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Abstract

In recent decades, numerous studies have attempted to project the impact of hypothesised anthropogenic climate
change on rice production. In this study, we offer a comprehensive review of our current understanding related to
temperature, CO2, and water-demand parameters in rice growth models. As to future rice yield, night time
temperature should be focused in the models as well as day time temperature owing to the contribution of
temperature on the night time respiration. Furthermore, although CO2-enhanced photosynthesis is critical for the
accurate prediction of rice production in a higher CO2 atmosphere, we found that recent well-developed
photosynthesis-stomatal model cannot realize the variation of CO2 stomatal sensitivity with humidity conditions. To
estimate water stress under projected climate-change conditions, rice growth model should be required to link with
water resource model, which includes natural processes and anthropogenic regulations. The understanding of
abilities and limitations in the models is important not only to improve the schemes that models employ, but to
also critically review the simulated results.
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Introduction
Rice is the most important staple food for a large part of
the world’s population, especially in East and South Asia,
the Middle East, Latin America, and the West Indies
(FAO, 2005). As the population increases rapidly in these
regions (Coats, 2003; Bloom, 2011), the demand for rice
will grow to an estimated 2000 million metric tons by
2030 (FAO, 2002). To supply to this increasing demand,
the methods of rice production will require significant
improvement (Ainsworth, 2008). Achieving this goal,
however, is sure to be a challenge with respect to future
climatic changes (Matthews et al., 1997), which will
basically be characterized by current global warming
trends (Fischer et al., 2005). The rise in temperatures
and levels of carbon dioxide and uncertain rainfall
associated with climate change may have serious adverse
effects either directly or indirectly on the growth, devel-
opment, and yield of rice crops (Lobell et al., 2011).
In recent decades, numerous studies have attempted to

project the impact of hypothesised anthropogenic climate
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change on rice production (Long et al., 2005, 2006;
Tubiello et al., 2007; Ziska and Bunce, 2007). Rice growth
models are routinely used for assessing the impact of
diverse agro-environmental changes on rice growth and
yield (Spitters et al., 1989). Statistical models (e.g.,
Kandiannan et al., 2002; Lobell and Burke, 2008;
Auffhammer et al., 2012) based on multiple regression
analysis of historical yields and weather data are useful
tools to estimate the impacts of climate trends upon rice
yields. However, it becomes difficult to use the statistical
models to examine the direct or indirect impacts of
climate change in the good management of a rice paddy
field (Wang et al., 1991), because the data reflected in the
model contains the human effort being made to mitigate
environmental shocks (negative effects) in order to
maintain a high level of production. In addition, statistical
models do not fully account for the physiological
responses of rice to the unexpected and not-yet-
experienced agri-environments that will result from dra-
matic climate change (Lobell and Burke, 2008). The results
obtained will, thus, not enable us to fully understand how
climate change will affect future food availability.
Increasing concern about the sustainable management

of environmental resources and the effects of climate
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change on rice production has triggered the development
of a number of sophisticated models based on physical
and physiological processes (van Laar et al., 1992; de Vries
FWT et al. 1989; Kropff et al. 1993; Matthews and Hunt,
1994). Process-based rice growth models of varying
degrees of complexity can benefit from a comprehensive
assessment of the response to likely climate changes
(Lansigan et al., 1997; Bouman and Tuong, 2001). As part
of an effort to mimic a complex agrosystem, knowledge
from experiments in both the field and laboratory will be
incorporated into process-based models, using novel
parameters and improved schemes. However, although
these models are currently the best method available
(Bouman and Tuong, 2001), they still rely on imperfect
mechanistic processes and weak assumptions. Further-
more, these problems will not be solved even if a model
includes all the parameters selected for an agricultural
system, because the systems we are modelling are
extremely complex. However, if we can demonstrate that
certain parameters and schemes in a model are insignifi-
cant, then we can omit them to create a better and simpler
model for good performance. Therefore, it is critically
important to know which parameters will be the most
significant for estimating rice productivity in the future
environment.
With the current situation of global warming under the

human-induced climate change, knowledge of the effects
of (1) temperature, (2) CO2, and (3) water demand on
the growth and development of rice crops has become
essential over the past few years. In this study, we offer a
comprehensive review of our current understanding
related to temperature, CO2, and water-demand param-
eters. Our expectation is that this will be of significant
use in understanding the development of the models for
the prediction of future situations.

Effects of temperature on rice yield
The impact of air temperature on rice growth would be
location-specific because of the different sensitivity of
different locations with regard to temperature. In tropical
regions, the temperature increase due to the climate
change is probably near or above the optimum
temperature range for the physiological activities of rice
(Hogan et al., 1991; Baker et al. 1992). Such warming will
thus reduce rice growth. In addition, higher temperatures
will cause spikelet sterility owing to heat injury during
panicle emergence (Satake and Yoshida, 1978). In
temperate regions, increased air temperatures should
hasten rice development, thereby shortening the time from
transplanting (or direct seeding) to harvesting and
reducing the total time for photosynthesis yield
development (Neue and Sass, 1994). Similarly, in high
latitude regions, atmospheric warming may also increase
the duration of the rice growing season. Therefore, a
location-specific-parameterized rice model is not appropri-
ate for modelling future environments globally (Shimono
et al., 2008).
Although air temperature has conventionally been con-

sidered in the physiological processes of rice, the param-
eter of leaf temperature is more significant from the
perspective of the energy balance on the leaf level, photo-
synthesis, and transpiration (Morison and Gifford 1984;
Lasseigne et al., 2007). Therefore, the differences between
leaf temperature and air temperature can create a signifi-
cant uncertainty with regard to the season length and yield
(Baker et al., 1990). For example, leaf temperatures could
be warmer than the air owing to soil-surface influences,
particularly in humid regions, which would result in a
more rapid yield than that by air temperatures. The differ-
ence of 1°C will cause the change of leaf respiration by as
much as approximately 1% of gross photosynthesis
(Mebrahtu et al., 1991). However, only a few models
calculate leaf temperature separately from air temperature,
owing to the difficulty of parameterization of the related
environmental factors. Basically, leaf temperature corre-
sponds to air temperature (Harley et al., 1985). In addition,
the temperature of an illuminated leaf is elevated by an
amount proportional to the ratio of the incident radiation
to a convention coefficient (e.g., humidity, wind speed,
etc.) (O’Toole and Tomar, 1982). Therefore, a model
requires the estimation of leaf temperature, using relevant
mechanistic processes, in order to simulate the response
of rice to changes in climatic variables.
Recent observation of climate variability shows an

increase in the global mean surface air temperature, and a
decrease in the diurnal temperature range (Easterling
et al., 1997; Braganza et al., 2004; Makowski et al., 2008).
This conclusion is derived from the fact that the daily
minimum temperature is increasing at a faster rate than
the daily maximum owing to the large specific heat of
water, particularly in rice-growing areas (Welcha et al.
2010). Accordingly, in recent rice studies, attention has
been directed to the effect of the daily minimum (night
time) temperature. Peng et al. (2004), using field experi-
ment data from 1979 to 2003, showed that yield might be
more sensitive to the daily minimum temperature than to
the daily maximum. The negative relationship between
rice yield and daily minimum temperature is derived from
the elevated specific dark respiration that takes place
during the night time.
Indeed, the reported yields of maize, wheat, and soy-

beans cannot be fully understood by the relation of
respiration to increased night time temperature (Peng
et al., 2004). Nevertheless, the yield might be explained
by their acclimation of crop dark respiration at higher
temperatures, and the relationship between dark respi-
ration and the previous daytime’s photosynthesis. The
clear relationship between rice yield and daily minimum
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temperature implies that in a rice growth model, the
physiological mechanisms of specific dark respiration are a
priority in order to explain the effects of a warming
atmosphere on the rice yield. Therefore, the simulation
time-step should actually be on a less-than-daily scale, and
the respiration scheme should be calculated separately
from the estimation of the gross photosynthesis. However,
models have mostly employed a daily time-step and have
used a rather simple net calculation of the net photosyn-
thesis, particularly for the estimation of future rice yield
because the temperature projected by climate model still
has sparse time scale. The possible overestimation of
rice yield should thus be considered when discussing the
simulated future yield.

Interactive responses to increased CO2

Atmospheric CO2 has been increasing at a rather steady
rate, at least on the time scale of a decade. During the
last 50 years it has increased exponentially at a rate of
approximately 2.4% per year. For this reason, there is
continued interest in how rice will respond to future
increases in CO2, since rice uses CO2 in its photosynthesis
and growth. Most agronomic models use the magnitude of
CO2 fertilization factor, which is mostly based on data
from three literature reviews from the 1980s (Kimball
1983; Cure and Acock 1986; Allen et al. 1987). According
to laboratory experiments, rice grown at a higher CO2

level has more tillers than rice grown at an ambient level
of CO2. Furthermore, the suppression of rice-specific dark
respiration at high CO2 levels has been observed, despite
the large variations in observed outputs (Amthor 1991;
Imai et al. 1992; Poorter et al. 1992), and the physiological
metabolism of nutrients in rice will become more critical
under higher CO2 conditions.
According to previous enclosure experiments that have

contributed to the physiological schemes used in rice
growth models, the grain yield of rice will be promoted by
higher CO2 levels. These studies, however, were probably
conducted in the absence of other limiting factors. For
example, Long et al. (2006) found that the photosynthesis
stimulated in a rice free-air concentration enrichment
(FACE) experiment is four times lower than the elevated
CO2-enhanced value that is expected in enclosure studies.
Given this circumstance, the most important scientific
question is which physiological behaviours and environ-
mental factors offset the direct fertilization effect of a rise
in CO2 (Harley et al., 1985).
Indeed, positive performance under elevated CO2 would

be directly associated with four key parameters: a
decreased stomatal aperture, enhanced photosynthetic
activity, increased total biomass, and changed biomass
partitioning. The reduced stomatal aperture would
produce an increased rice canopy temperature as a result
of suppressed transpiration. It can thus mediate negative
feedback in a warmed atmosphere. Despite a small
stomatal aperture, CO2-enhanced photosynthesis will be
produced by a rise in the intercellular CO2 concentration
under a higher level of atmospheric CO2 (Mott 1988).
However, following long-term subjection to a higher CO2

level, the net leaf photosynthetic rate of rice often declines
from the expected value (Imai and Murata 1978;
Peet 1986). This process is called the acclimation of rice
photosynthesis to higher CO2. Although this acclimation
is difficult to realize in a rice growth model because its
mechanism remains unclear, the acclimation scheme of
an effect that is in contrast to elevated CO2-enhanced
photosynthesis might be critical for the accurate predic-
tion of rice production in a higher CO2 atmosphere
(Makino et al., 1997). In addition, considering the
increased rice biomass that is produced in a higher CO2

atmosphere, which takes place through the increased
photosynthesis and the decreased respiration, it is impor-
tant for the process of biomass allocation to be accounted
for in order to investigate these factors’ possible signifi-
cance in a rice growth model. Previous measurement
studies showed that specific leaf weight often increases in
a higher CO2 atmosphere as a result of the thicker leaves
and the increased number and length of the crown roots
that are produced. However, the contribution of the
changed leaf area or root biomass to the rice yield remains
unclear.
Although the response of rice growth to elevated CO2 is

critically associated with other environmental factors, the
interactive effects of simultaneous change have not
been well investigated either in modelling studies or in
experimental measurements. For example, few studies
have mentioned the different sensitivity of stomatal
behaviour to vapour pressure deficit (VPD) in terms of
elevated atmospheric CO2 concentrations (Bunce 1998,
2001; Katul et al. 2009). Indeed, stomata, which are the
strategic juncture for CO2 and water exchange between
plant and atmosphere, are strongly linked not only to CO2

concentration, but also to the humidity as an atmospheric
demand for moisture. The measurement data in Bunce
(1998, 2001) shows that the ratio (gs_700/gs_350) of stomatal
conductance at 700 μmol mol-1 to that at a concentration
of 350 μmol mol-1 CO2 is negatively correlated with VPD
to a significant degree (see Figure 1). However, according
to our sensitivity test, one current well-developed model,
which was proposed by Collatz et al. (1991) and which
uses the biochemical photosynthesis model of Farquhar
et al. (1980) as well as the stomatal conductance model of
(Ball et al. 1987), could not realize this actual behaviour
(see Table 1 for formula). Basically, their coupled
photosynthesis-stomatal conductance model can represent
accurate stomata behaviours in response to CO2 and VPD
under controlled conditions. Therefore, it is possible that
failure of the model with regards to the interactive



Figure 1 Relationship between the ratio of leaf conductance at
700 μmol mol-1 [CO2] to that at a 350 μmol mol-1 [CO2] carbon
dioxide concentration and the leaf-to-air-water-vapour pressure
difference (VPD). The solid line represents the measurement result
of sorghum plants in Bunce (2001). The dashed line represents the
results of the coupled photosynthesis-stomatal conductance model
(Collatz et al., 1991). The dot-and-dashed line is based upon the
measurement data for rice given in Morison and Gifford 1983.
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performance of CO2 and humidity can cause uncertainties
as to the future rice yield and water demand, given
the close linkage between the two processes in the two
photosynthetic and stomatal schemes.
Consideration of water stress and demand in models
Rice cultivation is suited to regions with high rainfall
because it requires ample water. However, it is expected
that the hydrological cycle accelerated by a warmed
atmosphere will change the pattern of rainfall in these
regions. Basically, rice is very sensitive to a reduction in
soil moisture, and rice production consumes much more
water than the production of other crops. Approximately
500 L of water is required to produce 1 kg of biomass
(Jodo et al. 1995). This high degree of water consumption
is related to diverse physiological processes in rice.
The transpiration that is reduced under stressful water
conditions will result in the suppression of nutrient uptake
by the rice root system. The reductions in leaf expansion
and in the photosynthetic rate that result from moderate
water deficits are responsible for a reduction in dry matter
production and grain yield (Gifford 1979). Furthermore,
drought during the flowering stage causes spikelet sterility
and yield losses, particularly in upland areas (Ekanayake
et al., 1993). These direct effects of water stress on
numerous metabolic and physiological processes in rice
are relatively well established in models, mostly using opti-
mal trends obtained from field or laboratory experiments.
The difference between leaf and air temperatures is

commonly used as an indicator of rice water stress (Long
et al., 2006), because leaf temperature is more strongly
correlated with transpiration than with photosynthesis.
This implies that a shortage of water produces two impor-
tant physiological responses: in leaf temperature and in
transpiration. Water stress in combination with a warmed
atmosphere will increasingly limit rice production owing
to a much higher leaf temperature (Garrity and O’Toole,
1994). In addition, although water stress will simply result
in stomatal closure, as in the case of elevated CO2 levels,
the effects and possible interaction of elevated CO2 and
water stress on rice stomatal behaviour are a critical issue
to be considered in the current context of climate change
(Turner et al., 1986). For example, a complementary
acclimatization of photosynthesis in water stressed rice
growth under elevated CO2 conditions has been reported,
despite an increased rate of net leaf photosynthesis under
these same conditions (Imai and Murata 1978; Makino
et al., 1997). Therefore, the calculated water stress
parameter is linked to diverse other schemes in a rice
growth model because the physiological processes under
water stress are complex and may vary according to the
presence or absence of other stresses. This means that
model developers have to validate and evaluate their
models’ performance with regards to the effect of water
stress on rice growth under a variety of environmental
changes. It is critically important for us to predict rice
yield for unexpected climate events.
In fact, the change in yield caused by water shortage is

difficult to validate because of limited observation data for
water stress. The critical parameters for water stress, such
as leaf water potential and leaf temperature, are rarely
investigated by in-situ measurement. However, we could
indirectly predict the effect of a water deficit on field
yields through the relationship between evaporation
(or transpiration) and yield. Such information could be
available from numerous previous studies (Simpson et al.,
1992; Bouman and Tuong, 2001; Tuong et al., 2005). This
relationship may or may not be linear, in part because the
fraction of evaporation that does not contribute to rice
growth varies throughout the rice life cycle. In addition,
water-use efficiency (yield or biomass divided by evapo-
ration) is another relevant parameter in evaluating the
water demand for rice growth. This factor could be
affected by climate change through changes in the
irrigation water demand for rice growth. For example,
increased evapotranspiration (from the water body of the
paddy field and rice stomata) in a warmer atmosphere will
require a greater amount of water. On the contrary, a
higher temperature will result in a reduced number of
irrigation days, on account of the decreased rice growth
period (Simpson et al., 1992; Bouman and Tuong, 2001).
Furthermore, water-use efficiency will increase at higher
CO2 concentration levels owing to the expected decrease
in transpiration and increase in photosynthesis (if the leaf



Table 1 Summary of previous stomatal conductance (g) models

No Method reference Equation Forcing parameters Coefficient Function

Ta CO2 H

Oren-type (method by environmental factors)

1 Oren et al. (1999) g ¼ −m ln VPDð Þ þ b VPD m, b × × ○

2 Granier et al. (1996) g ¼ aRs þ b½ � 1−m ln VPDð Þ½ � Rs, VPD a, b, m × × ○

3 Lu et al. (2003) g ¼ aRs þ b
Rs= Rs þ dð Þ½ � aþ b cVPD

� �� ��
if Rs < 200 Wm−2

if Rs > 200 Wm−2 Rs, VPD a, b, d, c × × ○

Jarvis-type (method by environmental factors)

4 (Jarvis et al. 1976) g ¼ gmaxf1 PARð Þf2 VPDð Þf3 Tð Þf4 SWð Þf5 Cað Þ PAR, VPD, T, SW, Ca gmax ○ ○ ○

5 Massman & Kaufmann (1991) g ¼ gmin þ gmaxf1 PARð Þf2 VPDð Þf3 Tð Þf4 SWð Þf5 Cað Þ PAR, VPD, T, SW, Ca gmax, gmin ○ ○ ○

6 Noilhan and Planton (1989) g ¼ gminLAI f1 PARð Þf2 VPDð Þf3 Tð Þf4 SWð Þf5 Cað Þ½ � PAR, VPD, T, SW, Ca, LAI gmin ○ ○ ○

7 Avissar and Pielke (1991) g ¼ Ωgmax gmin þ gmax−gminð Þñf1 PARð Þf2 VPDð Þf3 Tð Þf4 SWð Þf5 Cað Þ½ � Rs, VPD, T, W, Ca gmax, gmin, Ω ○ ○ ○

Norman-type (Physiological models)

8 (Norman et al. 1982) g ¼ An
Ca−Cið Þ An, Ca, Ci . ○* ○ ○

9 (Jones, 1992) g ¼ 1:6 An
Ca−Cið Þ

RTk
p An, Ca, Ci, p, . ○* ○ ○

10 Knorr (2000) g ¼ 1
1þbeVPD

� �
1:6 An

Ca−Cið Þ
RTk
p An, Ca, Ci, p, VPD be ○* ○ ○

11 Kim & Verma (1991) g ¼ 1− VPD
bD

� �
1:6 An

Ca−Cið Þ−1:37
Angl

An, Ca, Ci, p, VPD bD ○* ○ ○

Ball-type (Physiological models)

12 (Ball et al. 1987) g ¼ mAn
Cs
hs þ b An, Cs, hs m, b ○* ○ ○

13 Leuning (1995) g ¼ m An
Cs−Γð Þ hs þ b An, Cs, hs m, b, Γ ○* ○ ○

14 In this study g ¼ k Cið Þ 1− Ca=Cið Þ VPD=VPDmaxð Þ½ � An
Cs−Γð Þ hs þ b An, Cs, hs, Ci k, b, Ca, VPDmax ○* ○ ○

Note: H: humidity, g: stomatal conductance, Rs: incoming solar radiation, Ta; air temperature, VPD: vapor pressure deficit, Sw: soil moisture, Ca: atmospheric [CO2], Ci: intercellular [CO2], LAI: leaf area index, An: net
photosynthesis, gmax: maximum stomatal conductance, gmin: minimum stomatal conductance, Ω: leaf age function, p: air pressure of the standard atmosphere, be is the coefficient according to soil water status, Γ: CO2

compensation point in photosynthesis. (○*: indirectly considered in formula, ○: directly considered, ×: not considered).
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Figure 2 Methods for including a measurement study and (rice
growth) model study to understand a real phenomenon or
anticipate a future situation. The measurement and the model are
generally linked through the approaches of analysis, expression,
validation, and prediction.
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temperature is constant). Therefore, in a rice growth
model, the water stress scheme should not be designed in
isolation from other environmental changes, such as air
temperature, and CO2 level.
These likely interactive phenomena will affect water

resource planning and management of irrigation water
demand. In addition, the availability of water for rice
production is dependent not only on the precipitation and
environmental factors related to evapotranspiration, but
also on irrigation management (Tuong et al., 2005).
Indeed, the efficiency of water use for grain production is
higher in a saturated soil culture than in an unsaturated
soil moisture condition. In most cases, rice production is
associated with flood irrigation. Although this method is
simple, it also requires sound planning and servicing of
the water damming and channelling. Therefore, in a rice
growth model, this has to be emphasized to account for
the variations of water resources, not only in terms of
climate variability but also in terms of anthropogenic
effects. However, the realization of terrestrial water
resources is not an easy task in the design of a model
because of the complex interactions among urban,
industrial, agricultural, and natural water requirements.
Recently, Pokhrel et al. (2012) introduced an integrated
model to estimate terrestrial global water resources.
The model contains four different anthropogenic water
regulation modules (a crop growth module, reservoir
operation module, water withdrawal module, and environ-
mental flow requirement module; see also Hanasaki et al.
2008 for more details) that operate on the basis of a
surface and sub-surface runoff process module (Stieglitz
et al. 1997) a hydrological and biophysical exchange
module (Takata et al. 2003), and a river routing module
(Oki and Sud 1998). Although their model is not directly
coordinated with a rice growth model, such modules
related to water resource assessment are needed in order
for us to better investigate the growth stage of a water-
sensitive crops such as rice.

Conclusion
Rice growth models are subject to many uncertainties.
The conventional way of addressing this uncertainty has
been to obtain comprehensive information about the
physiological and phenological responses of rice to
environmental factors. Even though a given model cannot
take into account all the relevant processes, we need to
critically understand which parameters will make a definite
contribution to obtaining the desired result, and which will
not. It is important not only to improve the schemes that
models employ, but to also critically review the simulated
results (see Figure 2). In this review, we have examined the
existing or required processes related to temperature,
CO2, and water stress in rice growth models because these
are the three factors that are most vulnerable to climate
change. It is thus obvious that we must understand the
actual roles they play in the physiological processes of rice,
as well as the ways these roles may be altered in order to
predict rice yields in the future.
In addition, the interactive effects that result from both

positive and negative factors are necessary if we are to
consider uncertain climate changes. In this review, we
have emphasized the importance of accounting for the
interactive effects of temperature, CO2, and water demand
in a model. However, although our knowledge of the
effects that these three factors have on the growth and
development of the rice has increased in the past few
years, it has remained difficult to realize these interactive
effects in a model because of unclear mechanisms involved
and the limited experimental data. Therefore, theoretical
considerations and experiments that are designed to in-
crease our understanding of this issue are recommended,
along with validation studies. ‘Semi-empirical schemes’
and ‘clear assumptions’ based on decades of agronomic
knowledge might be the best approach, particularly in light
of our limited understanding. Semi-empirical schemes
derived from both mechanical approaches and observed
characteristics will be suitable to reasonably reflect the
latest validation results, particularly under projected
climate-change conditions. Showing a clear assumption in
a model will improve our understanding of a model’s
results, and will also suggest further tasks to pursue in
model development.
Fortunately, current rice growth models have been

improving as a result of the kind of continuous validation
and development mentioned in this review. These recent
results for the projection of future rice yields will produce
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meaningful information that is of great use to society.
However, the impact assessment related to global future
food security could have a considerable bias owing to not
only limitations of a model’s performance, but also to the
uncertainties of future weather inputs (Aggarwal, 1994).
For example, general circulation models (GCMs) still
produce uncertain predictions as to how climate variability
will vary as a consequence of an increase in greenhouse
gases. Nevertheless, there is continued interest in how rice
will respond to future changes in temperature, CO2, and
water demand because climate change has been a
consistent feature of the global climate. It is worth
incorporating as the likely impacts of GCM-derived
climate change scenarios into the results simulated in rice
growth models’. Therefore, an accurate understanding of
model behaviour and details is needed in order to produce
accurate and well-organized information for our society.
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