugars.

For breeders, component traits directly or indirectly
contributing to yield are useful if they are easy to meas-
ure and correlated with yield, while having greater gen-
etic diversity than yield itself (Tuberosa et al. 2002).
Phenotyping for molecular breeding purposes allows
developing molecular probes for marker-based selection.
In this context, it is important that markers for compo-
nent traits of a complex trait have proven physiological
complementarities (synergies) while being under distinct
genetic control.

The overall objective of the present study was to ex-
plore morphogenetic and metabolic traits of rice related
to early vigour and its maintenance under water limited
conditions. Specific objectives were to (i) identify consti-
tutive and response traits associated with vigour and
drought tolerance, (ii) compare whether these rice geno-
types differed in traits related to the morphogenetic
process and primary C metabolites. The study was con-
ducted on vegetative plants of 43 genotypes, composed
mainly of tropical japonica upland rices. Perspectives for
phenomics and research on adaptation strategies are dis-
cussed on the basis of the results, in particular in the
context of the GRiSP (Global Rice Science Partnership)
research programme phenotyping network of the CGIAR
(Consultative Group of International Agricultural
Research).

Results

Morphogenetic and metabolic variables under well-
watered conditions

A MFA was performed among variables measured under
well watered conditions (Figure 1a). The first two axes
explained 48% of total variance observed. Both axes were
positively related to SDWc¢ and SOURSUCc (Figure 1a)
and separated variables in three groups: (i) variables
related to organ number: NBTc, NBLc, DRgioc (posi-
tively related to the first axis), (ii) one variable related to
organ size (LDIMc) and variables related to NSC: starch
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Figure 1 Factorial plans with the two principal components representing morphogenetic and metabolic (sugar) variables averaged on
two replications for 43 rice genotypes under well watered conditions (a) and in response to water limited conditions (b). Variance
explained by each dimension is shown as a percentage of total variance (indicated in axis legend). Each variable is represented by a vector connecting
the origin to the variable coordinates. Coordinates correspond to the correlation coefficients between variables and dimensions 1 and 2.
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and hexoses in source and sink leaves and sucrose in
sink organs (positively related to the second axis), (iii)
variables related to organ senescence (LSENc) and con-
stitutive leaf rolling (ROLc), which showed opposite re-
sponse to SDW on the second axis (Figure 1a).

Linear correlations among variables across genotypes
under well watered conditions were analyzed by spear-
man correlation matrix (Table 1) and confirmed obser-
vations in the MFA. SDWc was positively and
significantly (p<0.01) correlated with organ number
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Table 1 Spearman correlation matrix for average morphogenetic and metabolic variables measured at the end of the

experiment under well watered conditions

SINKSTAc SOURSUC. SINKSUCc SOURHEX: SINKHEXc LDIMc DRgioc NBLc  NBTc  LSENc ROLc  SDWc
SOURSTAc 052 023 021 017 029 035% —037% —039"* —024  -004 -008  00I
SINKSTAC 008 047 016 041%™ 042 012 02 —016 021 -005 022
SOURSUC: 022 002 0.00 -0.03 029%  032%  031* —033* -029 027
SINKSUCc 011 038%% 007 002  -006  -004 002 -025 006
SOURHEXc -003 033*  —024  —034"™ —035% 004  032* 006
SINKHEXc 005  -014  —004 001 007 -012 020
LDIMc —043** -029  -022  -008 021 014
DRgioc 078%%  067%* —006 007  039%**
NBLc 092% —016 005  057***
NBTc 019 004 064*
LSENc 028  —-008
ROLc 0.19

Considering 43 varieties, 2 replicates; significance levels are indicated with ***p <0.01, **p <0.05.

(NBTc and NBLc) and leaf appearance rate (DRgioc).
The effect of LDIMc on SDWc was positive but not
highly significant (p<0.1). Variables related to organ
number, however, were significantly (p <0.01) and nega-
tively correlated to LDIMc.

Leaf number (NBLc) and DRgioc were negatively cor-
related with SOURSTAc (p <0.01), and positively corre-
lated with SOURSUCc (p <0.05). LDIMc was positively
correlated with SOURSTAc, SINKSTAc (p<0.05) and
SOURHEXc (p <0.01) (Table 1).

Effect of water deficit on morphogenetic and metabolic
variables

Drought reduced significantly (p<0.01) SDW by 18.8%,
and LDIM by 12.4%. SOURHEX and SINKHEX were sig-
nificantly (p<0.01) increased (Table 2). LDIM, SOUR-
HEX, SINKHEX, showed increased genotypic variability
under drought (Table 2). SOURSTA was reduced by
54.36%, (p<0.01), and genotypic variance was reduced
under drought. Stressed plants showed significantly higher
LSEN and ROL than well-watered plants (Table 2).

The difference between treatments for SOURSUC and
SINKSTA was not significant (Table 2). Reduced geno-
typic variation was observed under drought for variables
related to organ number (NBT, NBL, DRonset) and
starch (SOURSTA and SINKSTA). Although treatment
effect was not significant for NBT, NBL was significantly
(p <0.05) reduced for stressed plants (Table 2).

Relations between constitutive traits and vigour
maintenance under stress

Correlations between constitutive variables (observed in
control plants, Table 3) and drought response variables
(Eq. 5) were performed. SDWc was negatively (p<0.01)
correlated with the response of biomass under drought

(SDW Apc/c), leaf appearance rate during the treatment
(DRonset Apc/c), last ligulated leaf dimensions (LDIM
Apcyc) and tillering (NBT Apc/c). Consequently, plants
producing high SDW when well watered had greater rela-
tive reductions in SDW, organ number and organ size.

LDIMc was negatively (p < 0.01) correlated with SOUR-
SUC Apc/c and SOURSTA Apc,c. Then, plants having
large leaves had a strong decrease in SOURSUC and
SOURSTA under drought. By contrast, DRonsetc was
positively (p<0.05) correlated with SOURSUC Apc,c
and SOURSTA Apc/c (Table 3).

Correlations among drought response variables

Figure 1b presents the two first principal components
(explaining 41% of total variation) of a MFA performed
on drought response variables (Apc/c). On the first axis
all morphogenetic response variables had positive coor-
dinates opposite to SOURSTA Apcc.

Spearman correlation analysis on drought response
variables (Table 4) confirmed the positive correlation be-
tween maintenance of SDW and maintenance of leaf size
and organ number (p <0.001; P <0.1 for DRonset Apc/c).
Meanwhile SOURSTA Apc/c was only significant and
negatively (p<0.05) related to NBT Apc,c and SOUR-
SUC Apcjc. There were no significant correlations be-
tween the response to drought of morphogenetic and
soluble sugar related variables.

By contrast with observations under well watered con-
ditions, drought response of organ number related vari-
ables was positively correlated with drought response of
leaf size (LDIM Apcc). Consequently, although leaf
number and size were constitutively opposed traits
(under well watered conditions), their maintenance
under drought was positively correlated.
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Table 2 Average, standard deviation (sd), minimum (min) and maximum (max) values for variables calculated under
well watered (control) and drought conditions

Variables Well watered treatment Drought Treatment Stress effect
Average Sd Min Max Average Sd Min Max Apc/c
Morphogenetic ~ Dronset 143E-02 333E-03 7.99E-03 166E-02 135E-02 3.10E-03 830E-03 200E-02 -006 G*T
LSEN 0.34 0.128 0.15 0.64 0.389 0.157 0.14 0.56 0.12 G**T**
ROL 0.18 0.59 0 3 418 2.28 0 9 0.96 G*, T
SDW 156E-05 652E-06 7.80E-06 168E-05 1.26E-05 449E-06 484E-06 243E-05 -0.19 GnsT¥*
NBT 485E-05 282E-05 2.18E-05 854E-05 4.72E-05 265E-05 155E-05 106E-04 -003 G** T
NBL 511 1.68 1.81 6.74 4485 1457 2.23 823 —0.12  GFT**
LDIM 141E-04 592E-05 7.67E-05 222E-04 1.35E-04 574E-05 791E-05 284E-04 —-004 G™*T™
Metabolic SOURHEX 1342 7.53 549 32.36 33.55 16.17 1.72 14.48 1.50 [Cla i
SOURSUC 78.77 19.76 46.05 110.27 77.69 20.93 371 109.61 -001 G T™
SOURSTA 48.10 50.32 0.36 9717 21.96 3538 5.01 12411 —054 G, T
SINKHEX 7892 44.05 272 89.97 102.85 36.92 5.84 7409 030  G* T
SINKSUC 76.30 24.28 53.7 134.04 100.31 24.60 23.83 119.73 031 G T
SINKSTA 79.95 31.30 2642 129.62 7487 31.87 36.62 12824  —006 G***T1™
Drought Kinetics Number of days 994 299 5.00 19.00 G™
from stress onset
to FTSW 0.2

Averages on 43 varieties and 2 replicates for morphogenetic and metabolic variables. Stress effect is noted Apc/c (corresponding response to drought of the
variable on the same line in the table) and expresses the relative variation from stress to control plant). P-values *** <0.001; ** <0.01; * < 0.05, < 0.1, ns, no
significant; ANOVA results are presented with respective significances for G (Genotype) or T (Treatment) effects. Genotype differences for the number of days
during the stress period was tested with a one way ANOVA on the number of days from stress onset (FTSW 1) and the end of stress (FTSWO0.2).

Genotype clustering based on constitutive and response
traits

In order to create a typology of the studied genotypes,
variables measured under well watered and calculated
response variables were analysed by MFA followed by a
clustering analysis. In the first axis of the MFA drought
effect variables (Apc/;c) and SOURSTAc had positive

coordinates while constitutive organ number related
variables and SOURSTA Apc/c had negative coordi-
nates (Figure 2). Three clusters were identified (Figure 2)
and similar numbers of genotypes were assigned to
each cluster: 14, 15 and 14 respectively in groups 1, 2
and 3 (Figure 2, Table 5 and Table 6). The highest
nodes of the hierarchical clustering were represented in

Table 3 Partial spearman correlation matrix among morphogenetic or metabolic variables measured at the end of the
experiment under well watered conditions and calculated response variables

Variables Control morphogenetic variables Control metabolic variables
SDWc NBTc LDIMc NBLc  DRonsetc SOURSUCc SOURSTAc SINKHEXc SOURHEXc
Response morphogenetic DRonset Apc,c  —038" —046 034" —-053"  —061 -0.28 0.24 0.02 0.25
variables LSEN Apcc 018 006 009 004  —-004 010 003 005 ~0.09
LDIM Apc/c -053" —018  —040"" -020 -0.16 0.03 0.15 -0.20 022
NBT Apc/c -0427" -048" —001 -042" -015 -022 0.22 -0.12 0.20
NBL Apc/c -0497 -0357 -013  -035 —0.09 -0.17 0.22 -0.07 0.08
SDW Apc/c -059"" -020 -020 -0.17 ~0.05 -0.08 0.11 -0.27 -0.08
Response metabolic SOURSUC Apcic  —0.08 024 -0517" 023 032" -0.28 -0.08 -0.02 -043"
variables SOURSTA Apcc 001 030  -032" 032" 039" 005 —048™  —015 ~0.29
SOURHEX Apcc 007 0.20 005 022 013 007 0.10 -0.18 062"
SINKSUC Apce  —001 012  -016 0.15 0.18 -0.12 -020 -026 033"
SINKSTA Apc e —0.01 005 -023 0.09 004 —-0.04 -0517" -029 -001
SINKHEX Apc e 0.09 0.03 022 0.02 0.10 -0.03 -0.11 059" -003

Average for each of the 43 varieties with 2 replicates; ***p <0.001, **p < 0.05.
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Table 4 Partial Spearman correlation matrix among morphogenetic and metabolic response variables
Variables LDIM NBT NBL SDwW LSEN ROL SOURSUC SOURSTA SOURHEX SINKSUC SINKSTA SINKHEX
ADC/C ADC/C ADC/C ADC/C ADC/C ADC/C ADC/C ADC/C ADC/C ADC/C ADC/C ADC/C
DRonset Apc/c 0.06 031" 025 0.20 -0.15 0.10 -0.18 -0.18 -0.24 -0.29 -0.15 -0.07
LDIM Apc/c 025 048" 0727 -002 015 0.27 -0.10 0.11 0.21 -0.04 0.00
NBT Apc/c 076 063 -002 019 -0.02 -039" —0.04 -0.23 034" —0.04
NBL Apc/c 076" -015 —002 0.14 -0.13 0.06 -0.13 035" -0.08
SDW Apc/c —0.25 0.14 0.14 -0.10 0.09 0.03 -0.24 0.02
LSEN Apc/c -0.15 007 -0.13 -003 001 001 0.10
ROL Apc/c -0.13 -0317 0.15 003 -0.26 0.06
SOURSUC Apc/c 036" 0.15 042 004 -0.06
SOURSTA Apc/c 0.00 021 0.24 0.12
SOURHEX Apc/c 022 -0.17 038"
SINKSUC Apcc 042" 0.25
SINKSTA Apc/c 0.06
Average calculated for each of the 43 varieties with 2 replicates ***p < 0.001, **p < 0.05.
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Table 5 Description of the 43 genotypes studied and

classification according to clusters defined in this study

Germplasm Genetic Origin Improved/  Cluster
name group Traditional
Azucena Tjap Philippines T 2
lac 165 Tjap Brazil I 2
IR64 Indica Philippines | 1
Moroberekan Tjap Guinea T 2
IAC 25 Tjap Brazil I 2
IR72967-12-2-3 Indica Philippines I 3
Ketan menah Tjap Indonesia 2
Kindang Tjap Philippines 3
patong

0OS 6 Tjap Zaire T 2
Early mutant Tjap Brazil I 3
iac 165

M202 Tempjap ~ USA I 2
N22 Aus India T 1
Tequing Indica China | 1
Bico branco Tjap Brazil T 1
Cha phu ma Tjap Thailand T 2
Cirad 394 Tjap Madagascar | 1
Cirad 488 Tjap Madagascar | 1
Apo indica Philippines | 1
CT13582-15-5-M  Tjap Colombia | 3
Cuba 65 Tjap Cuba 2
Dourado Tjap Brazil 2
agulha

Dourado Tjap Brazil T 2
precoce

Fossa hv Tjap Burkina fasso T 1
Gotak gatik Tjap Indonesia T 1
ASD 1 Indica India T 1
IR71525-19-1-1 Tjap Philippines | 3
Basmati 370 Aro India T 1
Bulu pandak Tjap Indonesia T 3
Dom sofid Aro Iran T 3
Jao haw Tjap Thailand T 3
Kendinga 5 h Tjap Malaysia T 3
Fandrapotsy 104  Indica Madagascar T 2
Maintimolotsy Tjap Madagascar T 3
1226

Khao dam Tjap Laos T 2
Padi boenar Tjap Indonesia T 3
Padi rotan Tjap Indonesia T 3
Peh pi nuo Tjap China T 2
Pratao Indica Brazil T 1
Primavera Tjap Brazil | 1
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Table 5 Description of the 43 genotypes studied and
classification according to clusters defined in this study
(Continued)

Reket maun Tiap Indonesia T 3
Vietnam?2 Tjap Vietnam T 1
Vietnam3 Tjap Vietnam T 3
Yunlu 7 Tjap China \ 2

Genetic groups defined according to Glaszmann et al. (1984) (Tjap : Tropical
Japonica, Indica, Aus, TempJap: Temperate Japonica and Aro: Aromatic
cultivars), Seed origin, general classification (Improved: | or Traditional: T).

the factorial plane and defined the center of gravity for
the genotypes in each cluster (Figure 2), Cluster 3 had
positive coordinates on the first two axes opposite to
Clusters 1 and 2.

Multiple comparisons of means between groups and
treatments at 95% confidence level (Tuckey test) are pre-
sented by letters. When there is a significant difference,
the sign represents the sense of the difference (ns:no sig-
nificant). Genotypes distant from the center of gravity
for each cluster are considered as the most representa-
tive for each cluster.

The analyses presented above were based on morpho-
genetic observations normalized for differences in photo-
thermal time because genotypes did not attain the 6-leaf
stage synchronously. In Figure 3 are presented absolute
observations for morphogenetic variables as means for
genotype clusters measured at the end of the drought
and control treatments. Addressing constitutive differ-
ences among clusters (well watered conditions) Table 6
and Figure 3 show that Clusters 1 and 2 had both greater
SDWc than Cluster 3 (P<0.05). These two vigorous
groups differed among each other (P <0.05) in leaf and
tiller number (greater in Cluster 1) and leaf size (larger in
Cluster 2). The large leaves of Cluster 2 had almost twice
the starch concentration of Cluster 1 (P <0.05, Table 6),
Cluster 3 being intermediate. Response variables within
genotype clusters (Figure 3) show that, leaf size and plant
height were significantly (P < 0.05) reduced by drought in
Clusters 1 and 2 but not in Cluster 3.

Finally, the relation within each group between NBT
Apcjc and SOURSTA Apc,c was also studied (not
shown), for Cluster 1 and 2 SOURSTA Apc,c was nega-
tively related to NBT Apcc (R*=0.28, p<0.01 and
R*=0.19, p<0.01 respectively). The relations in Cluster
3 showed a no significant positive (p =0.3, R2 =0.08) re-
lation. NBT was only reduced in Cluster 1 (Figure 1,
Table 6), which also showed a significant decrease in
source-leaf starch concentration despite the low consti-
tutive level. Consequently, Cluster 3 was more tolerant
to drought than Clusters 1 and 2 under these experi-
mental conditions.
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Table 6 Summary of the clustering analysis with average values and standard deviations (sd) for each variable in each

Cluster 3

cluster
Cluster 1 Cluster 2
Genotypes distant from  IR64, Cirad 488, Bicobranco
the center
Number of individuals 14 15

Constitutive variables measure of early vigor

Average Sd Average
SDWc 1.80E-05 335E-06 a* 1.71E-05
LDIMc 4.62 1.08 b~ 6.21
DRc 1.65E-02 1.21E-03 b* 1.05E-02
NBTc 6.30E-05 1.88E-05 b* 4.19E-05
NBLc 1.73E-04 4.21E-05 b* 1.26E-04
SOURSTAc 3346 22.75 b~ 64.48
SOURSUCc 7844 1038 a™ 81.71
SOURHEXc 10.66 3.98 b~ 16.40
SINKHEXc 68.75 33.39 a™ 92.70
SINKSTAC 69.90 23.22 b~ 96.02
SINKSUCc 65.88 18.00 b~ 85.50
ROLc 0.29 0.52 a™ 0.23
LSENc 035 0.10 a™ 033
Drought Response variables

Average Sd Average
SDWdc/c -0.19 0.19 a -0.24
LDIMdc/c -0.11 0.16 ab™ -022
Dronsetdc/c -0.13 0.16 b~ 0.07
NBTdc/c -0.11 022 a 0.02
NBLdc/c -0.09 0.18 a -0.09
SOURSTAdc/c -036 0.51 b* -0.76
SOURSUCdc/c 0.11 0.19 b* -0.15
SINKSUCdc/c 0.79 061 b* 0.18
ROLd 3.71 2.02 a™ 4.67
LSENdc/c 029 042 a™ 0.26
Drought Kinetics

Average Sd Average
Number of days from ~ 10.32 178 a™ 10.23

stress onset to FSW 0.2

Azucena, IAC 25, Dourado Aguila

Early mutant IAC 165, DomSofid, IR729679

14

Sd Average Sd

2.95E-06 at 1.24E-05 1.71E-06 b~
0.96 a* 4.78 1.04 b~
1.04E-03 a 1.55E-02 1.44E-03 ab
1.01E-05 a 4.01E-05 1.45E-05 a
2.19E-05 a 1.23E-04 2.71E-05 a
24.01 a* 5543 2414 ab™
14.08 a™ 79.84 1222 a™
6.70 a* 13.75 471 ab™
23.56 a™ 76.24 25.65 a™
1868 a* 7518 19.13 b~
12.56 a* 7744 15.40 ab™
040 a™ 0.07 0.17 a™
0.09 a™ 033 0.07 a™
Sd Average Sd

0.20 a 0.18 0.25 b*
0.14 a 0.23 0.64 b*
0.19 a* 0.00 0.12 ab™
032 a 047 053 b*
0.16 a 0.15 0.16 b*
023 a -0.69 021 a
0.12 a 0.04 0.22 b*
022 a 038 0.29 a
1.71 a™ 411 1.53 a™
040 a™ 023 0.34 a™
Sd Average Sd

251 a™ 9.25 168 a™

Discussion

We studied a wide genetic diversity of rice (43 geno-
types) from 5 different sub species, with a majority of
tropical-japonica upland rice with different origins
(Table 5). This allowed exploring associations among
several phenotypic traits that act as component traits for
early vigour (here considered as shoot biomass accumu-
lation during exponential growth) and its maintenance
under drought (drought tolerance). These ensembles of
morphogenetic (morphological and phenological) and
primary metabolic traits were useful in identifying

groups of genotypes having similar characteristics, and
possibly adaptation strategies.

Expression and adaptive value of traits related to
drought tolerance depend on environment (Tardieu
et al. 2011). In this study, vegetative plants were sub-
jected to a short dry-down period with a final FTSW
of 0.2. This is a non-lethal stress strong enough to
cause a cascade of responses in terms of stomatal clos-
ure, inhibition of expansion and development pro-
cesses, as well as primary metabolic and enzymatic
changes in developing and mature organs (Luquet
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N
shoot dry weight (g) last ligulated leaf area on the main stem (cm?)
3 60
aa aa b a b b a a b a
A A A 50 1 A A A
2 40
30
1 20
10 +
0 0
1 2 3 1 2 3
number of ligulated leaves
on the main stem plant tiller number
30 8
25 b a aa aa b a aa aa
A A A 6 - A A
20
15 4 -
10 +
2 -
5 -
0 0
1 2 3 1 2 3
last ligulated leaf lenght starch concentration
(blade + sheath in cm) in source leaves (mg.g™")
120 140
100 4 aba aa b a 120 b a aa ab b
A A A A A A
100
80
80
60
60
40
40 H
20 20
0 0
1 2 3 1 2 3
Figure 3 Bar plots and standard error of mean values for each cluster (1, 2 or 3 in abcissa) for morphogenetic variables (not
normalized by photo-thermal time or leaf rank) and starch concentration in source leaves. Black bars represent means for well watered and
grey bars for water deficit conditions. Capital letters show the result of a paired t-test for differences between treatments within each cluster at 95%
(family-wise confidence level). Small letters represent the result of a Tuckey multiple comparisons of means among clusters within treatments at 95%
confidence level.

et al. 2008). It represents a short but intense drought
spell as it frequently affects upland rice during a time
when the plant has not yet gained access to deeper
portions of the soil water reserve. We thereby focused

on tolerance mechanisms (biomass maintenance) while
disabling avoidance (deep rooting) from the experi-
mental design, with all plants having extracted the
same amount of water at harvest.



Rebolledo et al. Rice 2012, 5:22
http://www.thericejournal.com/content/5/1/22

All studied component traits showed greater genotypic
variance than shoot biomass under stress (Table 6), sug-
gesting that they are potentially useful for breeding.
However, since trade-offs among component traits under
drought can reduce yield gains (Reynolds et al. 2007),
the genetic and physiological linkages among them
should be understood. Combined consideration of mor-
phogenetic and metabolic traits might help identifying
the physiological linkages (Verslues and Juenger 2011).

Components of early vigour in well watered plants are
associated with metabolic behaviour

Rebolledo et al. (2012) reported a negative constitutive
linkage between organ size and number, both contribut-
ing to early vigour. In the present sample of genotypes,
Cluster 1 derived vigour mainly from organ number (DR
and tillering) whereas Cluster 2 derived it from size
(Table 6). These types differed in metabolic patterns in
source or sink organs. Plants having large leaves and low
DR, leaf and tiller number (Cluster 2) showed high con-
centrations of starch in both source and sink leaves
(Tables 6). This group had high sink sucrose and starch
concentrations (Table 6) suggesting a small demand for
C compared to available assimilates.

Gibson et al. (2011) considered starch in leaves as a
transient carbon sink enhancing plant growth and
photosynthesis. This contrasts with results reported by
Sulpice et al. (2009) on Arabidopsis showing a negative
linkage between starch storage and biomass production,
similar to our findings Luquet et al. (in press) and as
observed on Cluster 1. In the absence of physiological
stresses and under favorable conditions for Carbon as-
similation, low starch concentration in source leaves
may thus be a positive trait for vigour in Cluster 1 which
has high DR and tillering. An efficient translocation of
sugars out of the source toward sink leaves (Vaughn
et al. 2002) or the storage of an alternative form of car-
bohydrates reserves instead of starch (He et al. 2005)
might explain the low amounts of starch in source
leaves. However, Cluster 1 did not show significantly
higher sucrose levels in source leaves as compared to the
other clusters, possibly suggesting that sucrose levels are
highly regulated and not used as storage. Rosti et al.
(2007) observed on a rice mutant deficient in ADP-
glucose pyrophosphorylase (AGPase) in leaf blades ab-
normally low starch accumulation but normal growth
and unchanged sucrose and hexose levels contents in
leaf blades.

Rebolledo et al. (2012) presented the hypothesis that
low-vigour plants may be sink limited, resulting in lim-
ited C export from source leaves. In fact constitutive
vigour was generally associated with low SINKSTA
(Table 6, (Cluster 3). The present results suggest that the
distinction between source and sink leaves should be
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important for the interpretation of sugar concentrations.
SOURSTA is not necessarily a result of high photosyn-
thetic rates, but sometimes a result of poor translocation
to sink organs, as demonstrated for K" starved cotton
plants (Gerardeaux et al. 2011).

Constitutive early vigour is not associated with drought
tolerance

Cluster 1 and 2 had greater SDW accumulation than
Cluster 3, which included the smallest plants both in
terms of organ size and number under well-watered
conditions. However, Cluster 3 was more tolerant to
drought in terms of relative reduction of SDW and its
components. The constitutive traits providing high early
vigour were those showing the greatest relative reduc-
tion under drought (eg. tiller number reduction for
Cluster 1 in Table 3; Table 6, Figure 3). Small plants with
small leaves resist drought through lower water use and
frequently, greater transpiration efficiency (Blum 2005).
In the present study, large genotypic differences in
vigour under well watered were largely leveled under
drought (Table 6, Figure 3). This indicates that vigorous
plants were particularly penalized although the final
drought intensity was the same for all genotypes. This
trade-off between potential and tolerance, present even
in the absence of physiologically costly avoidance,
explains the difficulty to breed to combine tolerance
with performance (Kumar et al. 2008; Heinemann et al.
2011; Serraj et al. 2011). High C reserve status as
observed in Cluster 3 may not only constitute a buffer
for growth under stress, but also convey dehydration tol-
erance. Stem reserves were previously reported as an ef-
fective yield supporting mechanism under drought for
sorghum (Blum et al. 1997), wheat (Dreccer et al. 2009)
and as a tolerance mechanism at the seedling stage in
rice (Cabuslay et al. 2002).

Leaf size and its maintenance under drought is key trait
to maintain early vigour

Among the morphological traits, leaf size had the great-
est genotypic variance under drought and was signifi-
cantly reduced compared to well-watered conditions in
the entire population (Table 2) particularly in genotypes
of Clusters 1 and 2 (Figure 3). LDIMc was significantly
and positively correlated with biomass maintenance
under drought (Table 3). Tropical japonica upland rices,
commonly having large leaves and few tillers, are known
for their good drought avoidance but poor physiological
tolerance (Lilley and Ludlow 1996). According to Farooq
et al. (2010), however, a trait for large leaves introgressed
into IR64 (indica) background also conveyed physio-
logical tolerance to drought. More research is needed to
understand the relationship between organ size and
drought tolerance in rice. For Arabidopsis, Aguirrezabal



Rebolledo et al. Rice 2012, 5:22
http://www.thericejournal.com/content/5/1/22

et al. (2006) showed that leaf expansion was more sensi-
tive to drought than leaf appearance rate. By contrast,
in the present study, both traits were sensitive to
drought and their degree of sensitivity varied among
genotypic groups (Table 6); in addition the mainten-
ance of leaf number and size under drought were
positively related whereas the inverse was observed
under well-watered conditions (Table 2). This sup-
ports results of Tisne et al. (2010), who showed for
Arabidopsis the importance of both traits for main-
taining growth under drought.

Are NSC metabolomics related to growth maintenance
under drought?
Sugar related variables contributed significantly to the
identification of the three clusters (Table 6), confirming
the usefulness of introducing metabolic variables for
phenotyping growth behaviour (Meyer et al. 2009). How-
ever, there was no significant, direct correlation between
any metabolic trait and SDW wunder well-watered
(Table 2) or drought conditions (Tables 3 and 4). Meyer
et al. (2007) and Muller et al. (2011) reported similar
findings, supporting the hypothesis that plant growth
under drought is essentially sink limited, because struc-
tural growth is more sensitive than C assimilation. The
alternation between source- and sink-limitation from
well watered to drought situation resulted in marked
shifts in metabolic pools. It is therefore impossible to
predict growth behaviour on the basis of metabolomics
alone, as reported by Meyer et al. (2007) for Arabidopsis.
Nevertheless, growth component traits under drought
conditions were associated to sugar related variables
(Table 4). Drought reduced SOURSTA by about half, but
did not alter SINKSTA. Low mobilization of starch in
source leaves under drought was associated with a reduc-
tion of tiller and leaf numbers (Table 4 and Cluster 1). Til-
lering would thus keeps in large part dependent on
carbohydrate reserve utilization under drought. Similar
results regarding sugar metabolism under drought were
reported for drought stressed IR64 rice by (Luquet et al.
2008). Drought increased hexose concentration 2.5-fold
for source leaves and 1.3-fold for sink leaves. In the
present study, changes in hexose concentration induced
by stress did not contribute to Cluster distinction. The
strong increase in hexose levels observed for sink organs
under drought was associated with up-regulation of sev-
eral invertase genes (OsCIN 1, 5, 8 and OsVIN 1, 2;
(Luquet et al. 2008) and was thus suggested to be passive,
but its physiological function remained unclear. Finally,
the maintenance of sucrose concentration in source leaves
under drought (Table 6; Cluster 1 and 3) was previously
reported to be related to several drought tolerance indica-
tors: Greater tolerance to atrazine (Ramel et al. 2009) and
maintenance of phloem loading, a process possibly

Page 11 of 15

controlled by an intercellular sucrose signal (Vaughn et al.
2002). Recently, it was reported that in Nipponbare rice,
enhanced expression of sucrose transporters (OsSUT?2) in
source leaves under drought was associated with greater
drought tolerance (Ibraheem et al. 2011). In our study, su-
crose in source leaves was reduced by drought in Cluster
2, consisting of tropical japonicas, but not in Clusters 1
and 3 (Table 6).

Conclusions

There is thus evidence that the different response pat-
terns among the Clusters, in terms of organogenetic and
growth vigour, bear a relationship with the regulation of
soluble sugar levels under drought, but too little infor-
mation is currently available for functional interpret-
ation. In general the measured metabolic variables
contributed to better explain constitutive vigour traits
(as observed in well watered plants) than vigour re-
sponse traits. Nevertheless, they showed significant
(P <0.01) genotypic differences.

The practical usefulness of sugar concentrations as
metabolic markers of stress adaptation can, at this state
of knowledge, not be confirmed. By contrast, under well
watered conditions metabolic markers, in particular
starch concentration in source leaves are definitely rele-
vant for phenotyping the diversity of rice early vigour.
This trait, together with related morphogenetic traits,
will be soon included in a genetic association study on a
larger 200 accessions) japonica diversity panel including
the present materials. The relationships between such
metabolic and morphogenetic traits constituting early
vigour and yield component traits, in particular fertile
tiller number, stay green, and starch remobilization for
grain filling, will be also addressed in a forthcoming rice
study. These results will benefit to the definition of traits
to be accounted for within the GRiSP phenotyping net-
work of the CGIAR.

Methods

Genetic material

A collection of seeds of 186 rice genotypes were received
from different locations in Asia, America, Africa and
Europe. This collection contains 178 tropical japonica,
17 indica, 3 temperate japonica, 2 Aus and 2 aromatic.
Morphogenetic relations under well watered conditions
were previously reported on Rebolledo et al. (2012). An
initial subset of 43 genotypes was randomly selected for
metabolic analysis. This subset includes 31 Tropical Ja-
ponica, 11 indica, 3 Temperate Japonica, 2 Aus and 2
aromatic rices, according to the isozyme based classifica-
tion of Glaszmnan et al. (1984). Only data on this subset
(Table 5) will be addressed in this study.
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Plant culture

A greenhouse pot experiment was performed in 2009 at
CIRAD (Montpellier, France) between 9 February and 8
May 2009 (late winter and early spring) with two succes-
sive replications.

The greenhouse was S2 type (for GMO cultivation)
with a double glass roof intercepting much of natural
sunlight. It was thus equipped with supplemental light
sources (halogen lamps at 1.5 m spacing). Mean photo-
synthetically active radiation was 4.6 MJ.m > Air hu-
midity and temperature were regulated by adiabatic
method and were set to 25°C/22°C (day/night) and
50%/90% air humidity. Seeds were grown in a germin-
ation chamber at 29°C. When seedlings reached 3 cm
height, 5 seedlings per pot were transplanted in 1 1
drained pots (see Rebolledo et al. (2012) for details).
The date of transplanting was variable depending on
the genotype and its time of germination. Pots were
placed on flooded tables with 5 cm water depth. Plants
were thinned to 1 plant per pot at 4-leaf stage. Within
a replication each genotype was represented by two
potted plants, one for the well watered treatment and
one for the drought treatment. Pots contained about
450 g (dry weight) of a mixed soil consisting of 20%
peat and 80% loamy sandy clay soil (loam: 45%, sand:
30% and clay: 25%, sampled at 0-40 cm depth in a field
at Lavalette experimental site of Agro Montpellier,
France). The mixed soil was characterized by a field
capacity (FC) of 59% and a wilting point (WP) of 11%
moisture content (mass/mass on the basis of dry
weight), supplied with 2 g of a coated fertilizer Basa-
cote Plus6M complemented in oligo-elements (Compo
GmbH & Co. KG, Miinster, Germany containing 11, 9
and 19% of N, P,05 and K,0, respectively).

Water deficit treatment

When the plant of a given genotype, tagged for future
water stress application, reached the stage of 6 leaves
appeared on the main stem (6-leaf stage), water treat-
ments were differentiated. The pot experiment eliminates
genotypic rooting differences. Plants in the well watered
treatment were kept on a shallowly flooded table. Water
stressed plants were initially irrigated from the top of the
pot up to saturation, and then drained to achieve field
capacity. The soil surface of the pot and the drainage
holes were then covered with a plastic film to avoid any
water loss by evaporation, any subsequent weight loss
being caused by plant transpiration during dry-down.
Pots with water stressed plants were weighed twice a day,
in the morning (from 7 to 9 am) and in the evening from
(4 to 6 pm). Pot weight was used to calculate the Fraction
of Transpirable Soil Water FTSW considering the same
WP value for all genotypes. The dry down system was
detailed by Luquet et al. (2008).
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AW — WP
FISW = ———— 1
FC - wP (1)

In Eq. 1, AW is the actual weight of a given pot, while
WP and FC are respectively corresponding pot weights
at wilting point and field capacity.

The relation between FTSW and predawn leaf water
potential on excised leaves was realized in the same
growing conditions with one genotype. A FTSW value
of 0.2 (+ 0.05) corresponded to a leaf water potential of
-0.8(+0.1) MPa. In average the stress period lasted
10 days. There was not a significant genotypic difference
for the number of days that was taken for the plants to
reach FTSW 0.2 (Table 2).

Sugar analysis

At FTSW 0.2, the two last ligulated leaves (youngest
source leaves) and the expanding leaves (sink leaves,
enclosed in the sheath of oldest leave) were sampled in
the morning (before 10 am) to analyse NSC content:
hexoses (glucose and fructose), sucrose and starch. Sugar
content was analysed based on High Performance Liquid
Chromatography (HPLC; see see Luquet et al. (2006) for
details). The results are expressed in mg of glucose per g
of dry matter (mgGLU.g ™) for starch and in mg of sugar
per g of dry matter (mg.g™') for hexoses and sucrose.
Hexoses concentrations were considered equal to glu-
cose plus fructose concentrations. Sugar related variables
are named combining the type of organ sampled (sink:
SINK or source: SOUR) and the type of sugar (HEX:
hexoses; SUC: sucrose and STA:starch). For example the
concentration of sucrose in source leaves is named

SOURSUC.

Growth measurements

All genotypes were sampled and measured at the same
drought level when FTSW value reached 0.2 (+/- 0.05).
Table 7 summarises measured variables at the end of the
treatment, which included tillers per plant (TNB), total
ligulated leaf number (LNB, corresponding to ligulated
green plus senescent leaves on the plant), and dimen-
sions of the last ligulated leaf (Leaf length LL and Leaf
Width LW). Plants were then sampled to measure shoot
dry weight (SDW), adding the dry weight of the leaves
collected for sugar content analyses.

The number of leaves on the main stem was used to
compute Haun Index, HI (Haun 1973); where numerical
indices correspond to the number of fully developed
ligulated leaves on the main stem and expanding leaves
are assigned a fractional value relative to the last ligu-
lated leaf. For example a main stem with six ligulated
leaves and an expanding leaf that is one- half the length
of the sixth would have a HI of 6.5. On its basis, the
mean phyllochron and its reciprocal DRgio, (“°C.d™")
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Table 7 Summary of morphogenetic and metabolic variables and units performed in this study (dw: dry weight, PT:

photothermal time Eq. 3)

Variables Unit Measured variables at the end of the experiment
Morphogenetic DRgio Leaves°C d™' Leaf appearance rate from germination date to final sampling
DRonset Leaf appearance rate from stress onset to final sampling
LDIML cm? leaf rank Last ligulated leaf area on the main stem normalized by leaf rank
NBT tillers. PT Total tiller number on plant normalized by PT
NBL ligulated leaves. PT Total ligulated leaf number on plant normalized by PT
SDW g. PT Shoot Dry weight normalized by PT
LSEN % death tissue Average of the percentage of dead leaf tissue of ligulated leaves
on the main stem
ROL rolling index Rolling index after treatment normalized by PT
Metabolic SINKHEX mg‘g"wdvv Metabolite concentration in the hidden, expanding (sink) leaves
SINKSTA mgGLUgdw of the main stem
SINKSUC mg.g~'dw
SOURHEX mgg'dw Metabolite concentration in the two last ligulated (source) leaves
SOURSTA mgGLU.g dw of the main stem
SOURSUC mg.g~'dw

were calculated from germination (gio) until the end of
the treatment. DR, se¢ corresponded to the phyllochron
computed from the period of stress onset to the end of
stress, both for stressed and its corresponding well
watered plant. DR, ,s; can also include a period of time
without drought since plants may respond differently to
the level of soil drying.

Variables were indexed as C (for control plants) and D
(for plants under water deficit) for example for shoot dry
weight SDW¢ and SDWp,.

In order to compare genotypes transplanted and
sampled at different dates morphogenetic variables and
final biomass were normalized by a photo-thermal vari-
able (PT), combining the incident daily radiation (PAR)
and thermal time (TT) accumulated during plant growth.
This photothermal variable (PT) was computed as

(Eq. 2):
PT = (ZHPAR) x TT,in MJ.°C.d.m™> 2)

Leaf area of the last ligulated leaf on the main stem
was computed using LL, LW and an empirical allometric
coefficient of 0.725 (Tivet et al. 2001). Considering leaf
size increase with rank is linear during the exponential
growth phase (Dingkuhn et al. 2006), leaf size
(LL*LW*0.725) was normalized by its rank in order to
compare varieties following Eq. 3;

LDIM = (LL*LW30.725)/leaf rank (3)

Senescence was estimated for both stressed and well
watered plants. For each individual ligulated leaf on the

main stem the senescence was visually quantified as the
percentage of dead tissue vs. total leaf area (%sene-
scleaf), then to take into account differences of plant
age, the percentage of senescence was normalized by HI
as in Eq. 4:

>~ (%senescleaf)

LSEN =
HI

(4)

Leaf rolling (ROL) was estimated using Standard
Evaluation System for Rice (SES) (IRRI 1996) for the
whole plant for both treatments.

Computation of drought response variables

Variables measured at the end of the treatment on well
watered plants were considered as constitutive variables.
Drought response variables were calculated using Eq. 5,
applied to both morphological and sugar related variables:

(b-0)
©)

In Eq. 5 D and C are the values of a given variable
under drought and well watered conditions respectively.
According to this, a negative value of VAR Apc,c corre-
sponds to a reduction by the drought treatment.

VARApc/c = (5)

Data analysis
Statistical analysis was performed with statistical soft-
ware R (http://www.R-project.org).

Anova model with multiple factors (genotype, treat-
ment and replication) was used to estimate the part of
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variance related to the genotype and the treatment.
Comparison of means was performed using Tuckey test
and correlations were performed using spearman correl-
ation coefficients.

The FactoMiner Package in R software was used for
multivariate analysis. To introduce several group of
variables (morphogenetic and metabolic) simultan-
eously as active elements and describe the structure
upon the genotypes a multiple factorial analysis (MFA)
was used. MFA works as a Principal Component Ana-
lysis (PCA) (Husson et al. 2010): for each group of
variables a PCA is performed individually, within each
group variables are weighted by the first eigenvalue of
the respective PCA. The weighting of the groups of
variables make possible that the groups that include
more variables do not weigh too much in the analysis.
Then a general PCA with all the groups of variables is
performed on all the weighted variables allowing iden-
tifying the main axes representing data variability. In
order to consolidate groups of genotypes the PCA ana-
lysis is followed by hierarchical and aggregative cluster-
ing. PCA axis with higher eigenvalue gives the best
description of the variance observed, in this study all
26 variables underwent MFA, 9 axis were selected to
perform clustering because they accounted for 81% of
total variability. Following Husson et al. 2010 the other
17 axis constituting only 19% of total variability were
not used in order to create a more stable clustering.
Thus, the selected first 9 dimensions give the best
partition quality (minimum of Intracluster/Intercluster
distance ratio).
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