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Introduction
Plant growth and development are greatly affected by 
biotic and abiotic stresses, including pathogen attacks, 
insect herbivory, extreme temperatures, high salinity and 
various other factors. To adapt to adverse environments, 
plants have evolved intricate regulatory mechanisms at 
the molecular, physiological, biochemical and metabolic 
levels (Nejat et al. 2017). For example, after perceiving 
the stimulation, plants promptly and effectively initiate 
extensive transcriptional reprogramming of gene expres-
sion, generating a variety of signaling molecules, includ-
ing phytohormones, reactive oxygen species (ROS), 
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Abstract
The transcription factor WRKYs play pivotal roles in the adapting to adverse environments in plants. Prior research 
has demonstrated the involvement of OsWRKY70 in resistance against herbivores and its response to abiotic stress. 
Here, we reported the functional analysis of OsWRKY70 in immunity against fungal diseases and cold tolerance. 
The results revealed that OsWRKY70 was induced by various Magnaporthe oryzae strains. Knock out mutants of 
OsWRKY70, which were generated by the CRISPR/Cas9 system, exhibited enhanced resistance to M. oryzae. This 
was consistent with fortifying the reactive oxygen species (ROS) burst after inoculation in the mutants, elevated 
transcript levels of defense-responsive genes (OsPR1b, OsPBZ1, OsPOX8.1 and OsPOX22.3) and the observation 
of the sluggish growth of invasive hyphae under fluorescence microscope. RNA sequencing (RNA-seq) and 
quantitative real-time PCR (qRT-PCR) validations demonstrated that differentially expressed genes were related to 
plant-pathogen interactions, hormone transduction and MAPK cascades. Notably, OsbHLH6, a key component of 
the JA signaling pathway, was down-regulated in the mutants compared to wild type plants. Further investigation 
confirmed that OsWRKY70 bound to the promoter of OsbHLH6 by semi-in vivo chromatin immunoprecipitation 
(ChIP). Additionally, the loss-function of OsWRKY70 impaired cold tolerance in rice. The enhanced susceptibility in 
the mutants characterized by excessive ROS production, elevated ion leakage rate and increased malondialdehyde 
content, as well as decreased activity of catalase (CAT) and peroxidase (POD) under low temperature stress was, 
which might be attributed to down-regulation of cold-responsive genes (OsLti6b and OsICE1). In conclusion, our 
findings indicate that OsWRKY70 negatively contributes to blast resistance but positively regulates cold tolerance in 
rice, providing a strategy for crop breeding with tolerance to stress.
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calcium ions (Ca2+) (Buscaill et al. 2014; Ng et al. 2018; 
Chen et al. 2020). This stress-responsive reprogram-
ing requires the coordinated and precise timing of the 
involvement of different types of transcription factors 
(TFs) in both temporal and spatial dimensions (Khan et 
al. 2018). Genetic and molecular studies have elucidated 
the functional attributes of TF families such as WRKY, 
AP2/ERF, NAC, MYB and bHLH in plants (Ng et al. 
2018; Kajla et al. 2023).

WRKY TFs are among the largest transcriptional regu-
latory families in plants. These proteins were divided into 
three subgroups, namely groups I, II and III, according 
to the number of WRKY domains and the type of zinc 
finger structure (Eulgem et al. 2000; Rushton et al. 2010). 
Up to now, WRKY TFs have been identified in differ-
ent plant species, including Arabidopsis thaliana, Gly-
cine max, Gossypium hirsutum, Oryza sativa, Solanum 
tuberosum, Triticum aestivum, Zea mays (Khoso et al. 
2022; Song et al. 2023; Javed et al. 2023). For instance, 
there are 90 and 128 WRKYs in Arabidopsis thaliana 
and Oryza sativa, respectively (Tian et al. 2020). Some 
WRKY TFs have been evaluated for their pivotal roles in 
plant growth and development (Wang et al. 2023a). For 
example, AtWRKY10 and AtWRKY41 are involved in 
seed development and dormancy (Ding et al. 2014; Xi et 
al. 2021), while AtWRKY23 promotes lateral root growth 
in Arabidopsis (Grunewald et al. 2012). The functions 
of OsWRKY11, OsWRKY36 and OsWRKY53 have been 
separately demonstrated in the flowering process, plant 
height and grain size in rice, respectively (Cai et al. 2014; 
Lan et al. 2020; Tian et al. 2017).

WRKY TFs serve as critical regulators in plant immune 
response, specifically binding to W-box cis-element (T)
(T)TGAC(C/T) in the promoter region of target genes 
to modulate transcription (Bakshi et al. 2014; Viana 
et al. 2018; Saha et al. 2023). In Arabidopsis, at least 
20 WRKY genes have been identified as playing sig-
nificant roles in diseases or insect resistance, includ-
ing AtWRKY28/33/55/70/75 (Li et al. 2006; Chen et al. 
2013; Wang et al. 2019, 2020; Zhou et al. 2020; Saha et 
al. 2023). In rice, overexpression of OsWRKY67 up-reg-
ulates defense-related genes (PR1a, PR1b, PR4, PR10a 
and PR10b), as well as leads to rapid induction of ROS 
upon stimulation with chitin and flg22 (Liu et al. 2018). 
The adaptation results from the interplay between 
WRKYs and a variety of plant hormones. For example, 
OsWRKY72 directly binds to the promoter of AOS1, 
which is the jasmonic acid (JA) biosynthesis enzyme 
gene, negatively regulates JA synthesis and resistance to 
Xanthomonas oryzae pv oryzae (Xoo) infection (Hou et 
al. 2019). OsWRKY42 is a negative regulator to M. oryzae 
via repressing JA signaling and OsWRKY45-2 directly 
activates OsWRKY13, whose encoding protein in turn 
transcriptionally suppresses OsWRKY42/OsWRKY45-2 

to regulate blast resistance (Cheng et al. 2015). OsNPR1, 
a key regulator of salicylic acid (SA)-mediated resistance 
against fungal, bacterial disease and herbivores (Yuan et 
al. 2007; Feng et al. 2011), is downstream of OsWRKY03 
(Liu et al. 2005). Previous research has documented that 
WRKY TFs play critical roles in plant immune response 
as one of the downstream substrates of the mitogen-
activated protein kinase (MAPK) cascades. For instance, 
OsMKK10-2-OsMPK3/OsMPK6-OsWRKY31 module 
participates in the biosynthesis of secondary metabo-
lite camalexin to regulate defense for rice blast pathogen 
(Wang et al. 2023c). OsWRKY53 is downstream of MAPK 
cascades, meanwhile, it functions as a negative feedback 
modulator of OsMPK3/OsMPK6 in response to striped 
stem borer (SSB) (Hu et al. 2015). Moreover, OsWRKY53 
acts as an early suppressor of induced defenses to medi-
ate the MAPK-regulated OsWRKY24/33/70 expression, 
as well as SSB-induced JA, JA-isoleucine (JA-Ile) and 
ethylene (ET) biosynthesis (Hu et al. 2015). Collectively, 
these studies confirm that WRKY genes might contribute 
to multiple biotic stresses through complex signaling cas-
cades such as ROS, plant hormones and MAPKs.

In the past decades, WRKYs have gained extensive 
attention due to their functions in involving tolerance 
against abiotic stress (Khoso et al. 2022; Goyal et al. 
2023). For example, AtWRKY25/26/33 positively medi-
ates tolerance to heat stress in Arabidopsis (Li et al. 
2011). OsWRKY10 negatively regulates thermotoler-
ance in rice by modulating ROS homeostasis and hyper-
sensitive response (Chen et al. 2022). Overexpression 
of OsWRKY76 up-regulates peroxidase gene OsPrx71 
and lipid metabolism gene OsBURP13/OsRAFTIN1, 
thus alleviating the damage of low temperatures in rice 
(Yokotani et al. 2013). Some studies have highlighted the 
relationship of abiotic stress with WRKY genes by regu-
lating the dehydrate-responsive element binding proteins 
(DREBs) or C-repeat binding factors (CBFs). In particu-
lar, the OsWRKY63-OsWRKY76-OsDREB1B signaling 
cascade module is involved in the regulation of chill-
ing tolerance (Zhang et al. 2022b). OsWRKY28 confers 
salinity tolerance by directly activating OsDREB1B in 
rice (Zhang et al. 2023). Additionally, overexpression of 
OsWRKY55 reduced drought tolerance, is consistent 
with accelerated water loss and massive accumulation of 
ROS (Huang et al. 2021).

It has been confirmed that several OsWRKY TFs play 
multiple roles in the adaptation to both biotic and abi-
otic stress in rice. For instance, OsWRKY10 is involved 
in resistance to fungus and thermotolerance (Wang et al. 
2023b; Chen et al. 2022). OsWRKY24 positively regulates 
fungal disease resistance, which has been identified as a 
potential candidate gene affecting cold sensitivity (Yoko-
tani et al. 2018; Wu et al. 2023). OsWRKY53 acts as a 
negative modulator in resistance of bacterial blight, cold 
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and salt tolerance (Xie et al. 2021; Tang et al. 2022b; Yu 
et al. 2023), as well as a positive regulator in blast resis-
tance (Chujo et al. 2007). OsWRKY76 plays opposite 
roles in blast resistance and cold stress tolerance (Yoko-
tani et al. 2013). Empirical evidence suggests that the 
adaption of a variety of stress is associated with the cross-
talk between WRKYs and phytohormones. For example, 
overexpression of OsWRKY13 enhanced rice resistance 
to M. oryzae and Xoo, which was accompanied by the 
activation of SA signaling pathways and the suppression 
of JA signaling pathways (Qiu et al. 2007). OsWRKY45-1 
and OsWRKY45-2 are involved in JA and SA signaling, 
whereas they play opposite roles in bacterial disease 
resistance (Tao et al. 2009). In addition, OsWRKY45-1 
and OsWRKY45-2 act as negative and positive regulators 
in abscisic acid (ABA) signaling, respectively, while only 
the latter negatively regulates the tolerance of salt stress 
(Tao et al. 2011). Furthermore, knock out of OsWRKY53 
mutants confer rice cold tolerance at the booting stage 
by repressing the anther gibberellin content (Tang et 
al. 2022b). Therefore, WRKY proteins are potentially 
important components in plant biotic and abiotic stress 
responses and are associated with an array of signaling 
crosstalk.

OsWRKY70 encodes a rice WRKY TF belonging to 
group I, characterized by the presence of two WRKY 
domains (Zhang et al. 2015; Li et al. 2023). The resistance 
to herbivores of OsWRKY70 in rice has been investigated 
(Li et al. 2015; Ye et al. 2019). However, whether and how 
OsWRKY70 affects rice immunity to fungal disease and 
its association with abiotic stress have not been reported. 
Our previous study has demonstrated that OsWRKY70 is 
induced by cold stress (Li et al. 2023). Here, we observed 
that the transcript level of OsWRKY70 was up-regulated 
by different strains of M. oryzae. The biological functions 
of OsWRKY70 were also investigated using knock out 

mutants of OsWRKY70. Our findings revealed that the 
loss-function of OsWRKY70 drastically enhanced resis-
tance against M. oryzae, while attenuating cold tolerance 
in rice, demonstrating that OsWRKY70 plays opposite 
roles in immunity and cold stress response.

Results
OsWRKY70 is a Fungal Pathogen-Induced Gene
The previous finding that OsWRKY70 acts as an early 
regulator of plant response to herbivores (Li et al. 2015) 
inspired us to investigate its potential role in immunity 
against fungal diseases. We first assessed the expression 
level of OsWRKY70 by quantitative PCR (qPCR) after 
spray inoculation with M. oryzae strain 318-2. The results 
showed that the transcript level of OsWRKY70 was rap-
idly up-regulated upon infection, achieving a peak of 
11.4-fold at 24 h post-inoculation (hpi) (Fig. 1A). To con-
firm whether the specific fungal pathogens, strains R01-1 
and 110-2 were examined. Obviously, the expression of 
OsWRKY70 was significantly induced by these strains, 
resulting in an increase of 9.5-fold and 15.6-fold at 48 hpi, 
respectively (Fig.  1B, C). Overall, these results indicate 
that OsWRKY70 exhibits distinct responses to diverse 
fungal pathogens.

Generation and Characterization of OsWRKY70 Knock Out 
Mutants
To elucidate the function of OsWRKY70, two homozy-
gous mutants, designated  oswrky70-7 and oswrky70-10, 
were generated by CRISPR/Cas9-mediated genome edit-
ing. They exhibited a single base A and T insertion in the 
target sequence of OsWRKY70, respectively (Fig.  2A), 
resulting in the early termination of translation and thus 
loss of the conserved WRKY domain (Fig.  2B). Under 
field condition, our observations revealed that there was 
no significant difference between the mutants and wild 

Fig. 1  M. oryzae strains infection induced the expression of OsWRKY70. (A-C) 2-week-old seedlings of NIP plants were inoculated with rice blast by spray-
ing method. The qPCR analysis of OsWRKY70 expression levels at 0, 24 and 48 h post-inoculation with M. oryzae strains 318-2 (A), R01-1 (B) and 110-2 (C). 
OsActin was used as an internal control gene. The expression level of OsWRKY70 in plants under normal condition was set as 1. Data are the means ± SD 
of three biological replicates. Asterisks indicate significant differences by the Student’s t-test (*P < 0.05, **P < 0.01)
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Fig. 2  Generation of mutants and investigations of agronomic traits. (A) Knock out of OsWRKY70 gene by CRISPR/Cas9 technology. Target sequences of 
single-guide RNA (sgRNA) were listed. The mutation sites were indicated in red. Sequencing results of the OsWRKY70 in the mutants and wild type. (B) 
Schematic diagrams of OsWRKY70 in knock out mutants. (C, D) The plant height at seeding stage (C) and heading stage (D). Scale bar = 2 cm and 1 dm, re-
spectively. (E,F) The grain length (E) and grain width (F). Scale bar = 1 cm, n = 20. (G-I) The Statistical analysis of grain length (G), grain width (H) and 1000-
grain weight (I). Data are the means ± SD of three biological replicates. Asterisks indicate significant differences by the Student’s t-test (*P < 0.05, **P < 0.01)
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type in terms of plant height, the tiller count, flag leaf 
and panicle length (Fig.  2C, D; Supplemental Table 2). 
Interestingly, the grain length of the mutants was nota-
bly greater than that of wild type, while the grain width 
exhibited a slight increase in oswrky70-10, resulting in 
a promotion in 1000-grain weight of mutants as com-
pared to wild type (Fig. 2E-I). These results suggest that 
the loss-function of OsWRKY70 affects rice grain shape 
rather than its growth and development.

Loss-Function of OsWRKY70 Enhances Resistance Against 
M. Oryzae
To ascertain the involvement of OsWRKY70 in rice 
blast resistance, we first performed spray inoculation on 
2-week-old seedlings with M. oryzae 318-2. At 5 days 
post-inoculation (dpi), the mutants exhibited a reduced 
overall severity blast compared to wild type (Fig.  3A), 
as determined by a decrease in the lesion numbers by 
approximately 47.2% (Fig.  3B). Next, measurement of 
fungal growth in planta, as revealed by analyzing the 
genomic DNA level of the MoPOT2 gene of M. oryzae, 
indicated that oswrky70-7 and oswrky70-10 supported 
less fungal growth, resulting in a reduction of 73.3% 
and 97.0%, respectively, as compared with that in wild 
type (Fig.  3C). Additionally, we conducted inoculation 
to detached leaves and punch-inoculated at 4-week-old 
seedings with strain 318-2. Consistent with previous 
findings, the mutants were less susceptible to rice blast 
than wild type, manifesting as significantly reduced dis-
ease lesions and lower fungal biomass (Fig. 3D-F; Figure 
S1). To further investigate the growth characteristics of 
M. oryzae spores, we infected rice leaf sheath with GFP-
tagged strain RB22. At 24 hpi, we observed that almost 
no appressoria were formed in the leaf sheath cells of 
mutants, whereas maturing appressoria were found in 
those of wild type (Fig.  3G). At 48 hpi, only a limited 
number of invasive hyphae with no branch were pres-
ent in the mutant cells, while numerous invasive hyphae 
freely spread to adjacent cells in wild type (Fig. 3H). Col-
lectively, these results demonstrate that OsWRKY70 neg-
atively regulates rice immune response against M. oryzae.

ROS Accumulation and Up-Regulated Defense Responsive 
Genes Enhance Resistance Against M. Oryzae in the 
Mutants
ROS bursts typically trigger plant defense responses (Li 
et al. 2021). Firstly, we conducted the analysis of ROS 
in the mutants and wild type after inoculation with M. 
oryzae by histochemical staining. The results showed 
that the presence of numerous reddish-brown spots on 
the leaves of mutants upon staining with 3, 3’-diamino-
benzidine (DAB) and a significant increase in the num-
ber of blue dots were observed on the mutant leaves by 
nitro-blue tetrazolium (NBT) staining compared with 

those of wild type (Fig. 4A, B). The findings indicate that 
enhanced accumulation of H2O2 and superoxide anion 
probably contribute to resistance against rice blast dis-
ease. Subsequently, we investigated the expression pat-
terns of defense-related genes. The results revealed that 
OsPBZ1, OsPOX8.1 and OsPOX22.3 were dramatically 
up-regulated in the mutants compared to wild type 
before inoculation, except for OsPR1b (Fig. 4C-F). Upon 
exposure M. oryzae strain 318-2, all four genes were a 
particularly notable up-regulation in the mutants com-
pared with wild type (Fig.  4C-F). It suggests that loss-
function of OsWRKY70 activate defense response, which 
might play a pivotal role in response to biotic stress in 
rice.

Transcriptome Analysis of OsWRKY70 Knock Out Mutant 
and qPCR Analysis
To further elucidate mechanisms underlying OsWRKY70-
mediated immunity response in rice, we examined gene 
expression differences between oswrky70-7 (W7) and NIP 
(N) under normal condition and 48  h post-inoculation 
with M. oryzae using RNA sequencing (RNA-seq). Sam-
ple correlation and principal components analysis (PCA) 
of all genes showed that the three replicates of each 
treatment clustered together, suggesting good biologi-
cal replicability (Supplemental Fig. 2). Rice genes whose 
transcript abundance showed a fold change (FC) ≥ 2 and 
false discovery rate (FDR) ≤ 0.01 were defined as differen-
tially expressed genes (DEGs). We observed significant 
clustering differences between W7 and N under normal 
condition, which identified 2210 DEGs, including 1205 
up-regulated and 1005 down-regulated genes. The data 
revealed that knock out of OsWRKY70 led to different 
transcript profiles. Additionally, a comparison of W7 and 
N at 48 hpi revealed 968 DEGs, containing 482 up-regu-
lated genes, as well as 486 down-regulated genes in the 
mutant (Supplemental Fig.  2). However, the differences 
were not significantly enlarged by biotic stress.

KEGG classification illuminated the functional roles 
of these DEGs were mainly enriched into such as plant-
pathogen interaction, plant hormone signal transduction, 
MAPK signal cascade and other metabolic processes 
(Fig.  5A, B). Among them, several encoding puta-
tive NBS-LRR disease resistance protein genes, LOC_
Os11g44960, LOC_Os11g45050 and LOC_Os11g45180, 
as well as the gene LOC_Os07g44130 in phenylpro-
panoids metabolism were significantly up-regulated in 
W7 (Fig.  5C). In addition, OsbHLH6, OsUGT74H4 and 
OsWRKY76 were negative regulators of disease resis-
tance involved in JA, SA and MAPK cascade signaling, 
respectively (Yokotani et al. 2013; Meng et al. 2020; Wu 
et al. 2022), were also dramatically down-regulated in 
the mutant after inoculation (Fig. 5C). The findings indi-
cate that complex regulatory networks are activated in 
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timely manners, which is crucial for rice blast resistance. 
To further screen candidate downstream target genes 
associated with the immune response of OsWRKY70, the 
leaves of 2-week-old mutants and wild type were indi-
vidually collected for qPCR analysis after inoculation. 
The results revealed that the expression level of hormone, 

MAPK signaling and metabolic process genes was con-
sistent with the RNA-seq analysis (Fig. 5D-I).

OsWRKY70 Interacts with Promoter of OsbHLH6 in Vitro
Our finding revealed that the expression level of Osb-
HLH6 was down-regulated in the mutants (Fig.  5E). To 
further explore whether OsbHLH6 is the candidate target 

Fig. 3  Loss-function of OsWRKY70 enhance resistance to M. oryzae. (A) Spray inoculation with M. oryzae spores on seedlings of mutants and wild type. 
(B) Lesion numbers on inoculated leaves at 5 days post-inoculation, n = 5. (C) Blast fungus biomass was determined by qPCR analysis using the ratio of M. 
oryzae DNA (MoPOT2) to rice DNA (OsAcitn) in infected leaves. Data are the means ± SD of three biological replicates. Asterisks indicate significant differ-
ences by the Student’s t-test (*P < 0.05, **P < 0.01). (D) The detached leaves of mutants and wild type were inoculated with the M. oryzae. Scale bar = 1 cm. 
(E) Lesion length was determined on leaves at 5 days after inoculation, n = 5. (F) Relative fungal biomass in the necrotic regions of the detached leaves 
was assessed by qPCR of the fungal MoPOT2 and normalized to rice OsActin. Data are the means ± SD of three biological replicates. Asterisks indicate 
significant differences by the Student’s t-test (*P < 0.05, **P < 0.01). (G, H) Fluorescence microscopic observation of M. oryzae strain RB22-GFP infection on 
leaf sheath at 24 hpi (G) and 48 hpi (H). Scale bar = 20 μm
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Fig. 4  ROS accumulation and up-regulated defense responsive genes enhance M. oryzae resistance in rice. (A, B) DAB staining (A) and NBT staining 
showed H2O2 and superoxide anion accumulation in leaves from 2-week-old seedings cultivated in normal culture and after inoculation with M. oryzae. 
(C-F) Expression levels of defense-responsive genes OsPBZ1 (C), OsPOX8.1 (D), OsPOX22.3 (E) and OsPR1b (F) in the leaves at seeding stage without in-
oculation and post-inoculation with M. oryzae. OsActin was used as an internal control. The expression level of the tested genes in wild type plants under 
normal condition was set as 1. Data are the means ± SD of three biological replicates. Asterisks indicate significant differences by the Student’s t-test 
(*P < 0.05, **P < 0.01)
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Fig. 5  Transcriptomic analysis of oswrky70-7 before and after blast inoculation, as well as qPCR analysis to verify some DEGs. (A, B) KEGG pathway analysis 
of the DEGs between the mutant and wild type without inoculation (A) and 48 h post-inoculation (B) with M. oryzae 318-2. (C) Heatmaps showing the 
part of DEGs related to plant-pathogen interaction, plant hormone signal pathway, MAPK signaling pathway and metabolism. (D-I) Quantitative PCR 
analysis of OsWRKY76 (D), OsbHLH6 (E), LOC_Os11g101710 (F), LOC_Os03g09260 (G), LOC_Os07g44130 (H) and LOC_Os07g35350 (I). 2-week-old wild-type 
mutants and wild type plants were grown in soil under 16 h light/8 h dark conditions and were treated under inoculation for 0 and 48 h. The leaves 
were collected for RNA extraction. Three biological replicates were performed. Relative expression levels were normalized by the transcript level of the 
OsActin gene as an internal control and the expression level of each gene of interest in wild type plants under normal condition was set as 1. Data are the 
means ± SD of three biological replicates. Asterisks indicate significant differences by the Student’s t-test (*P < 0.05, **P < 0.01)
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gene of OsWRKY70 in immune response, we initially 
analyzed the promoter region of OsbHLH6 and found 
ten W-box elements (Supplemental Table 3; Fig.  6A). 
Notably, the candidate fragments encompassed one or 
two core sequences (TGAC) characteristic of W-box. 
Then, we conducted a semi-in vivo chromosome immu-
noprecipitation qPCR (ChIP-qPCR) assay to verify the 
interaction, which employed the purified recombinant 
His-OsWRKY70 protein (Fig.  6B; Supplemental Fig.  3) 
and DNA fragments of rice genomic. The ChIP-qPCR 
results confirmed a significant approximately 4.0-fold 
enrichment of the P1 fragment in His-OsWRKY70 
compared to the His control, while no enrichment was 
observed for the P2 fragment (Fig.  6C). These findings 
suggest that OsbHLH6 might serve as a downstream tar-
get gene for OsWRKY70.

Loss-Function of OsWRKY70 Impairs Cold Tolerance in Rice
Our previous study that OsWRKY70 was induced by cold 
stress (Li et al. 2023) prompted us to investigate whether 
OsWRKY70 is involved in cold tolerance. Consequently, 
2-week-old seedlings were subjected to 4  °C for 3 days 
and returned to normal growth conditions for a recovery 
period of 7 days. The mutants exhibited pronounced leaf 
curling symptoms after cold stress and a significant pro-
portion of them could not be recovered compared with 
wild type (Fig. 7A), demonstrating that OsWRKY70 is a 
positive regulator of cold tolerance in rice. This obser-
vation is consistent with the survival rate of oswrky70-7 
and oswrky70-10, which were 25.3% and 3.3%, compared 
to 42.7% of wild type (Fig.  7B). Moreover, higher lev-
els of electrolyte leakage and MDA content were in the 
mutants than that in wild type (Fig.  7C, D). We further 
performed histochemical staining to detect ROS bursts 
in rice plants. After cold treatment, deeper reddish 

brown and darker bluish-purple spots in the mutant 
leaves than that in wild type by DAB and NBT stain-
ing (Fig.  8A, B), reflecting excessive H2O2 and superox-
ide anion in the mutants, respectively. Subsequently, the 
activity of two antioxidant enzymes crucial for scaveng-
ing ROS was examined. A significant decrease in CAT 
activity was observed in the oswrky70-7 compared to 
wild type at 24 h after cold treatment (Fig. 8C). Especially, 
oswrky70-10 exhibited approximately 30% decline after 
12 h of cold treatment compared to wild type (Fig. 8C). 
Similarly, POD activity significantly reduced after expo-
sure to cold for 12 h in the mutants. These results indi-
cate that an imbalance of ROS homeostasis contributes 
to cellular oxidative membrane damage in OsWRKY70-
regulated cold tolerance in rice. To assess the potential 
downstream genes of OsWRKY70 in response to cold, 
we detected the expression level of OsLti6b, OsICE1 and 
OsCOLD1, which are cold-related genes (Kim et al. 2007; 
Ma et al. 2015; Zhang et al. 2017). The results revealed 
that the mutants showed down-regulation of OsLti6b and 
OsICE1, while no significant difference in the expression 
of OsCOLD1 was observed (Fig.  8E-G), implying that 
knock out of OsWRKY70 attenuates cold tolerance in rice 
presumably due to the suppressed expression of OsLti6b 
and OsICE1.

Discussion
Transcription factor OsWRKY70, a member of WRKY 
group I, has been established to function as a transcrip-
tional activator (Li et al. 2015; Zhang et al. 2015). Phy-
logenetic analysis revealed that OsWRKY70 shares 
up to 52.43% and 62.87% amino acids identities with 
OsWRKY24 and OsWRKY53, respectively (Li et al. 
2023). Repression of OsWRKY24 (Yokotani et al. 2018) 
and overexpression of OsWRKY53 (Chujo et al. 2007) 

Fig. 6  OsWRKY70 interacts the promoter of OsbHLH6 in vitro. (A) Schematic of the OsbHLH6 promoter. Black rectangles indicate W-box (TGAC core se-
quences) cis-elements in the promoter of OsbHLH6. (B) The Western blot with purification of His-OsWRKY70 obtained from recombination of E. coli BL21. 
(Line 1, eluted His-OsWRKY70; M, protein marker). (C) The semi-in vivo ChIP-qPCR assay showed that His-OsWRKY70 enriched the P1 fragment of OsbHLH6 
promoter. DNA fragments co-incubated with His was used as a negative control. Relative enrichment is represented as the normalized ratio of the ChIP 
DNA to the input genomic DNA at the site. P1 and P2 are the fragments of the promoter. Data are the means ± SD of three biological replicates. Asterisks 
indicate significant differences by the Student’s t-test (*P < 0.05, **P < 0.01)
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confers blast resistance in rice. Our findings demon-
strated that knock out of OsWRKY70 mutants enhanced 
resistance against M. oryzae (Fig.  3; Figure S1), imply-
ing that OsWRKY70 negatively regulates the fungal 
immunity in rice. However, it seems paradoxical that the 
increased transcriptional expression level of OsWRKY70 
upon infection (Fig.  1). Similarly, this feedback-like has 
been reported in some rice TFs. For instance, OsbHLH6 
and ONAC083, which are induced by inoculation with M. 
oryzae, act as negative regulators of disease resistance (Bi 
et al. 2023; Meng et al. 2020). Additionally, OsWRKY24, 
OsWRKY53 and OsWRKY70 may be functionally redun-
dant in grain regulation (Tang et al. 2022a). Considering 
that predicted interactions of these proteins (data have no 
shown), we presume that up-regulated OsWRKY70 might 
be involved in adjusting the intensity of defense response 
by cooperating with OsWRKY24 or OsWRKY53 to pro-
tect the plant from biotic stress. Therefore, further gen-
eration of double and triple mutant plants for these genes 
will contribute to elucidating the molecular mechanism 
of blast resistance. Our KEGG analysis revealed that the 
altered genes are involved in plant-pathogen interactions, 
hormone signaling transduction, MAPK cascades and 
so on, indicating that OsWRKY70 is a key component 

of immunity response (Fig.  5). Plant NBS-LRR genes, a 
class of the resistance (R) genes, encode immune recep-
tors that help defend against pathogens infection (Wang 
et al. 2023d). For instance, rice NBS-LRR protein Pit 
interacts with OsRac1 and induces the generation of ROS 
and hypersensitive response to resist the invasion of M. 
oryzae (Kawano et al. 2014). Pi63 encodes a typical NBS-
LRR protein, whose expression level is closely related to 
disease resistance (Xu et al. 2014). In our study, LOC_
Os11g44960, LOC_Os11g45050 and LOC_Os11g45180, 
which are assumed to encode NBS-LRR proteins, were 
up-regulated expression in the mutant (Fig. 5C). It is sug-
gested that these genes might be conferred to the resis-
tance to blast. The activation of the JA signaling pathway 
improved resistance against disease in rice (Okada et 
al. 2015; Wang et al. 2021; Qiu et al. 2022). OsbHLH6, 
a transcription activator, negatively regulates rice blast 
resistance, which has been shown to play a pivotal role in 
modulating the JA and SA signaling pathways (Kiribuchi 
et al. 2004; Meng et al. 2020). Knock out of the OsbHLH6 
mutant downregulates the expression of OsJAZ family 
genes, which exhibits severe damage upon exposure to 
herbivores (Valea et al. 2022). In our study, the OsbHLH6 
gene transcript significantly decreased in oswrky70-7 and 

Fig. 7  Knock out of OsWRKY70 reduced cold tolerance in rice. (A) 2-week-old seedlings of the mutants and wild type were subjected to 4 °C for 3 days 
in a growth chamber and then cold stressed recovered under 25–28 °C for 7 days. (B) The survival rate of seedlings after recovery were calculated. (C) 
Ion leakage rate in leaves of the cold-stressed mutants and wild type. (D) Content of MDA between mutants and wild type under normal condition and 
cold treatment. Data are the means ± SD of three biological replicates and each replicate includes at least 15 independent seedlings. Asterisks indicate 
significant differences by the Student’s t-test (*P < 0.05, **P < 0.01)
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Fig. 8  ROS burst and the expression levels of cold-related genes in oswrky70 mutants in response to cold. (A) H2O2 accumulation checked by DAB stain-
ing. (B) The accumulation of superoxide anion in leaves detected by NBT staining. (C, D) Enzyme Activity of CAT (C) and POD (D) from seedings of 2-week-
old wild type and oswrky70 mutants before and after cold stress treatment. Data are the means ± SD of three biological replicates. Asterisks indicate 
significant differences by the Student’s t-test (*P < 0.05, **P < 0.01). (E-G) The expression levels of cold-related genes OsLti6b (E), OsICE1 (F) and OsCOLD1 
(G) from the seedings of 2-week-old wild type mutants and mutants without and with cold treatment. Relative expression levels were normalized by the 
transcript level of the OsActin gene as an internal control and the expression level of each gene of interest in wild type plants under normal condition 
was set as 1. Data are the means ± SD of three biological replicates. Asterisks indicate significant differences by the Student’s t-test (*P < 0.05, **P < 0.01)
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oswrky70-10 mutants before and after inoculation com-
pared to the wild type (Fig. 5C, E). Given the finding that 
OsWRKY70 enhances rice herbivore resistance to SSB 
mediated by JA signaling (Li et al. 2015), we hypothesized 
that OsbHLH6 might be a potential downstream target 
of OsWRKY70. Then, we analyzed the promoter of Osb-
HLH6 and further confirmed the binding of OsWRKY70 
using a semi-in vivo ChIP assay (Fig.  6). Therefore, it 
would be interesting in our future work to verify the 
interactions in vivo by ChIP and to generate their double 
mutant plants for exploring the regulatory relationships. 
Advanced thinking is that JA and SA signaling crosstalk 
commonly manifests as a reciprocal antagonism or adap-
tation (Thaler et al. 2012). In our work, the transcript 
level of OsUGT74H4 was decreased in mutant after 
infection by RNA-seq analysis (Fig.  5C). OsUGT74H4 
may inactivate SA through glycosylation modification, 
negatively regulating the resistance of rice to bacterial 
diseases (Wu et al. 2022). Both positive and negative tran-
scriptional regulations of SA biosynthesis are required to 
fine-tune the SA levels for optimal defense without caus-
ing unnecessary fitness costs (Ding et al. 2020). There-
fore, we suspect that knock out of OsWRKY70 might 
affect SA content in response to fungal pathogen infec-
tion. Phenylpropanoids are considered to be secondary 
metabolites involved in plant defense responses (Kishi-
Kaboshi et al. 2010). Previous research has revealed that 
CYP72A1, the cytochrome P450 gene, positively regu-
lates the production of ROS and the accumulation of 
defense-related secondary metabolites in basic immune 
response (Zhang et al. 2022a). The Cinnamate-4-hydrox-
ylase (C4H) belongs to the cytochrome monooxygenase, 
which is the second key enzyme in the phenylpropane 
metabolic pathway (Yang et al. 2005). According to our 
transcriptome analysis, there were more than 20 DEGs in 
Phenylpropanoids biosynthesis without and after inocu-
lation (Fig. 5A). Among them, LOC_Os07g44130, which 
encodes putative cytochrome P450, was up-regulated 
more than 5.5-fold in mutants after infection (Fig.  5H). 
Thus, it is also worthy of further study and exploration of 
issues that OsWRKY70 participates in phenylpropanoids 
biosynthesis to adapt to biotic stress.

The loss-function of OsWRKY70 mutants reduced tol-
erance to cold stress (Fig. 7), suggesting that OsWRKY70 
is a positive regulator of cold tolerance. It has been dem-
onstrated that chilling usually causes excessive ROS 
accumulation in rice (Marchi et al. 2012; Zhang et al. 
2022b; Zhai et al. 2024). OsWRKY63 and OsWRKY76 
might affect ROS homeostasis in the regulation of cold 
tolerance (Yokotani et al. 2013; Zhang et al. 2022b). We 
observed that knock out of OsWRKY70 mutants accu-
mulated a large amount of H2O2 and superoxide anion 
under cold stress condition (Fig. 8A, B). This is consistent 
with the measurement of reduced activities of CAT and 

POD, as well as increased electrolyte leakage levels and 
MDA content (Figs. 7C and D and 8C and D). Cold tol-
erance is primarily regulated by cold-responsive (COR) 
regulon (Wani et al. 2021). Our findings revealed that the 
expression level of OsLti6b and OsICE1 was significantly 
down-regulated in mutants (Fig. 8E, F), which has been 
documented to positively regulate cold tolerance in rice 
(Kim et al. 2007; Nakamura et al. 2011; Xia et al. 2021). 
What is more, COR regulon also mediates the expres-
sion of AtWRKY6/22/30/40/32/187 (Banerjee et al. 2015; 
Wani et al. 2021), hinting that there may be feedback or 
cooperation between OsWRKY70 and COR regulon in 
chilling stress. Unlike cold-responsive genes, OsCOLD1 
is involved in sensing cold to trigger Ca2+ signaling for 
chilling tolerance (Ma et al. 2015). There were no differ-
ences in the transcript level of OsCOLD1 between the 
mutants and wild type before and after cold treatment 
(Fig. 8G), suggesting that OsCOLD1 may be the upstream 
of OsWRKY70-mediated signaling. Additionally, the 
changes in OsCOLD1 protein structure and membrane 
fluidity in response to low temperature might initiate sig-
naling (Ma et al. 2015). Thus, another possibility is that 
the mutation of OsWRKY70 affects the structure and 
dynamics of OsCOLD1 to regulate cold tolerance.

We demonstrated that OsWRKY70 functions as a neg-
ative regulator of rice against M. oryzae while a positive 
regulator of cold tolerance in rice (Figs. 3 and 7). Previ-
ous findings showed that temperature is an important 
factor affecting the occurrence of rice blast. For instance, 
cold summers increase the frequency and severity of 
fungal pathogen disease and bring heavy yield losses in 
the northern regions of Japan (Hironori et al. 2004). 
The blast lesion area and fungal growth in the inocu-
lated seedlings at a warm temperature, 22  °C, is greater 
than those at 28 °C (Qiu et al. 2022). Additionally, 22 °C 
compromises basal resistance in rice by reducing JA bio-
synthesis and signaling (Qiu et al. 2022), suggesting that 
JA are involved in temperature-modulated plant resis-
tance. We found that knock out of OsWRKY70 mutants 
down-regulated OsbHLH6 expression in response to 
rice blast (Fig.  5E). However, the regulatory relation-
ship between OsWRKY70 and OsbHLH6 whether 
involving temperature-mediated fungal pathogen resis-
tance is yet to be clarified. In addition, more and more 
evidences imply that WRKY TFs are involved in the 
MAPK signaling pathway to adapt to biotic stress. For 
example, OsMKK10-20-OsMPK6 pathway is required 
for OsWRKY45-mediated resistance against M. oryzae 
(Ueno et al. 2013). OsWRKY31, which is phosphorylated 
by OsMPKs, elevates DNA-binding activity and confers 
enhanced blast resistance in rice (Wang et al. 2023c). Pre-
viously, OsMPK3 and OsMPK6 regulates OsWRKY70 in 
herbivore resistance (Li et al. 2015). OsMPK3, phosphor-
ylated and activated by the calcium-dependent protein 
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kinase CPK18, negatively regulates rice blast resistance 
(Xie et al. 2014). In addition to biotic stress, MAPK cas-
cades have also been confirmed to confer abiotic stress 
responses, including chilling, salt and drought. For 
instance, OsICE1 is phosphorylated by OsMPK3, result-
ing in inhibition of OsICE1 ubiquitination and enhanced 
resistance to chilling damage (Zhang et al. 2017). Fur-
thermore, OsMPK3 has positively modulated salt toler-
ance by attenuating the accumulation of ROS (Zhang et 
al. 2018). Consequently, further validation of the interac-
tion with OsMPK3 and OsWRKY70 will contribute to aid 
in elucidating the molecular mechanism in response to 
fungal pathogen infection and cold stress.

Materials and methods
Plants and Pathogens
The wild type rice Oryza sativa L. japonica ‘Nipponbare’ 
(NIP) was used to generate knock out of OsWRKY70 
mutants in this study. All rice seeds were soaked in cul-
ture dishes with water at 37℃ for one day. On the second 
day, the seeds were rinse for 2–3 times and added a small 
amount water to promote germination at 37  °C. Then, 
the seeds with same germination state were planted to 
the substrate soil. The plants were grown under normal 
conditions (25–28℃, 14  h light/10  h dark photoperiod, 
50–75% relative humidity). For agronomic trait analy-
sis, the tiller count, flag leaf, panicle length, grain length, 
grain width and 1000-grain weight of these plants were 
grown in the paddy fields of Hunan Agricultural Univer-
sity, Changsha, China.

Magnaporthe oryzae strains 318-2 from College of 
Agronomy in Hunan Agricultural University, as well as 
M. oryzae strains 110-2, R01-1 and GFP-tagged RB22 
from Institute of Plant Protection in Chinese Academy 
of Agricultural Sciences, were cultured on oatmeal agar 
for 2 weeks at 28  °C and the spores were collected with 
sterile water containing 0.02% Tween-20. For M. ory-
zae strains treatment, 2-week-old seedlings of NIP were 
inoculated using M. strains 318-2, 110-2 and R01-1 for 
gene expression analysis of OsWRKY70. The plants were 
sprayed with spores of M. oryzae strains (2 × 105 spores/
mL), covered with a plastic box in the dark for 24 h (25–
28 °C, approximately 100% relative humidity) and trans-
ferred to normal alternation of light and dark (25–28 °C, 
approximately 100% relative humidity). Leaf samples 
were collected at 0, 24 and 48 h post-inoculation, frozen 
in liquid nitrogen and stored at -80  °C until use. Each 
treatment was performed with three biological replicates. 
The control plants (0 h) were left blast-free.

Generation of OsWRKY70 Knock Out Mutants
For the construction of knock out of OsWRKY70 vec-
tor, the sequence (5’-​G​G​A​C​G​A​G​C​A​G​C​A​A​C​A​G​T​A​C​
T-3’) of OsWRKY70 genomic locus was conducted as 

the guide RNA through CRISPR Primer Designer v1.1.2. 
We designed two primers sequences (LP: 5’-​T​G​G​C​G​G​
G​A​C​G​A​G​C​A​G​C​A​A​C​A​G​T​A​C​T-3’; RP: 5’-​A​A​A​C​A​G​
T​A​C​T​G​T​T​G​C​T​G​C​T​C​G​T​C​C​C-3’) to synthesized the 
sgRNA expression cassette. This sequence was inserted 
into the pHUN4c12 plasmid, which was linearized using 
Bsa I enzyme (NEB, USA). The vectors were introduced 
into Agrobacterium tumefaciens strain EHA105 through 
electroporation, which were further used to transform 
the rice callus. After screening with hygromycin and 
sequence confirmation, two homozygous knockouts 
oswrky70-7 and oswrky70-10 were obtained and the T3 
generation seedlings were used for further analysis in this 
work. The primers used in the plant vector construction 
and identification are listed in Table S1.

Fungal Pathogen Resistance Experiment
For spraying with M. oryzae spores (2 × 105 spores/mL), 
2-week-old transgenic seedlings were used for pathogen 
infection. Leaves were collected at 0 and 24 h post-inoc-
ulation for expression analysis of defense-related genes. 
After inoculation for 5 d, the lesions were scanned and 
leaves were collected for DNA extraction to evaluate 
the relative fungal growth. The qRT-PCR was measured 
to analyze and compare the genomic level of M. oryzae 
POT2 in wild type and the mutant leaves with that of the 
rice OsActin as an internal control. All of primers were 
listed in Table S1.

For detached leaf inoculation, leaves of 4-week-old rice 
seedlings were cut into pieces (about 5 cm × 1 cm) and 
float on the distilled water in culture dishes. Apply a drop 
of the spore suspension (10 µL of 4 × 105 spores/mL) to 
the wound of each leaf and keep the dishes at 25–28℃ 
for 5 days. (Darkness is not required). The lesions were 
photographed and measured at 5 d post-inoculation and 
leaves were collected for detecting relative biomass.

For punch inoculation, 4-week-old seedlings grown 
in the field were made a wound using a hole punch. 10 
µL spore suspension (4 × 105 spores/mL) was dropped 
onto wound. The inoculated region was wrapped with 
tape to maintain humidity. At 5 d post-inoculation, the 
lesions were pictured and surveyed. Leaf samples were 
conducted for measuring relative growth of M. oryzae. 
Blast inoculation was performed as previously described 
(Gu et al. 2023). M. oryzae strain 318-2 was used for rice 
blast inoculation. All experiments were independently 
repeated at least three times.

For leaf sheaths infection, detached sheaths of 4-week-
old rice plants were inoculated with GFP-tagged M. 
oryzae strain RB22 spores (4 × 105 spores/mL) and kept 
on dished with approximately 100% humidity for 24  h 
and 48  h in the dark. Images of conidial germination, 
appressorium development and invasive hyphal growth 
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were recorded using a fluorescence microscope (Mshot, 
China).

Evaluation of Cold Tolerance
For cold stress tolerance assay, 2-week-old knock out of 
OsWRKY70 mutants and wild type plants were grown 
under normal condition and then transferred into a 
growth chamber with the temperature set at 4 °C with a 
cycle of 14 h light/10 h dark for 3 days, followed by trans-
ferring to the growth room with the normal condition 
for recovery. Plants with green leaves and healthy young 
leaves after transferring to the normal growth condition 
were considered as survivals and surviving plants were 
evaluated at 7 days after recovery from cold treatment. 
Survival rate was calculated as the ratio of the number of 
survived plants over the total number of treated plants. 
Leaf samples at 0 and 24 h were used for determination of 
malondialdehyde (MDA) content and electric conductiv-
ity using the colorimetric method and electrical conduc-
tivity meter, respectively (Guan et al. 2012). Leaves at 0, 
12 and 24 h were measured the enzyme activity catalase 
(CAT) and Leaves at 0 and 12 h were detected the per-
oxidase (POD) activity, as previously described (Wang et 
al. 2022). Leaves were collected at 0 and 24 h for expres-
sion analysis of cold-related genes. The specific primers 
were exhibited in Table S1. Cold treatment in each of the 
experiments included three biological replicates with at 
least 15 plants and the experiments were independently 
repeated three times.

Histochemical Staining Analysis
For fungal pathogen infection, 2-week-old seedlings of 
wild type and oswrky70 mutants were sprayed with M. 
oryzae 318-2 spores (2 × 105 spores/mL) for detection 
of ROS burst. Leaf samples were collected at 0 and 24 h 
post-inoculation to carry out Histochemical Staining. For 
cold stress treatment, 2-week-old transgenic plants were 
transferred to a growth chamber with temperature set at 
4℃. Leaf samples were collected at 0 and 6 h after treat-
ment. 3, 3’-diaminobenzidine (DAB) and nitro-blue tet-
razolium (NBT) staining for H2O2 and superoxide anion 
accumulation in plants, respectively, were conducted as 
previously described (Jambunathan 2010).

DNA Extraction
Rice leaf genomic DNA was extracted, according to the 
CTAB method (Semagn et al. 2014).

RNA Extraction and Quantitative Real‑Time PCR
Total RNA was extracted using Ultrapure RNA Kit 
(Cwbio, China). RNA was reverse transcribed to cDNA 
using HiScript III 1st Strand cDNA Synthesis Kit 
(Vazyme, China). Quantitative Real‑Time PCR (qRT-
PCR) was performed using ChamQ Universal SYBR 

qPCR Master Mix (Vazyme, China). The reaction was 
carried out in the CFX Connect Real-Time PCR Detec-
tion System (Bio-Rad, USA). Rice OsActin gene was used 
as an internal standard to normalize. All of primers used 
for mRNA detection of target genes are shown in Table 
S1. Three replicate experiments were performed for each 
sample. The relative quantitation method (2−ΔΔCT) was 
used to evaluate quantitative variation among replicates.

Expression and Purification of Recombinant Protein
The full-length cDNA of OsWRKY70 was PCR-amplified 
and cloned into the pCold-TF vector (Takara, Japan). 
Specific primers used for PCR amplification for this gene 
are listed in Table S1. The constructs were transformed 
into Escherichia coli BL21 (DE3) (Vazyme, China). 
OsWRKY70 recombinant protein was induced by add-
ing 0.4 mM isopropyl-β-thiogalactopyranoside (IPTG) at 
15˚C for 24 h. Cells were collected and the recombinant 
protein was purified using ProteinIso® Ni-NTA Resin for 
His (TransGen, China) according to the manufacturer’s 
instructions.

Transcriptome Analysis
Libraries for RNA-seq were constructed and sequenced 
by Biomarker Technologies Co., Ltd (Beijing, China). 
Briefly, RNAs were quantified by NanoDrop 2000c UV-
Vis Spectrophotometer (Thermo Fisher Scientific), aga-
rose gel electrophoresis and Agient2100/LabChip GX. 
mRNAs were isolated from total RNAs by poly (A) selec-
tion, fragmented into short fragments and converted to 
cDNAs. cDNAs were ligated to adapters and the suit-
able fragments were selected for PCR amplification 
as templates. All the RNA-seq libraries were pair-end 
sequenced on an Illumina NovaSeq6000 platform. mRNA 
sequencing data analysis were performed as reported 
(Love et al. 2014). Low-quality reads were removed and 
adapters were trimmed to obtain clean reads, which 
were mapped to the reference genome (Oryza_sativa.
MSU_v7.0.genome.fa). Transcriptome analysis was 
performed using BMKCloud (www.biocloud.net). The 
expression level of each gene was calculated as the FPKM 
value (fragments per kilobase of transcript per million 
mapped reads). For differential gene expression analysis, 
fold change (FC) ≥ 2 and false discovery rate (FDR) ≤ 0.01 
as screening criteria. Fold Change represents the ratio 
of expression between two samples (groups). False Dis-
covery Rate (FDR) is obtained by correcting for the dif-
ference significance p-value (p-value), indicating the 
significance of the difference.

Semi-Vivo Chromatin Immunoprecipitation Assay
The analysis of ChIP was conducted as previously 
described (Li et al. 2017). Total DNA of Nipponbare 
and purified His-OsWRKY70 were used for a semi-vivo 

http://www.biocloud.net
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chromatin immunoprecipitation (semi-vivo ChIP) assay. 
2-week-old seedlings were used for total DNA extraction. 
The total DNA was sheared into 200–800 bp fragments 
using ultrasonic crusher. The His fusion protein was 
affinity-purified on Ni-NTA Resin. His-OsWRKY70 and 
DNA fragments were co-incubated for 2 h. The incuba-
tion buffer includes: 50 mM Tris, 1mM EDTA, 100 mM 
KCl, adjust pH to 7.0 by HCl, 5% Glycerol, 0.1% Triton 
X-100; add freshly-made 100 mM DTT to reaction solu-
tion to make final concentration of DTT at 1 mM. After 
co-incubation, Ni-NTA Resin was washed three times 
using incubation buffer. Then 4 µL 5 M NaCl was added 
into the sample for each 100 µL volume and was incu-
bated for 4 h to break down cross-linked His-OsWRKY70 
and DNA fragments. The prepared DNA in ChIP was 
applied for qRT-PCR using respective primer pairs (Table 
S1) in a ChamQ Universal SYBR qPCR Master Mix with 
a CFX Connect Real-Time PCR Detection System. PCR 
reactions were performed in triplicate for each sample 
and the expression levels were normalized to the input 
sample for enrichment detection. The fold enrichment 
was calculated against OsActin No addition of antibodies 
(NoAbs) served as a negative control.

Data Analysis
For qRT-PCR analyzes, disease assays, agronomic traits 
assessment and cold tolerance assays significant differ-
ences between samples/lines and the corresponding con-
trols were analyzed using two-tailed Student’s t test for 
pairwise comparisons.
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