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Abstract Leaf photosynthesis, an important determinant of
yield potential in rice, can be estimated frommeasurements of
chlorophyll content. We searched for quantitative trait loci
(QTLs) for Soil and Plant Analyzer Development (SPAD)
value, an index of leaf chlorophyll content, and assessed
their association with leaf photosynthesis. QTL analysis
derived from a cross between japonica cultivar Sasanishiki
and high-yielding indica cultivar Habataki detected a QTL
for SPAD value on chromosome 4. This QTL explained 31%
of the total phenotypic variance, and the Habataki allele
increased the SPAD value. Chromosomal segment substitu-
tion line (CSSL) with the corresponding segment from
Habataki had a higher leaf photosynthetic rate and SPAD
value than Sasanishiki, suggesting an association between
SPAD value and leaf photosynthesis. The CSSL also had a
lower specific leaf area (SLA) than Sasanishiki, reflecting its
thicker leaves. Substitution mapping under Sasanishiki
genetic background demonstrated that QTLs for SPAD value
and SLA were co-localized in the 1,798-kb interval. The
results suggest that the phenotypes for SPAD value and SLA
are controlled by a single locus or two tightly linked loci, and
may play an important role in increasing leaf photosynthesis
by increasing chlorophyll content or leaf thickness, or both.
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Introduction

Leaf photosynthesis is the component of canopy photosynthe-
sis that accounts for most of the variation in biomass
production and yield (Peng 2000; Yoshida and Horie 2009).
While it is still controversial whether increasing leaf
photosynthesis increases yield (Evans 1993; Sinclair et al.
2004), recent studies indicate that growth rate around heading
stage is critically related with final yield in rice (Takai et al.
2006; Horie et al. 2006), and that new high-yielding rice
cultivars, including both inbred and hybrid cultivars, have
higher leaf photosynthetic rates than previously released ones,
particularly at heading stage (Ohsumi et al. 2007; Peng et al.
2008). To examine this issue, it is necessary to identify
genetic factors controlling leaf photosynthesis, and to
compare yield potential between donor cultivars and near-
isogenic lines (NILs) differing only in leaf photosynthetic
ability (Zelitch 1982; Long et al. 2006; Hubbart et al. 2007).

The process of photosynthesis is difficult to measure
directly, but a positive relationship between leaf photosynthe-
sis and leaf chlorophyll content has been widely observed in
rice (Makino et al. 1983; Kura-Hotta et al. 1987; Xu et al.
1997). Chlorophyll content is generally measured after
extraction of chlorophyll from ground leaves with organic
solvents (Porra et al. 1989). On the other hand, a digital
chlorophyll meter (Soil and Plant Analyzer Development
[SPAD] meter) provides a non-destructive method for
estimating leaf chlorophyll content by measuring light
absorption of specific spectral bands in living leaves
(Watanabe et al. 1980; Chubachi et al. 1986). The methods
for measurement of SPAD values are simple and quick, and
close correlations between SPAD values and leaf photosyn-
thesis values have been observed in rice (Huang and Peng
2004; Kato et al. 2004; Kumagai et al. 2009). Therefore,
SPAD measurement may be a more appropriate method than
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destructive measurement of leaf chlorophyll content for use
in genetic analysis of leaf photosynthesis.

Recent progress in the development of molecular markers
has enabled the genetic mapping of quantitative trait loci
(QTLs) for photosynthesis-related traits. Several putative QTLs
have been detected for SPAD value or chlorophyll content in
rice (Ishimaru et al. 2001; Teng et al. 2004; Abdelkhalik et al.
2005; Yue et al. 2006; Kanbe et al. 2008), and some of these
have been confirmed by mapping in advanced-generation
progeny (Kanbe et al. 2008). However, none of these QTLs
has been precisely mapped as a Mendelian factor or
characterized for its contribution to leaf photosynthesis.

In this study, we focused on the SPAD value of flag
leaves at heading stage because higher leaf photosynthesis
of flag leaves at heading stage may be critically related with
high yield (Takai et al. 2006; Ohsumi et al. 2007). Then we
identified a candidate QTL controlling SPAD value of flag
leaves at heading stage by using backcross inbred lines
(BILs) derived from a cross between japonica cultivar
Sasanishiki and indica cultivar Habataki (Nagata et al.
2002). To confirm the putative QTL and to assess its
association with leaf photosynthesis, we used chromosome
segment substitution lines (CSSLs). In each of the CSSLs, a
particular chromosome segment of Sasanishiki has been
replaced by the corresponding segment from Habataki
(Ando et al. 2008). Then, by using progeny derived from
a cross between Sasanishiki and a CSSL harboring the
target QTL, we conducted substitution mapping of the
QTL. We also investigated the genetic relationship between
SPAD value and specific leaf area (SLA), which is assumed
to be correlated with leaf thickness. The QTL detected in
this study appears to be associated with increased leaf
photosynthetic rate and may also be associated with SLA.

Results

QTL detection in BILs and CSSLs

The mean SPAD value of flag leaves at heading stage was
significantly greater in Habataki (44.4) than in Sasanishiki

(31.6) (Fig. 1). The SPAD values of the BILs ranged from
26.2 to 40.2, all less than the value of Habataki. While there
was only a 2-day difference in days-to-heading between
Sasanishiki and Habataki (104 and 106 days, respectively),
the BILs showed transgressive segregation (98–117 days).

QTL analysis of the BILs detected a large-effect QTL for
SPAD value on the long arm of chromosome 4 (Fig. 2). The
QTL explained 31.3% of total variance in the trait, and the
Habataki allele increased the SPAD value (Table 1). Three
QTLs for days-to-heading, each of which explained 9.8% to
16.3% of phenotypic variance (R2), were detected on
chromosomes 7, 8, and 12. The Habataki alleles of the
QTLs on chromosomes 7 and 12 and the Sasanishiki allele
of the QTL on chromosome 8 increased days-to-heading.
The map locations indicate that the QTL for SPAD value
was not associated with a pleiotropic effect of a QTL for
days-to-heading.

In the 39 CSSLs, SPAD values ranged from 28.9 to 35.4
units (Fig. 3a). The SPAD value of SL414 was significantly
higher, by 3.4 points, than that of Sasanishiki, but also
significant lower than that of Habataki. Phenotype and
genotype data obtained for each CSSL confirmed that the
region affecting SPAD value is located on the long arm of
chromosome 4 (Fig. 3b). The candidate region was mapped
to the interval between simple sequence repeat (SSR)
markers RM3916 and RM2431.

Leaf photosynthetic ability in SL414

Because SL414 appeared to contain the QTL allele associated
with increased SPAD value, we investigated leaf photosyn-
thesis in SL414. We found significant differences in both leaf
photosynthetic rate (Pn) and SPAD value among Sasanishiki,
SL414, and Habataki (Fig. 4). SL414 had significantly
higher Pn and SPAD values than Sasanishiki and signifi-
cantly lower values than Habataki. Although stomatal
conductance (gs) did not differ significantly between
Sasanishiki and SL414, SLA was significantly lower in
SL414 than in Sasanishiki, implying that SL414 had thicker
flag leaves than Sasanishiki. These results indicate the
association among SPAD value, SLA, and Pn.
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Fig. 1 Frequency distribution
of SPAD value of flag leaves at
heading and days-to-heading in
85 BILs derived from a cross of
Sasanishiki × Habataki (Nagata
et al. 2002). Vertical lines
denote mean parental values;
horizontal lines denote SD.
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Substitution mapping of the QTL for SPAD value

To verify the position of the QTL for SPAD value on the
long arm of chromosome 4, we used 119 F2 progeny
derived from a cross between SL414 and Sasanishiki. We
detected a QTL near RM3534 that explained 68% of total
phenotypic variance in SPAD value of flag leaves at
heading stage (Table 2). The Habataki allele increased
SPAD value by 2.3 units. A QTL for SLAwas also detected
close to RM3534, accounting for 30.7% of the total
phenotypic variance. The Habataki allele decreased SLA
by 11.1 cm2 g−1. We classified the F2 progeny by the
genotype of RM3534 (Fig. 5). F2 plants homozygous for
the Habataki allele had higher SPAD values and lower
SLAs than those homozygous for the Sasanishiki allele.

The heterozygous plants were intermediate between the
homozygotes in both traits. These results clearly confirm
that the QTLs for SPAD value and SLA are located on the
long arm of chromosome 4 and appear to be inherited as a
single Mendelian factor.

To further delimit the candidate genomic region of the QTL
for SPAD value, we genotyped 542 F2 plants derived from a
cross between SL414 and Sasanishiki and identified 13
homozygous lines with recombination near RM3534
(Fig. 6). Four lines (lines 6–9) had significantly higher
SPAD values than Sasanishiki, similar to the value of SL414.
On the basis of the phenotype and genotype data, we
delimited the candidate region of the QTL to a 1,798-kb
interval between RM5503 and RM17525. The SLA in lines
6–9 was also significantly lower than that in Sasanishiki.
This indicates that the candidate genomic region of the QTL
for SLA is also located between RM5503 and RM17525.

Discussion

Grain yield in cereals is determined by the balance between
sink size and source capacity. The genetics of sink size (e.g.,
grain size and grain number) has been well analyzed in rice
plants, and several QTLs controlling grain number per panicle
and grain size have been identified (Ashikari et al. 2005; Fan
et al. 2006; Song et al. 2007; Shomura et al. 2008; Huang et
al. 2009). On the other hand, genetic analyses of factors
affecting source capacity, such as photosynthetic rate, have
been limited, probably because of the need for time-
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Fig. 2 Chromosomal locations of QTLs for days-to-heading and
SPAD value of flag leaves at heading mapped in a set of 85 BILs
(Nagata et al. 2002). Chromosome numbers are indicated above each
linkage map. Marker names are located to the left of each linkage map.
Triangles and boxes to the right of each linkage map represent LOD

peaks of putative QTLs and their 1-LOD support intervals (van Ooijen
1992), respectively. Upward and downward triangles indicate that the
trait value was increased by the Sasanishiki or Habataki allele,
respectively.

Table 1 Putative QTLs Controlling SPAD Value of Flag Leaves at
Heading Stage and Days-to-Heading in BILs between Sasanishiki and
Habataki

Trait Chr. Flanking markera LOD Ab R2c

SPAD value 4 R514 9.1 2.2 31.3

Days-to-heading 7 G1068 5.0 2.0 13.9

8 C1121 3.7 −1.9 9.8

12 R367 5.4 2.1 16.3

a The LOD peak of each QTL was at the position of the indicated DNA
marker
b Additive effect of the Habataki allele compared with the Sasanishiki
allele
c Percentage of phenotypic variance explained by each QTL
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consuming direct measurements, complex genetic control,
and variability under various environmental conditions
(Takai et al. 2009; Yamamoto et al. 2009). However, it is
necessary to understand source ability in more detail to
increase yield potential in rice. Therefore, we focused on
chlorophyll content (SPAD value) as an index of leaf
photosynthesis.

We detected a large-effect QTL (R2=31.3%) for SPAD
value of flag leaves at heading stage on the long arm of
chromosome 4 (Fig. 2). Since no other QTLs were detected
in this population, the remaining 68.7% of phenotypic
variance may be due to environmental factors, measuring
error or false negative QTL with minor effect. Previous
studies have also detected QTLs for chlorophyll content in
this region (Yue et al. 2006; Kanbe et al. 2008). The
positions of markers flanking these QTLs were similar

among these studies, so the QTL detected here may be
same as those identified previously. Besides, the map
location of the QTL for SPAD value was different from
those of QTLs for days-to-heading, indicating the QTL for
SPAD value was not associated with a pleiotropic effect of
a QTL for days-to-heading.

We confirmed the QTL identified in this study by
substitution mapping in a set of CSSLs (Fig. 3). CSSLs
are useful to characterize and detect QTLs because
phenotypic differences can be evaluated within a uniform
genetic background (Ebitani et al. 2005; Yamamoto et al.
2009). One of the CSSLs, SL414, contained a Habataki
chromosome segment on the long arm of chromosome 4
and had significantly higher Pn and SPAD values than
Sasanishiki (Fig. 4). The values of both traits in SL414
were intermediate between Sasanishiki and Habataki. These
results indicate that the segment harboring the QTL for
SPAD value was also highly associated with increased Pn.

In general, leaf photosynthesis by C3 crops is determined
by both the CO2 supply obtained through stomata and the
fixation of CO2 in the chloroplasts (Farquhar and Sharkey
1982). Our study did not detect any difference in gs
between SL414 and Sasanishiki (Fig. 4), which indicates
that the QTL detected here is involved in CO2 fixation
rather than in CO2 supply. Rather, the difference in SPAD
value between SL414 and Sasanishiki reflects a difference
in chlorophyll content or leaf N content per unit leaf area.
Higher chlorophyll content per unit leaf area may reflect the
presence of a larger number of chloroplasts per mesophyll
cell and/or higher chlorophyll content per chloroplast in
cases where leaf thicknesses do not differ. However,
previous studies have indicated that SPAD values may
sometimes reflect variation in leaf thickness, because the
readings are based on the leaf chlorophyll’s absorption of
specific spectral bands of light, which may be influenced by
leaf thickness (Peng et al. 1993; Jinwen et al. 2009). The
SLA, which is assumed to be correlated with leaf thickness,
was significantly lower in SL414 than in Sasanihiki, and
similar between SL414 and Habataki (Fig. 4). These results
suggest that the higher SPAD value of SL414 resulted from
thicker leaves. Thicker leaves are considered to be
important for increasing leaf photosynthesis because they

Table 2 Putative QTLs Controlling SPAD Value and SLA Detected in an F2 Population Derived from SL414×Sasanishiki

Trait Chr. Flanking markera LOD Ab Dc R2d

SPAD value 4 RM3534 29.9 2.3 0.3 68.0

SLA 4 RM3534 9.6 −11.1 −1.3 30.7

a The LOD peak of each QTL was at the position of the indicated DNA marker
b Additive effect of the Habataki allele compared with the Sasanishiki allele
c Dominant effect of the Habataki allele compared with the Sasanishiki allele
d Percentage of phenotypic variance explained by QTL
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can capture light energy efficiently by more chlorophyll per
unit leaf area and they are better able to protect the area
where the chloroplast surface faces intercellular spaces,
allowing more efficient CO2 diffusion and transport
(Terashima et al. 2006). Higher leaf N content per unit leaf
area and higher gs (seen in Habataki compared with
Sasanishiki) are believed to be important factors contribut-
ing to varietal differences in leaf photosynthesis (Asanuma
et al. 2008; Takai et al. 2010). Since measurements taken
on a unit leaf area basis are expected to be influenced by
leaf thickness, the higher N content per unit leaf area in
Habataki might be also caused by thicker leaves. To verify
either leaf thickness is associated with the QTL for SPAD
value, it is necessary to conduct further in-depth studies
such as spectrophotometric chlorophyll measurement and
comparison of the cross sections of leaf blade.

Using advanced-generation progeny derived from a
cross between SL414 and Sasanishiki, we confirmed the
QTL for SPAD value and delimited the candidate region to
a 1798-kb interval between RM5503 and RM17525
(Fig. 6). Although a mutant gene associated with chloro-
phyll content, Gc, was recently mapped to chromosome 1
(Wang et al. 2008), no QTLs for SPAD value or chlorophyll
content have previously been delimited; this is the first study

in rice to identify a QTL involving a leaf photosynthesis-
related trait.

It is of interest that the QTL for SLA was also delimited
to the same region as the QTL for SPAD value. This result
strongly suggests that the QTLs for SPAD value and SLA
are associated with either the pleiotropic effects of a single
QTL or the effects of two tightly linked loci. These results
also indicate that the QTLs may play an important role in
increasing leaf photosynthesis by increasing chlorophyll
content or leaf thickening, or both. To determine whether
pleiotropy or tight linkage is responsible for the apparent
proximity of these QTLs, and to evaluate the specific
contribution of the QTLs to leaf photosynthesis in rice
plants, we are now working to clone the two QTLs.
Moreover, cloning of the QTLs and development of NILs
will help to elucidate whether an increase in leaf photosyn-
thesis could contribute to yield improvement. Because leaf
photosynthesis is one of the components of canopy
photosynthesis associated with biomass production and
yield (Peng 2000; Yoshida and Horie 2009), higher leaf
photosynthesis would be expected to increase final yield,
unless other components such as leaf area change. Our
study suggests two possible means to increase leaf
photosynthesis: morphological modification of leaves (e.g.,
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thicker leaves) and physiological modification of leaves (e.g.,
higher chlorophyll content). A significant challenge to
overcome is that morphological modifications such as thicker
leaves might be accompanied by reductions in leaf area.
Further studies are necessary to elucidate which modifications
of leaf photosynthesis could improve yield.

Materials and methods

Plant materials and cultivation

Two cultivars, Sasanishiki (japonica) and Habataki (indica),
were used in this study. Habataki is a high-yielding cultivar
from Japan (Kobayashi et al. 1990) with a greater
photosynthetic rate in the flag leaves at heading stage than
Sasanishiki (Takai et al. 2010).

We used 85 BILs (Nagata et al. 2002) and 39 CSSLs
(Ando et al. 2008) derived from a cross between Sasanishiki
and Habataki for the QTL analysis. Rice plants were grown
in a paddy field at National Institute of Agrobiological
Sciences (NIAS) in Tsukuba, Japan, in 2007. Thirty-day-old
seedlings of each line were transplanted at one seedling per
hill on 16 May. Each line was planted in a single row of 12
hills at a spacing of 15 cm between hills and 30 cm between
rows. Basal fertilizer was applied: 56 kg N, 56 kg P, and
56 kg K ha−1. Additional N fertilizer was top-dressed at
30 kg N ha−1 2 weeks after transplanting. Three plants per
line were selected for the measurement of SPAD value.

On the basis of initial results, we performed additional
analyses using SL414, a Sasanishiki-derived CSSL in
which part of the long arm of chromosome 4 is substituted
with the corresponding segment from Habataki. SL414 was
crossed with Sasanishiki, and 119 self-pollinated F2
progeny and the parents were raised in the NIAS paddy
field for traits investigation in 2008. Thirty-day-old seed-
lings were transplanted into the field on 4 June. Plant
density and fertilizer treatment were the same as in 2007.
Each F2 plant was used for the measurement of SPAD
value. For substitution mapping of the candidate QTL,
additional 423 F2 seeds were sown in a growth chamber
room, and we used DNA markers to identify 13 out of 542
(119+423) F2 plants with recombination near the QTL, and
harvested F3 seeds. From each of the 13 F3 lines, we
selected one F3 plant that was homozygous for the
recombinant chromosome identified in the F2 parent in the
growth chamber during the winter season in 2008. The F3
plants were self-pollinated, producing 13 F4 lines that were
used for substitution mapping of the target QTL. F4 plants
were grown in a randomized complete block design with
three replications in a paddy field at the National Institute
of Crop Science in Miraidaira, Japan, in 2009. Twenty-one-
day-old seedlings were transplanted at one seedling per hill

on 4 June. Each plot consisted of one row with 15 hills. The
plant density was the same as in 2007. Basal fertilizer was
applied: 60 kg N, 52 kg P, and 75 kg K ha−1. Fifteen plants
per line (five in each plot) were selected for the measure-
ment of SPAD value.

Phenotypic measurements

At heading stage, determined as the number of days from
sowing to heading of the first panicle (days-to-heading) in
five plants for each BIL and CSSL, the SPAD value of the
fully extended flag leaf on the main stem was measured
with a SPAD meter (SPAD-502, Konica-Minolta, Japan).
Three out of five plants investigated for days-to-heading
were used for the measurement of SPAD value for each BIL
and CSSL. Six readings around the middle of each leaf
blade were averaged. In 2008 and 2009, for Sasanishiki,
Habataki, SL414, and SL414 progeny, SLA of flag leaves
used for SPAD measurement was calculated as the ratio of
leaf area to leaf dry weight; lower SLA values indicated
thicker leaves. Digital images of the flag leaves were used
for measurement of leaf area with computer software
(LIA32, Nagoya University, Japan). Leaf dry weight was
determined after oven-drying.

In 2008, we measured the photosynthetic rate of
Sasanishiki, Habataki, and SL414 flag leaves at heading
stage with a portable photosynthesis system (LI-6400,
Li-Cor, Lincoln, NE, USA). Measurement was conducted on
clear days between 0900 and 1300 h under a constant
saturated light level of 2,000 μmol m−2 s−1 provided by red/
blue light-emitting diodes. The leaf chamber temperature
was maintained at 30°C, the reference CO2 concentration
was 380 μmol mol−1, and the relative humidity was 75%±
5%. Gas-exchange parameters were recorded once the
topmost expanded leaf was enclosed in the chamber and
the system software indicated that CO2, H2O, and flow in the
chamber were stabilized. One flag leaf from each of ten
different plants per cultivar or line was measured.

QTL analysis

For QTL analysis of BILs and substitution mapping of
CSSLs, 236 RFLP markers (Nagata et al. 2002) and 166
PCR-based markers (Ando et al. 2008), respectively, were
used. An additional ten SSR markers developed by
McCouch et al. (2002) and the International Rice Genome
Sequencing Project (2005) were used for genotyping
SL414×Sasanishiki F2 plants. We used four SSR markers
and one insertion-deletion (InDel) marker to determine
genotypes of 13 F3-derived lines for substitution mapping
of the target QTL. The InDel marker ID03_35 was
constructed by using sequence information in the rice
DNA polymorphism database (Shen et al. 2004). The
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sequences of the forward and reverse primers were 5′-
GCTCCGGTGGCTCTTCGTG-3′ and 5′-AGGCTTAAG
GCGAAAGGAAGT-3′, respectively. Total DNA of each
plant was extracted from leaves by the CTAB method
(Murray and Thomson 1980). Linkage maps were
constructed in MAPMAKER/EXP 3.0 software (Lander
et al. 1987). The chromosomal positions and effects of
putative QTLs were determined by composite interval
mapping in QTL Cartographer 2.0 software (Basten et al.
2002). The threshold of QTL detection was based on
1,000 permutation tests at the 5% level of significance
(Churchill and Doerge 1994; Doerge and Churchill 1996).
The additive and dominant effects and phenotypic vari-
ance explained by each QTL (R2) were estimated from the
peak LOD score. For substitution mapping of CSSLs, the
significance of the difference in SPAD value between
Sasanishiki and each CSSL was determined by Dunnett’s
test (JMP 6.0.3 software, SAS Institute, Cary, NC, USA).
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