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Abstract Diseases caused by fungal and bacterial pathogens
like Magnaporthe oryzae and Xanthomonas oryzae pv.
oryzae are responsible for considerable yield loss. Up to
now, in rice, the modification of the expression of more than
60 genes from diverse origins has shown beneficial effects
with respect to disease resistance. In this paper, we review
this large set of data to identify the best genes and strategies
to achieve disease resistance by transgenic approaches.
Altered expression of genes involved in signal transduction
and transcription may lead to many unwanted side effects,
like lesion mimic phenotypes. Moreover, modification of
resistance to abiotic stress has been neglected and should be
carefully examined in the future. Genes like resistance genes
and pathogenesis-related genes can confer broad spectrum
and high levels of resistance to several pathogens. Preformed
expression of defense is often observed but does not
necessarily lead to detrimental effects. Although examples

of gene pyramiding are scarce, they suggest that this is a
very promising strategy. More field evaluation of the
transgenic plants is required to draw final conclusions on
the usefulness of these genes for improving disease
resistance.
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Introduction

To meet the increasing demand on the world food supply, we
will have to produce up to 40% more rice by 2030 (Khush
2005). This will have to be on a reduced sowing area due to
urbanization and increasing environmental pollution. For
example, the sowing area in China decreased by eight million
hectares between 1996 and 2007 (China Statistical Bureau;
http://www.stats.gov.cn/english/statisticaldata/yearlydata/).
Improvement of yield per plant is not the only way to
achieve this goal; reduction of losses by biotic and abiotic
stress is also a solution. According to FAO estimates,
diseases, insects, and weeds cause as much as 25% yield
losses annually in cereal crops (Khush 2005). In particular,
fungal diseases can cause important losses (between 1% and
10%) regionally (Savary et al. 2000). In China alone, it is
estimated that one million hectares are lost annually because
of blast disease (Khush et al. 2009).

Fungal and bacterial pathogens represent a permanent
threat on rice cultivation. Between 1987 and 1996,
fungicides represented up to 20% and 30% of the culture
costs in China ($46 million) and Japan ($461 million)
respectively, whereas they represent approximately 10% of
the costs in Europe and the USA (http://beta.irri.org/solutions/).
Thus, a strong effort has been invested in improving disease
resistance. These efforts could now benefit from the
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knowledge gained on mechanisms underlying disease
resistance.

Since the initial definition of the plant resistance (R) genes
by Flor (1942), many R genes have been identified. The vast
majority of the known R genes is composed of proteins
carrying nucleotide-binding sites and leucine-rich repeat
motifs (NBS-LRR; Jones and Dangl 2006). Most R genes
recognize pathogen effectors developed by pathogens to
inhibit defense, although there are a few exceptions (e.g.,
Lee et al. 2009). Some of these effectors thus correspond to
the initial definition by Flor of the avirulence gene. Depending
on the presence/absence of these R genes and of the matching
avirulence product, the interaction will be incompatible (plant
is resistant) or compatible (plant is susceptible).

Many R genes have been identified in rice and most code
for NBS-LRR genes (Ballini et al. 2008; White and Yang
2009). After recognition mediated by the R gene, signal
transduction occurs and requires regulators such as MAP
kinases (Mishra et al. 2006). Finally, transcription factors
like WKRYs activate a deep transcriptional reprogramming
of the cell (Eulgem 2005), leading to the activation of
defense responses per se. These include production of
antimicrobial secondary metabolites (phytoalexins like
momilactones in rice; Peters 2006), pathogenesis-related
(PR) proteins (e.g., chitinases, glucanases, PBZ1 in rice;
Jwa et al. 2006; van Loon et al. 2006), cell wall
strengthening (Hückelhoven 2007), and programmed cell
death, leading to hypersensitive response (HR; Greenberg
and Yao 2004). The genes that act downstream of the disease
resistance pathway are collectively called defense genes.

Most of the elements involved (receptors, regulators,
transcription factors, and defense genes) are well conserved
across species. For example, the NPR1 gene is a central
regulator in both monocots and dicots. The NPR1 gene was
successfully used in several plant species like Arabidopsis
(Cao et al. 1998), rice (Chern et al. 2001), tomato
(Ekengren et al. 2003), and wheat (Makandar et al. 2006).
Similarly, the mlo gene functions in barley (Peterhänsel and
Lahaye 2005), tomato (Bai et al. 2008), and Arabidopsis
(Consonni et al. 2006). These observations are critical for
biotechnology approaches since they suggest that one gene
from one species can provide an interesting trait in another.

Preformed defense systems likely play a role in basal
resistance in limiting the growth of a normally virulent
pathogen. Preformed or constitutive defense systems involve
cuticle (Skamnioti and Gurr 2007) and cell wall (Juge 2006)
strengthening. In rice, like in other plants, silicon accumu-
lation plays direct and indirect roles in basal resistance (Ma
and Yamaji 2006). Antimicrobial molecules, called phytoan-
ticipins, can also accumulate before infection (Morrissey and
Osbourn 1999). Increasing information from Arabidopsis
and other plants indicates that the overproduction of PR
proteins confers resistance, that mutations in regulator genes

negatively regulating disease resistance can increase defense
gene expression (e.g. Noutoshi et al. 2005; Petersen et al.
2000), or that over-expression of regulator genes acting
positively on disease resistance can increase defense gene
expression (Hammond-Kosack and Parker 2003).

More than 60 genes have now been over-expressed or
mutated in rice for fundamental or applied research.Molecular
and biological studies of these transgenic plants allow a better
understanding of signaling pathways, cross talks, and patho-
gen specificities. These experiments lead to the putative
disease resistance pathway shown in Fig. 1. This figure
illustrates that genes in the three major steps of the disease
resistance pathway are known in rice, opening the possibility
to assess the usefulness of each category of gene.

Rice stable transformation via Agrobacterium tumefa-
ciens has become a routine technique in laboratories (Toki
et al. 2006). Nowadays, even if japonica is frequently used
because it is highly amenable to transformation, indica
transformation efficiency has sufficiently improved to allow
its use in functional validation experiments and field trials
in the appropriate environments.

A tool kit for breeders for marker-assisted selection was
recently described (Ballini et al. 2009). Here, we exten-
sively review the cases of improvement of disease
resistance by over-expression of transgenes. Rice blast
caused by the fungus Magnaporthe oryzae and bacterial
blight caused by Xanthomonas oryzae pv. oryzae are the
most serious and widespread diseases in rice production.
Therefore, we focused this paper on these two pathogens.
We did not review the abundant literature on strategies to
increase insect resistance (see for example Ye et al. 2009
and references therein). We provide guidelines for selecting
transgenic strategies for fungal and bacterial disease
improvement, for selecting genes, and analyzing their
effects. General elements on the different possible strategies
to improve disease resistance in plants were previously
described (Campbell et al. 2002) and are not presented here.

Rice genes improving disease resistance

Sixty rice genes for which improvement of disease resistance
was shown are presented in Tables 1, 2, 3, and 4. We selected
a gene only if the corresponding paper provided data
concerning in vivo resistance and some information on the
spectrum of pathogens that were tested. These genes were
separated into three major groups: 41 rice genes (Table 1 is a
selection of 24 the most characteristic genes, the remaining
genes are in Electronic supplementary materials (ESM),
Supplemental Table 2), five genes from plants other than rice
(Table 2), and nine genes from organisms that are not plants
(Table 3). Finally, we also review five cases of gene
pyramiding (Table 4). Figure 1 provides a few examples of
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where the rice genes are likely acting. Although the genes
tested were not all precisely positioned on the disease
resistance pathway, they can be tentatively attributed to four
major steps in this pathway: recognition, signaling, tran-
scription, and defense response.

Major resistance genes for Xanthomonas resistance (Xa
genes) and blast resistance (Pi genes) were recently
reviewed by White and Yang (2009) and Ballini et al
(2008), respectively. We selected only a few examples (Pi9
and Xa21) to illustrate the use of these R genes in
transgenics. Other genes coding for receptor-like proteins
likely involved in basal resistance such as OsWAK1 and
OsBRR1 were also included in our study. These two genes
may have broad-spectrum effects since at least for blast
disease, they were not identified as major resistance genes.

Genes with a role in signaling and transcription factors
represent the majority of the cases (30 out of 41 genes)
found in the literature. Although most of the transgenics
built in these reports were initially obtained for fundamental
research, they also provide information on their potential
for protecting plants from disease. Eight of these genes
(SPL11, XB15, OsPLDB1, OsRac1, SPL18, PACK1,
OsGAP1, and OsDR8) were originally found in rice,

whereas the other genes were found by homology to genes
in other models (ex NH1 in Arabidopsis and OsPti1 in
tomato).

Out of the nine transcription factors identified in the
literature, six are WRKYs. Their detailed effects on disease
resistance were recently reviewed (Pandey and Somssich
2009). WRKYs are also known to be involved in abiotic
stress response and development. The challenge in using
WRKY genes in transgenic is to identify genes that have a
positive effect on resistance and no or little detrimental
effects on abiotic stress and/or development.

Although 14 PR protein families are known in rice (Van
Loon et al. 2006), only PR genes from a few families have
been over-expressed.

Other plant genes improving rice disease resistance

A few genes from plants other than rice have been tested in
rice (Table 2). Not surprisingly, the central regulatory gene
NPR1 (Cao et al. 1998) belongs to this group of genes.
Three PR genes are also found, suggesting a good potential
for this large category of genes. However, more than 50
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Fig. 1 Position in the putative disease resistance signaling pathway of
the rice genes that were used in plants to improve disease resistance.
The genes listed here are the ones for which the demonstration of
usefulness was made in planta. Details on these genes are provided in
Table 1.The position of the OsDR8, OsDR10, pi21, spl18, and OsSBP
genes is not shown. This schematic view illustrates the three steps
leading to pathogen resistance: recognition via general (e.g., OsWAK1)

and specific receptors (Pi and Xa genes), signal transduction,
transcription, and defense response, involving pathogenesis-related
genes and cell death. The OsPLDβ, OsFAD7/FAD8, and OsAOS2
genes are involved in the jasmonic acid pathway and OsSSI2 in the
salicylic acid pathway. The OsLOL2, OsLSD1, OsSpl11, and OsSpl7-
genes are negative regulators of cell death, and mutants for these
genes display spontaneous lesions resembling disease.
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genes have now been identified in different plant species as
regulating disease resistance (Hammond-Kosack and Parker
2003). Although some of these genes may not work in rice
for biological reasons, the important conservation of the
disease resistance pathways between plants should allow
transfer from one plant to another. There is therefore a large
potential in this category of genes.

Transferring one gene from one species to another may
lead to unexpected effects. This was the case when the
Arabidopsis NPR1gene was transferred to rice (Fitzgerald
et al. 2004). The rice plants over-expressing AtNPR1 also
displayed an environmentally regulated and heritable lesion
mimic phenotype (see below).

Moreover, a recent report on OsWRKY45 demonstrates
that over-expressing (in japonica rice) a japonica allele of
the gene confers increased susceptibility to bacterial blight,
whereas over-expressing an indica allele of the gene
confers increased resistance to bacterial blight. In contrast,
both alleles conferred increased resistance to blast disease
(Tao et al. 2009). This finding suggests that one should be
careful when transferring one gene from one background to
another, even within the Oryza sativa species.

Non-plant genes improving rice disease resistance

Table 3 summarizes available data on non-plant genes. Two
types of genes were used. One group of genes is
represented by proteins having known antimicrobial effects.
Most of the genes reported are from fungi, one is an insect
gene (Cecropin A), and one a human gene (lactoferrin).
Side effects could be expected in these cases. For example,
Cecropin A is a known anticancer molecule (Mader and
Hoskin 2006). Moreover, the acceptance of plants for
human food containing a human protein is likely to be
very low.

A second group of genes like avirulence genes are known
to activate plant defense responses. In this case, one expects
that constitutive or inducible activation of defenses will
increase disease resistance. When avirulence genes are used
(e.g., avrXa27), pathogen-specific effects are expected. For
this reason, most of the cases deal with avirulence genes that
are broadly distributed (e.g., flagellin).

There is also a risk that such plants may show unwanted
effects because such genes have a strong potential in
inducing defense responses. For this reason, it is recom-
mended to use pathogen-inducible promoters. However,
such promoters are often either leaky or controlled by
developmental signals (Van Loon et al. 2006). Thus, the
genes that activate plant defense responses are unlikely to
be a good strategy to increase disease resistance.

We excluded from this review 19 rice genes for several
reasons (ESM, Supplemental Table 1). First, we excluded

genes that have only been tested in heterologous systems.
Second, we did not include rice genes for which only
negative effects on disease resistance were reported in rice.
This is for example the case of the over-expression of the
OsMT2b gene that confers enhanced susceptibility to blast
(Wong et al. 2004). Finally, there were genes that had only
been tested in rice cell cultures but not in entire rice plants.
There is thus no in planta demonstration of the usefulness
of these genes. These genes should be tested by stable
transformation in rice.

Disease protection quantitative effects

Where possible, we quantitatively evaluated the level of
resistance. The increase of resistance was measured as the
percentage of disease reduction as compared to the
presented wild-type controls. It is noteworthy that in most
cases, the best control was missing. This control consists in
the nullizygous plant, i.e., a non-transgenic sibling origi-
nating from a hemizygous plant. In most cases, the control
shown is a transformed plant with the empty vector. Since
rice transformation induces many somaclonal mutations,
such a control is inappropriate. In other cases (e.g., NH1;
Chern et al. 2001), several transgenics are presented,
highlighting the fact that different insertion events can
show large differences. Moreover, the disease protection
values were obtained from data obtained on a few plants.
Only field evaluation in natural conditions could give a real
idea of the effectiveness of these genes. With these caveats
in mind, effects smaller than 50% should be considered as
weak. For bacterial blight disease, the same criterion was
always used (length of lesions), whereas for blast disease
resistance, many criteria were used (lesion number, dis-
eased area, etc.). In all cases, the value presented is the
most favorable.

Independently of the pathogen, the majority of the
reported cases show disease reduction higher than 50%.
For blast, two genes (RBBI2-3 and WRKY45; Table 1)
showed the best effects with a complete absence of
symptoms. Disease reduction higher than 90% was
obtained with four other rice genes (Table 1) and the PRm
gene from maize (Table 2).

For bacterial blight, the best levels of resistance (higher
than 95% reduction of disease) were achieved with two rice
genes (OsDR10 and NH1; Table 1) and with two cases of
pyramiding (Table 4).

For sheath blight caused by Rhizoctonia solani, the best
level was achieved with pyramiding three genes (thauma-
tin-like protein, chitinase, and Xa21; Table 4). In this case,
the data also indicate that this strong effect is only due to
the combined action of the thaumatin-like and chitinase
proteins, independently of the Xa21 gene (Maruthasalam et
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al. 2007). Some excellent levels of protection were also
shown for kernel smut (caused by Tilletia barclayana; Zhu
et al. 2007) by pyramiding (Table 4).

Pyramiding was a good strategy to increase quantitative
effects of individual transgenes. For example, while the
single chitinase and thaumatin-like genes each conferred
about 80% increase of resistance toward sheath blight, the
combination of the two genes showed a reduction of 95%
of disease.

These different examples of gene pyramiding clearly
demonstrate that it is a good strategy to quantitatively
improve resistance. From the quantitative point of view, it
is noteworthy that all categories of genes (except R genes)
provide, on average, the same levels of resistance.

Disease protection qualitative effects

As pathogen populations are quite complex, it is important
to have an evaluation of the spectrum of action of the tested
genes. Unfortunately, this information is lacking in most
cases. For 27/60 genes, only one isolate of one pathogen
was tested. Clear information on the spectrum of resistance
was provided for only 11 genes. For blast resistance, nine
genes were shown to provide resistance to more than one
isolate, including RBBI2-3 and Pi21 that also show elevated
quantitative effects (Table 1). For blight resistance, five
genes showed relatively broad-spectrum resistance, includ-
ing OsDR10 plants that have high levels of resistance. The
SPL11 gene was the only one for which broad-spectrum
resistance was shown against both pathogens. However,
these plants suffer from strong developmental side effects
(see below).

There are 15 genes for which both blast and blight
disease resistance have been evaluated (Tables 1, 2, and
3). All genes protecting against blast, except the pi21
gene, were shown to also confer resistance to blight. This
is a very promising observation showing that the genes
used for one pathogen can be used for another. It is
noteworthy that the NH1 gene, a key disease pathway
regulator, does not seem efficient against blast disease,
whereas it confers good levels against blight (Chern et al.
2005; Yuan et al. 2007).

Quite surprisingly, the expression of the avrXa27 gene,
in the presence of the Xa27 gene, did not confer resistance
to blast. This may be due to the lack of induction of the
avrXa27 gene under the control of the inducible PR1
promoter. However, the PR1 gene is known to be induced
by M. oryzae (Mitsuhara et al. 2008). Alternatively, it is
likely that the events triggered by the Xa27 gene are not
efficient against M. oryzae.

There is so far no report of simultaneous improvement of
resistance against blast, blight, and sheath blight diseases.

This may be simply due to the absence of data rather than
to biological reasons since there are genes conferring
enhanced resistance to all combinations of two of these
pathogens.

Expression of defense in transgenics

For some plant genes encoding proteins involved in disease
resistance (Tables 1 and 2) and encoding avirulence
products (Table 3), one can expect perturbation of the
events downstream of the pathway, like PR gene expression
and phytoalexin production. These perturbations can occur
either before and/or after infection. Defense gene expres-
sion, often using the PR1 and PBZ1 genes as markers, was
evaluated for a large number of cases (37/55).

Elevated defense gene expression before infection was
found in 80% of the cases, and these levels could be
extremely high. For example, PBZ1 and a peroxidase gene
were found to be expressed 40 times higher in over-
expressor plants as compared to wild type in the case of the
WRKY53 gene (Chujo et al. 2007). Some upstream
signaling events were measured in a few cases. The
signaling molecule jasmonic acid was found to be less
present in plants over-expressing the WRKY13 gene (Qiu et
al. 2007). Similarly, reactive oxygen species were detected
in several cases (e. g., OsPLDβ1, Yamaguchi et al. 2009;
flagellin, Takakura et al. 2008). In one puzzling case,
OsDR8, many PRs were down-regulated before (and after)
infection, although the plants showed slightly enhanced
resistance to blast and a strong increase of susceptibility to
bacterial blight (Wang et al. 2006; Table 1). Available
micro-array data on over-expressor plants further indicate
that defense responses are often widely constitutively over-
expressed. For example, 84 genes annotated as responsive
to abiotic stress are up-regulated in plants over-expressing
OsGH3.1 (Domingo et al. 2009). Similarly, more than 430
genes involved in secondary metabolite synthesis are up-
regulated in plants over-expressing OsWRKY13, leading to
increased production of the phytoalexin momilactone (Qiu
et al. 2009a, b).

An enhanced defense response after infection was
observed in eight cases. This was rather expected for
most of them since they encode positive regulators of
defense. This was less expected for the GNS1 gene
(Nishizawa et al. 2003) since this gene encodes a classical
glucanase. It is possible that enhanced degradation of the
cell wall of M. oryzae by the additional glucanase activity
led to the release of molecules that in turn over-induced
the defense system. No change of defense induction was
observed for five genes (Cecropin A, Dm-AMP1,
rTGA2.1, OsMPK6 and Rs-AFP2; Tables 1, 2, and 3) in
spite of increased resistance.
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Side effects

For 19 cases, there was no specific mention of side effects.
No major visible side effects were clearly found for 13
genes. It is noteworthy that for six of these 32 genes for
which there are likely little or no visible side effects
(OsAOS2, Rack1, OsWRKY71, OsWRKY53, OsGAP1, and
OsSBP; Table 1), enhanced defense expression before
infection was measured. This suggests that it is possible
to increase preformed defense and disease resistance with
no obvious side effect. This seems particularly clear for the
plants over-expressing OsWRKY53 (Chujo et al. 2007). In
this case, more than 200 genes are up-regulated as indicated
by micro-array analysis, and one third of these genes,
besides genes related to defense, are related to metabolism,
transport, proteolysis, and signal transduction.

However, there are 28 cases for which detrimental side
effects were reported. Side effects were found with all kinds of
genes except receptor genes, although this may be due to an
absence of data. Genes involved in signaling and transcription
factors appeared to display frequent secondary effects, with
82% and 70% of the observed cases, respectively. Although
the number of reported cases is scarce, avirulence genes also
produced secondary effects (Table 3).

There were eight rice genes (OsMPK6, OsPti1, XB15,
OsPLDβ1, OsSSI2, OsRac1, NH1, and GNS1; Table 1) and
one bacterial gene (flagellin; Table 3) where an unexpected
lesion mimic phenotype was observed. Lesion mimic plants
are well known for their enhanced resistance (Lorrain et al.
2003), such as the spl7, spl11, and spl18 rice mutants
(Table 1). This enhanced resistance often correlates with
constitutive expression of defense genes (Lorrain et al.
2003). This is also true for the 11 cases found here showing
a lesion mimic phenotype, as constitutive expression of
defense markers was found. Thus, in these cases, it is likely
that constitutive activation of defense pathway(s) leads to
the uncontrolled and constitutive triggering of cell death.
Pathogen-inducible over-expression of these genes could
reduce this side effect while maintaining high levels of
resistance after pathogen infection.

Developmental phenotypes were also often observed (13
cases). In many cases, the plants showed a reduced height
that often correlated with enhanced expression of PR genes
before infection (Tables 1 and 2). For the genes that are
well known to be involved in plant development, increase
of disease resistance may in fact be a side effect. This may
be true for the GH3.1 and GH3.8 genes that both affect
auxin metabolism. In the case of WRKY31, a root
phenotype was found (Zhang et al. 2008), further indicating
that some side effects may have been missed when looking
at aerial parts of the plant only.

Micro-array data are available for five genes (OsPLDβ1,
OsSSI2, OsGH3.1, OsWRKY13, and OsNAC6; Table 1),

providing further information on the molecular events that
are modified in the corresponding plants. In Osssi2
knockout plants, almost 300 genes are up-regulated, among
which a large set of genes related to metabolism (71),
transcription factors (32), kinases (28), and defense (16;
Jiang et al. 2009). Quite surprisingly, plants over-
expressing the WRKY13 gene, besides over-expressing
genes of the flavonoid pathway, also displayed up-
regulation of a large set of genes involved in amino acid
(475 genes) and nitrogen (162) metabolism (Qiu et al.
2009a, b). Thus, despite this major transcriptional reprog-
ramming, these plants do not seem to have developmental
defects (Qiu et al. 2007). In the case of the OsGH3.1 gene,
the micro-array data are consistent with the developmental
phenotype. Almost 500 genes related to growth and cellular
morphology are down-regulated in the plants over-
expressing the OsGH3.1 gene (Domingo et al. 2009). Also
consistent with the improved tolerance to dehydratation and
high-salt concentrations, genes related to response to
abiotic stress are differentially regulated in the mutant.

There are four reports for which response to abiotic stress
was also indicated. This confirms a well-known observation
that biotic and abiotic stresses are strongly connected. There
were three genes for which there is an antagonism between
disease and abiotic stress resistance (OsMAPK5a, OsWRKY13,
and AtNPR1; Table 1). In these cases, the impact on abiotic
stress could not be predicted and the gain for disease
resistance is counterbalanced with the loss of resistance to
abiotic stress. The available data do not clearly indicate
whether there are cases where biotic stress resistance is
improved without affecting abiotic stress resistance. However,
there are several examples (Table 1) where abiotic stress
resistance does not seem affected. Thus, at this stage, one
should carefully examine effects on abiotic stress resistance
when manipulating genes involved in biotic stress resistance.

The complex case of the OsNAC6 gene demonstrates
that it will probably be difficult to use this category of
genes to improve stress tolerance (Nakashima et al. 2007).
Plants constitutively over-expressing OsNAC6 are more
resistant to M. oryzae and abiotic stresses but have
abnormal plant growth. To try to circumvent this side
effect, the OsNAC6 gene was over-expressed under stress-
inducible promoters. The resulting plants did not show the
initial developmental defect, were resistant to abiotic stress,
but were no more resistant to M. oryzae.

Transgene strategies

The vast majority (75%; for details, see Tables 1, 2 and 3 as
well as ESM, Supplemental Tables 1 and 2) of the cases of
transgenic plants were made in the japonica subspecies.
This is a consequence of the fact that japonica rice is easier
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to transform than the indica type. Nipponbare was the
japonica cultivar used in most cases (16 genes), reflecting
the fact that this is the original genotype adopted by the rice
community for genomic studies.

We only found three examples where inducible pro-
moters were used. In the case of the avirulence gene
avrXa27, this was necessary to avoid massive HR cell death
triggered by the recognition of the product of the avirulence
gene and the corresponding major resistance gene Xa27
(Tian and Yin 2009). In the case of the OsNAC6
transcription factor, this was needed to avoid side effects
(growth retardation). Moreover, the permanent activation of
some disease signaling pathways caused by the use of a
constitutive promoter has a metabolic cost that could be
measured in terms of carbohydrate storage losses (see
below). In one case of pyramiding, several promoters were
used, limiting potential silencing issues (Kim et al. 2003). It
is likely that inducible promoters will be required in the
future to limit side effects (see below) and yield penalty.
Finding such specific promoters is one of the major
challenges in this field, and current experiments on whole
transcriptome analysis under different biotic and abiotic
stresses will provide numerous candidate promoters for
cloning.

The vast majority of the favorable effects (46 out of 60)
on disease resistance were obtained by over-expressing
positive regulators. In the case of the OsRac1 gene, a
dominant constitutively active form of the protein was used
(Thao et al. 2007). For genes that are negative regulators,
two main approaches were taken: silencing using RNAi and
insertion mutants. In one case, a dominant negative allele
was introduced (rTGA2.1; Fitzgerald et al. 2004).

We only found a few cases (Table 4) of gene pyramid-
ing. The pyramiding was obtained either by crossing
individual lines (e.g., Datta et al. 2002) or by co-
bombardment of separate transgenes (e.g., Kim et al.
2003). We found no example of several transgenes borne
on one single T-DNA, indicating that transferring several
transgenes in one single transformation event is not a
common strategy.

Finally, it should be noted that the general issues relative
to GMOs apply for the plants described in this review. For
acceptance of these products, marker-free plants will be
required. RNAi plants are also likely to be more easily
accepted as no new protein is produced, although co-
silencing may also lead to unwanted side effects.

Conclusions and recommendations for future transgenic
approaches

Examples of transgenic rice plants expressing genes related
to disease resistance have tremendously increased in the

past decade. With the publication of the first case of
improvement of resistance by over-expressing the Rir1b
gene (Schaffrath et al. 2000), more than 60 other cases are
now available (Table 1). Besides providing information on
the disease regulation networks in rice, they also represent a
solid sample of examples for the evaluation of transgenic
strategies. The key elements coming from this review are
listed in Box 1. Based on the review of these 60 cases,
several recommendations can be made.

The 60 genes over-expressed or silenced in rice
- Plant genes
41 rice genes and 5 genes from other plants
5 receptors, 22 signalisation, 9 transcription, 7 PR, 3 other
- Genes from micro-organisms
4 elicitors and 5 with antimicrobial properties

Transgenic strategy
- Promoters
58 cases of constitutive and 3 cases of inducible promoters
- Type of mutant
46 over-expresser constructs, 14 knock-out mutants
- Gene pyramiding
5 cases involving receptor and PR genes

Side effects
- 80% plants show modified defense expression before infection
- 28 genes induce negative side effects
including 14 lesion mimic phenotypes, 13 developmental defects

Best genes on quantitative and qualitative criteria
pi21, PRm, RBBI2-3, OsDR10, OsDBP, defensins

If examples of gene pyramiding (Table 4) are excluded,
this represents the individual examination of the potential
of 56 genes (Tables 1, 2, and 3). When excluding genes for
which detrimental side effects were observed, only half (28)
of the genes remain.

The over-expression or silencing of genes involved in
signaling and transcription often leads to negative side
effects (e.g., lesion mimics, impaired plant growth; Tables 1,
2, and 3). Thus, one should be careful when using genes
involved in signaling and transcription for transgenic
strategies.

Alternatively, inducible promoters should be used to
reduce the risk and the extent of side effects. This was done,
with some success, with the OsNAC6 gene (Nakashima et al.
2007).

Surprisingly, despite the large number of known secreted
proteins from pathogens, only a few were used (e.g., pemG1;
Table 3). However, pathogen genes coding for avirulence
products may not be the best candidates for transgenic
approaches as they often trigger secondary effects.

With the example of impaired root development ob-
served for the OsWRKY31 gene (Zhang et al. 2008), one
should carefully characterize transgenic plants. An exten-
sive phenotyping with respect to abiotic stress tolerance and
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development seems to be required to detect subtle side
effects. Available data still suggest that it should be possible
to improve resistance to biotic stress without negatively
affecting abiotic stress resistance.

When applying quantitative requirements for the 28
genes not associated with side effects, a few genes clearly
stand out as favorable, depending on the pathogen. For
blast disease only, the pi21, PRm, and RBB12-3 genes are
amongst the best (disease reduction >90%). For bacterial
blight disease only, OsDR10 alone provides more than 95%
reduction of symptoms. For sheath blight only, the best
gene so far seems to be the Dm-AMP1 gene (Table 1).
When applying qualitative and quantitative requirements
for the 28 genes without side effects, only a few genes
providing resistance to several pathogens can be found. For
combined blast and bacterial blight disease resistance, the
OsSBP gene is the only one providing increased resistance,
although the level of this resistance is rather low (50%).
Defensins (Dm-AMP1 and Rs-AFP2) seem to confer good
levels of resistance to both blast and sheath blight. These
seven genes are amongst the best genes so far for use in
transgenic approaches.

R genes and PR genes seem to be a good class of genes
to use for transgenic approaches. Plants over-expressing
these genes display very little side effects but strong (but
likely not durable) protection effects for R genes as well as
for PR genes. Thus, very beneficial and straightforward
effects will likely be obtained in future transgenic plants
over-expressing R genes and PR genes. Defensins seem to
have particularly interesting effects (Table 2). While
ignored for a long time in rice, defensins seem to exist in
rice (Silverstein et al. 2007). Along with the eight classes of
PR genes that have not yet been over-expressed in rice, we
also suggest using defensins and other small peptides in
future transgenic approaches.

It is obvious that missing data limit the possible analysis.
It is likely that many genes show protection effects against
several pathogens and multiple isolates of one pathogen.
One recommendation would be, for the future, that several
pathogens and isolates should be tested.

Although we did not review them here, there are several
examples of successful improvement of viral resistance by
transgenic approach. Expression of the RF2a and RF2b
genes provided RTBV resistance (Dai et al. 2008). There
are also several cases of improvement of RYMV resistance
by a transgenic approach (Pinto et al. 1999; Kouassi et al.
2006). In all these cases, no side effects were observed,
indicating that except for potential durability issues, these
strategies are efficient.

We identified 13 negative regulators for which a beneficial
effect was obtained in knockout plants (Table 1). As in the
case of the pi21 gene where good alleles exist in nature, one
can expect to find interesting alleles of negative regulators by

mutational approaches. With this respect, the Tilling tech-
nology (Till et al. 2007) opens the possibility of finding
agronomically interesting alleles of negative regulators.

It was previously shown with a limited subset of 35 rice
genes involved in disease resistance that these genes tend to
co-localize with blast disease quantitative trait loci (QTLs).
These genes were found in 72% of the cases in genome
areas containing QTLs, and this was significantly different
from randomly selected genes (Vergne et al. 2008). In a
similar way, the rice genes presented in this updated list of
genes involved in disease resistance were tested for co-
localization with blast QTLs. For the 41 genes for which
favorable disease resistance effects could be produced in
transgenic rice (Table 1 and ESM, Supplemental Table 2),
90% were found in blast QTLs. This further supports the
idea that disease regulators probably explain many disease
resistance QTLs. Thus, the genes of Table 1 and ESM,
Supplemental Table 2 can be used as markers for marker-
assisted selection.

There are as of yet only a very limited number of
examples of gene pyramiding (Table 4). However, these
examples are very promising as the corresponding plants
show high levels of resistance against several pathogens,
and when this was measured, no side effect was observed.
Mixed planting of transgenic lines should also be efficient
for controlling disease epidemics as shown using wild-type
mixtures for blast resistance (Zhu et al. 2000).

It is important to note that the final grain yield has not yet
been tested in most cases (e.g., Xa21; Tu et al. 2000). Only
two cases of transgenic plants listed here were tested in the
field (hrf1plants, Table 3; Xa21, chitinase and Bt toxin
plants, Table 4). Although more than 285 GM field trials
across the world were performed between 1990 and 2008
(http://www.gmo-compass.org/eng/database/plants/64.rice.html),
it is difficult to establish how many assays are planted for
rice. Thus, most of the results discussed here need to be
validated in the field.

Finally, the question of durability of these transgenic
plants needs to be addressed. Resistance in transgenic
plants over-expressing R genes is likely to be overcome by
the corresponding pathogen. We can make this conclusion
based on the many natural situations where newly intro-
gressed R genes did not last more than 1 to 2 years in the
case of blast (Correa-Victoria et al. 2004). In contrast, rice
plants over-expressing R genes for which the corresponding
avirulence product is not highly polymorphic could be
more durable, as pathogens are less likely to harbor
mutations circumventing recognition. We have no knowl-
edge on the durability of resistance conferred by genes like
PR genes and regulators. These genes could be more
durable than genes for which the corresponding protein is
in close contact with the pathogen. In this case, the
development by the pathogen of counter-defense systems
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could be more difficult. However, the recent finding that
many effectors inhibit plant pathogen defense may lead to
poor durability of these solutions. Establishing the durabil-
ity of the transgenic plants resistant to disease represents a
major scientific challenge for the coming decades.
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