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Abstract 

Drought has a significant impact on rice yield by restricting the crop’s ability to grow and develop. Producing rice 
cultivars adapted to water deficit conditions is still the main interest of rice breeders and geneticists. To address 
this challenge, a set of 413 highly diverse rice populations were evaluated under normal and water deficit condi‑
tions for two growing seasons of 2021 and 2022. High genetic variation was found among genotypes for all studied 
traits. The heritability estimates ranged from 0.82 (panicle length) to 0.95 (plant height). Sterility percentage (SET%) 
was the most trait affected by water deficit in two growing seasons. 22 Rice genotypes were classified as drought 
tolerant in both years. Genome‑wide association mapping was performed for all traits in the two growing seasons 
under both conditions using a total of 700,000 SNPs. The GWAS results revealed important and major SNPs associated 
with all traits. 26 Significant SNPs with stable allele effects were found to be associated with yield traits under water 
deficit conditions in both years. The results of this study provided rice genotypes that can be adapted under water 
deficit conditions and important stable SNP markers that can be used for marker‑assisted selection after validation 
in different genetic backgrounds.
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Introduction
Rice (Oryza sativa L.) is one of the main food crops and 
a significant contributor to global economic growth. It 
is the primary crop for almost two-thirds of the world’s 
population, ranking in third place globally after maize 
and wheat in terms of production (Bhandari et al. 2021; 
Ghazy et  al. 2021). Around the world, it is grown as an 
annual crop in a variety of climates, including tropical, 

subtropical, semiarid, and temperate regions. In order 
for rice to grow and develop optimally and produce 
good yields, it needs enough water throughout its entire 
life cycle, including standing water or constant floods 
(Jagadish et al. 2012). Along with being a staple food, rice 
is also used as a fuel source in the soap industry, as well 
as a significant component of livestock feed and cottage 
industries (rice straw) (Bhattacharyya et  al. 2020; Pode 
2016). To decrease rice crop yield losses in rainfed low-
land areas and increase overall rice production, new rice 
cultivars with improved drought tolerance are required 
(Kumar et  al. 2021; Manickavelu et  al. 2006). The agro-
climatic conditions have an impact on the cultivation 
of rice in all the world’s rice-growing regions, and crop 
improvement has historically been considered as a cru-
cial factor in the selection and evolution of improved 
rice varieties. Soil salinity and water availability for grow-
ing rice are two of the most significant agro-climatic 
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conditions that limit yield, even for the advanced rice cul-
tivars (Bhattacharyya et al. 2020; Wang et al. 2023; Zamp-
ieri et al. 2017).

Rice is one of the most water-intensive crops in Egypt, 
and the only irrigation option is constant flooding. Dur-
ing the summer, rice takes up around 22% of the total 
cultivated land in Egypt and uses 20% of the water sup-
ply. The total water requirements for the rice crop are a 
challenge because Egypt has limited water resources and 
a growing population (Abd Allah et  al. 2010). The lack 
of irrigation water throughout various growth stages in 
some rice-growing areas, particularly those at the end 
of canal terminals in the northern Nile Delta, has been 
identified as one of the primary challenges to Egypt’s rice 
production. To solve this issue, we need to figure out 
how to make irrigation water more productive and how 
to preserve irrigation water more effectively (Abd Allah 
et al. 2010). Utilizing short duration varieties is one of the 
key strategies to achieve this. Finding techniques to save 
more water without significantly reducing yield is essen-
tial. The development of drought-tolerant plant varieties 
to be grown in the regions affected by the irrigation water 
shortage in order to lower the overall water requirements 
is the second strategy for conserving irrigation water. 
Drought tolerance is a complex quantitative trait that is 
regulated by many genes because it involves a variety of 
adaptive physiological and biochemical processes at both 
the cellular and plant levels with varying effects at dif-
ferent stages of development, such as the seedling, veg-
etative, or reproductive stages(Hoang et al. 2019; Lang & 
Buu 2008; Yue et al. 2006). Drought is especially harmful 
during the reproductive stage and frequently results in a 
decrease in production (Hoang et al. 2019; Todaka et al. 
2015; Yue et  al. 2006). When drought stress occurred 
during the flowering stage, a spikelet sterility of 73% was 
noted (Hoang et  al. 2019). While an extensive drought 
during the grain filling stage decreased grain yield by 
75%, one that occurred during the vegetative stage had 
a minor impact on later plant development, with yield 
reductions of up to 30% (Bhandari et al. 2021; Wang et al. 
2023).

Future genetic advancements in rice productivity 
will be made possible by adopting an integrative strat-
egy that combines agronomic management techniques 
with plant breeding, physiological dissection of toler-
ant traits, and molecular genetic/genomic technology. 
Alternative to traditional mapping approach, selective 
genotyping was successfully utilized in rice breeding 
to map major quantitative trait loci (QTLs) for differ-
ent traits under stress (Beena et al. 2013, 2018; Kimura 
& Imamoto 2014; Mofatto et  al. 2016; Oladosu et  al. 
2019; Shakiba et  al. 2017; N. Wang et  al. 2023). Most 
of these quantitative trait loci (QTLs) have lowered 

genomic resolution and limited the availability of allelic 
diversity for positional cloning processes. They were 
discovered utilizing bi-parental or multi-parental pop-
ulations (Beena et al., 2022; Bhattacharyya et al., 2020; 
Hoang et  al. 2019; Korte & Farlow 2013; Sallam et  al. 
2022, 2023; Swamy et al. 2017). More recently, genome-
wide association studies (GWAS) have made it possible 
to identify QTLs more precisely and to study the tre-
mendous allelic variability present in natural popula-
tions (Beena et al. 2021; Hoang et al. 2019; Sallam et al. 
2022, 2023). GWAS provides an effective technique 
and strategy for researching the genetic basis of rice 
drought resistance and discovering possible drought 
tolerance genes (Bhandari et  al. 2020; Li et  al. 2017). 
To find genetic variation that improves rice’s drought 
tolerance, GWAS based on deep sequencing is help-
ful. In recent years, a number of genes for rice drought 
resistance have been cloned and studied, including 
OsMYB6 (Tang et  al. 2019), DROT1 (Sun et  al. 2022), 
and OsRINGzf1 (Chen et  al. 2022), winch have shows 
favorable affects in regulating rice drought tolerance. 
They haven’t, however, been used to create new rice cul-
tivars that can withstand drought (Yi et  al. 2023). The 
Rice Diversity Panel 1 (RDP1) is a global collection of 
more than 400 rice accessions that reflect the five main 
subpopulations found in the INWDCA and JAPONICA 
varietal groups. The RDP1 previously genotyped with 
36,901 high quality SNPs. Recently, the RDP1 collec-
tion was genotyped with 700,000 SNP markers using a 
high density rice array (HDRA) (McCouch et al. 2016). 
The objectives of this study were to (i) evaluate the 
RDP1 accessions for drought tolerance at reproductive 
stages under Egyptian agriculture condiations (ii) con-
duct GWA mapping using the HDRA SNP genotypes, 
and the suite of bioinformatics tools developed for the 
RDP1, and (iii) identify SNPs and underlying candidate 
genes associated with tolerance to drought stress in rice 
at these critical developmental stages.

Materials and Methods
Plant Materials
The Rice Diversity Panel is formed up of 413 Asian rice 
(O. sativa L) cultivars, many of which are landraces, 
that come from 82 various countries. The tested mate-
rial covers all the major rice-growing regions of the 
world. The panel contains 87 indica, 57 aus, 96 temper-
ate japonica, 97 tropical japonica, 14 group/aromatic, 
and 62 highly admixed accessions. Out of 413 Asian 
rice, 392 were successfully growing under the Egyptian 
conditions. The rice diversity panel information is sum-
marized Additional file 1: Table S1.
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Experimental Site and Drought Treatment
Field experiments were conducted at the experimental 
farm of Sakha Agricultural Research Station, Kafr El-
Sheikh Governorate, Egypt (31° 08’ N latitude, 30° 58’ 
E Longitude), during 2021 and 2022 growing seasons 
to under normal (N) and water deficit (WD) condi-
tions. All experiments were preceded by a Flax crop 
(Linum usitatissimum L.). The soil properties of the 
experimental site are presented in Table 1. The seeds 
of each genotype were sown in the nursery on 5 and 
3 of May in the 2021 and 2022 seasons, respectively, 
and then transplanted to the field after 30 days. The 
seedlings of each genotype were individually trans-
planted in one row per replicate. Each row was 5.0 
m long with a spacing of 20 × 20 cm among rows and 
hills, which was repeated three.. The well-watered 
condition (Normal) was performed using continuous 
flooding every 4 days with an adequate depth of sub-
mersion that ensured all surface areas were covered 
by water in each irrigation incident. The water-defi-
cit treatment was imposed by using flush irrigation 
(flush irrigation is one of the surface irrigations with-
out standing water after irrigation) every 12 days to 
reach the soil moisture content to the filed capacity. 

The stress condition was applied after 15 days from 
the transplantation date until maturity.

Nitrogen fertilizer at a rate of 165 kg N  ha−1 was 
applied in three splits in the form of urea (46.0% N). 
Phosphorous was applied at a rate of 37 kg  P2O5  ha−1 as 
super-phosphate (15%  P2O5), and potassium at a rate of 
50 kg  K2O kg/ha as potassium sulfate (48%  K2O). Zinc 
fertilizer was applied at a rate of 24 kg/ha  ZnSO4. Other 
standard agricultural practices such as weed control and 
disease protection were applied.

Phenotypic Measurements
Under each condition, the following traits were recorded 
after complete heading. Five plants were taken randomly 
from each genotype to determine the agronomic, yield 
and its components characters. At ripening stage each 
plant was harvested individually. The data of two seasons 
had been shown and statistically analysis as average for 
both seasons.

1. Number of days to 50% heading (NDH): it was deter-
mined as number of days from date of sowing to the 
date of 50% heading for each treatment.

2. Flag leaf area (FLA  cm2): the leaf area of 20 flag leaves 
were measured using leaf area meter (Model LI-
3000A), and then the mean value of flag leaf area was 
calculated.

3. Plant height (PH cm): average plant height at heading 
stage was estimated from the soil surface to the tip of 
the main panicle.

4. Number of panicles per plant (NPP): the number of 
panicles from ten random hills, which selected from 
each treatment were counted, and then converted to 
number of panicles/plant.

5. Number of tillers per plant (NTP): the number of till-
ers from ten random plants was recorded from the 
tillers that appeared and grew for each hill.

6. Panicle length (PL cm): it was measured from the 
collar to the top of the panicle in a sample of ten ran-
dom panicles.

7. Hundred-grain weight (HGW g): random of 100-
rough rice grains from each plot were weighed in 
grams.

8. Sterility percentage (SET%): the unfilled grains of the 
main panicle were separated and counted, and steril-
ity percentage was calculated as follows:

Sterility % =
Number of unfilled grains/panicles

Number of total spikelets per panicle
× 100

Table 1 Mechanical and chemical analysis of the experimental 
soil during the two seasons

Soil analysis 2021 2022

Chemical analysis

PH 8.20 8.30

EC (dS  m−1) 2.11 2.18

Organic matter (%) 1.55 1.65

Soluble Cations, meq/lit.

Ca++ 7.40 7.20

Mg++ 2.85 2.65

Na+ 13.70 14.10

K+ 1.16 1.21

Soluble Anions, meq/lit.

Co3
− − – –

Hco3
− 5.15 5.40

So4
− − 7.95 8.18

Cl− 12.00 11.55

Physical analysis

Sand (%) 13.28 13.46

Clay (%) 56.05 55.55

Silt (%) 320.67 31.04

CaCo3 3.85 3.35

Soil texture Clay Clay
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The Drought Tolerance Indices and Genotypes Ranking
All the drought tolerance indices and the ranking of 
the most drought tolerance genotypes were performed 
using iPASTIC: an online toolkit to calculate plant abi-
otic stress indices (Pour-Aboughadareh et al. 2019). The 
selection of most drought tolerant genotypes was done 
based on sorted the values of the average sum of ranks 
(ASR) for each trait. The Venn diagram was created using 
an integrative tool for comparing lists with Venn dia-
grams which is online available at http:// www. bioin forma 
tics. com. cn/ static/ others/ jvenn_ en/ index. html.

Statistical Analysis
Analysis of variance (ANOVA) was performed for all 
traits using PLABSTAT software (Utz 1997). The follow-
ing model was used.

where Yij is an observation of genotype k in year i and 
replication j, μ is the general mean. tn, yi, rj, and gk are the 
main effects of stress, year, replication, and genotypes, 
respectively. The error is year × stress × genotype × year 
interaction of genotype k in treatment t with year i. 
Replications and years were considered random effects, 
respectively. Years, replication, and genotypes were con-
sidered random effects, while stress was considered as 
fixed effects. Broad-sense heritability (H) within trials 
was estimated using HERTI command in PLABSTAT 
software (Utz 1997). Approximate broad sense heritabil-
ity (H) across environments was estimated as follows:

Whear VG = Genetic variance (variance due to genetic 
differences and VP = Phenotypic variance (total variance 
in the trait in the population).

The Genotypic Data
The first of its kind in rice, the high-density rice array 
(HDRA) panel captures the majority of the genetic 
variation in rice using genotypic data from 1554 acces-
sions. This high-density SNP set afforded much higher 
resolution than what was previously available and can 
reveal genetic regions of both minor and major effects 
(McCouch et al. 2016). Single nucleotide polymorphisms 
from the HDRA dataset for RDP1 were downloaded from 
ricediversity.org (http:// riced ivers ity. org/ proj/ germp 
lasm/ index. cfm). These SNPs were filtered for MAF, the 
percentage missing data, and the percentage of heterozy-
gosity across accessions according to (Alqudaha et  al. 
2019). As a result, a total of 700,000 SNPs were generated 
after filtration and used for association study.

Yijk = µ+ yi + tn + rj + gk + gyik + gtln + ytrginjk(error)

H =
VG

VP

Population Structure
The population structure for the RDP1 was previously 
done using HDRA dataset containing of 700,000 SNPs 
and performed by (McCouch et  al. 2016). The analysis 
was done by fast STRU CTU RE (Raj et al. 2014).

Genome‑Wide Association Analysis (GWAS)
The GWAS studies were run using the analysis pipeline 
and HDRA dataset consisting of 700,000 SNPs described 
by McCouch et al (2016). In the presented study, GWAS 
for the eight studied traits (NDH, PH, FLA, NPP, NTP, 
PL, HGW and SET%) was performed using rMVP R 
package (Yin et  al. 2021) following three different mod-
els, Mixed Linear Model (MLM), generalized liner model 
(GLM), and fixed and random model circulating prob-
ability unification (FarmCPU). Kinship (Kin), principal 
coordinate analysis (PCA), and PCA + Kin were inde-
pendently included in each model under study to deter-
mine which model best matches the trait under study. 
FarmCPU combines the benefits of mixed linear models 
and stepwise regression (fixed effect models) and uses 
them iteratively to fix their drawbacks. In a mixed model 
(MLM), FarmCPU replaces kinship with a set of mark-
ers linked to the causal genes to remove the confounding 
between kinship and the genes underlying an interest-
ing feature. For testing markers one at a time across the 
genome, the collection of linked markers is fitted as a 
fixed effect in a fixed effect model. The associated mark-
ers are optimized using a maximum likelihood technique 
in an MLM with variance and covariance structure deter-
mined by the associated markers to prevent model over-
fitting for testing markers(Liu et al. 2016).The significant 
markers associated with the studied traits were identified 
using a p-value >  10−4.

Candidate Genes and Gene Annotation for Studied Traits
To further investigate the genetic control of all traits under 
the studied conditions, gene models harboring the identi-
fied significant markers were investigated by checking the 
base pair position of the markers and the presence of gene 
models in the same position using the EnsemblePlants 
database https:// plants. ensem bl. org/ Oryza_ sativa/ Info/ 
Index The functional annotation of the identified gene 
models was detected using International Rice Genome 
Sequencing Project (IRGSP) gene models which imported 
from the Rice Annotation Project (RAP-DB). The RAP-DB 
generated a unified assembly of the 12 rice pseudomole-
cules of Oryza sativa Japonica Group cv. Nipponbare. Fur-
thermore, the genetic base of these gene models in relation 
to drought tolerance was investigated using KnetMiner 
database https:// knetm iner. com/ cerea ls/.

http://www.bioinformatics.com.cn/static/others/jvenn_en/index.html
http://www.bioinformatics.com.cn/static/others/jvenn_en/index.html
http://ricediversity.org/proj/germplasm/index.cfm
http://ricediversity.org/proj/germplasm/index.cfm
https://plants.ensembl.org/Oryza_sativa/Info/Index
https://plants.ensembl.org/Oryza_sativa/Info/Index
https://knetminer.com/cereals/
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Results
Phenotypic Performance Within Environments
The mean performance and coefficient of variance for 
all traits obtained under N and WD for the two growing 
seasons are presented in Table 2. Observable reduction in 
all traits under water deficit compared to N condition for 
FLA, PH, NPT, NPP, PL, and HGW. Highest reduction 
due to water deficit was found FLA with 39.34% in 2021 
and 41.30% in 2022, while, HGW had the lowest reduc-
tion with 9.1% in 2021 and 8.8% in 2022. Under water 
deficit condition, the STE% had a very high increase 

compared to N with a percentage of 62.36% in 2021 and 
61.01% in 2022.

The analysis of variance (ANOVA) for all traits is pre-
sented in Table 3. According to the Bartlett test, variance 
across the eight traits was homogenous for the two years 
and across the two stress treatments (WD and N). The 
ANOVA indicated a significant statistical effect (p < 0.01) 
for the Years (Y), Stress (WD and N), and Genotypes (G) 
across all traits. Moreover, the combined ANOVA indi-
cated a significant effect for the two- and three-way inter-
actions across all traits except NTP, NPP and PL.

Table 2 The mean performance and stander error for the number of days to 50% heading (NDH), flag leaf area (FLA), plant height 
(PH), no. of tillier per plant (NTP), no. of panicles per plant (NPP), panicles length (PL), hundred grain weight (HGW), and sterility 
percentage (STE%) for 2021 and 2022 growing seasons under normal irrigation (N) and water deficit condition (WD)

Traits Years Irrigation Means ± Stander error

NDH 2021 WD 106.64 ± 0.86

N 103.15 ± 0.64

2022 WD 109.00 ± 0.83

N 105.13 ± 0.065

FLA 2021 WD 18.76 ± 0.050

N 30.93 ± 0.058

2022 WD 18.32 ± 0.043

N 31.21 ± 0.057

PH 2021 WD 103.94 ± 1.22

N 141.02 ± 1.52

2022 WD 104.29 ± 1.23

N 143.39 ± 1.56

NTP 2021 WD 10.78 ± 0.20

N 17.25 ± 0.22

2022 WD 11.04 ± 0.20

N 17.35 ± 0.22

NPP 2021 WD 10.18 ± 0.20

N 16.67 ± 0.23

2022 WD 10.52 ± 0.20

N 16.88 ± 0.22

PL 2021 WD 18.47 ± 0.17

N 23.60 ± 0.20

2022 WD 18.73 ± 0.18

N 23.81 ± 0.20

HGW 2021 WD 2.38 ± 0.02

N 2.62 ± 0.02

2022 WD 2.37 ± 0.97

N 2.60 ± 0.32

STE% 2021 WD 19.77 ± 0.96

N 7.44 ± 0.32

2022 WD 20.03 ± 0.97

N 7.81 ± 0.32
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Phenotypic Correlation Among all Traits Under WD 
Conditions
The phenotypic correlation among all traits scored under 
WD in both growing seasons is presented in Table 4. In 
the first growing season, a positive significant correla-
tion was found between NDH and PH, FLA, PL, NTP and 
NPP. The highest correlation values were found between 
NPP and NTP with r = 0.99** followed by PL and PH 
with r = 0.34**. While a negative significant correlation 
was found between HGW and NDH, NTP, NPP, PL and 
SET. The highest negative correlation was found between 
HGW and NTP with r = − 0.28**. In the second growing 
season, the strong positive correlation was found between 
NPP and NTP with r = 0.99** followed by PH and PL 
with r = 0.34**. In both years and under WD, significant 

positive correlations were found between PH and NDH, 
PH and FLA, PH and PL, NPP and NTP, and NTP and 
SET. Negative and significant correlations, on the other 
hand, were found between PH and SET, NPP and PL, 
NTP and HGW, NPP and HGW, PL and HGW, PL and 
SET, and HGW and SET under WD stress in both grow-
ing seasons. The highest significant correlation was found 
between NPP and NTP with r = 0.99** in both years.

The diagonal values refer to the correlation between each 
trait under WD condition in the two growing seasons. A 
strong positive correlation was observed between each 
trait with its counterparts in the second growing season. 
The highest correlation values r = 0.99** was shown in the 
SET%, PH, NPP, and PL in both years while the lowest value 
r = 0.25** was observed in FLA in the two growing seasons.

Table 3 The analysis of variance for the number of days to 50% heading (NDH), flag leaf area (FLA), plant height (PH), no. of tiller per 
plant (NTP), no. of panicles per plant (NPP), panicles length (PL), hundred grain weight (HGW) and sterility percentage (SET%) in 2021 
and 2022 under N irrigation and WD condition

**Significant at p-value < 0.05

Source df Mean of square

NDH FLA PH NTP NPP PL HGW STE%

Years 1 5543.21** 7.34** 2190.41** 37.60** 89.39** 65.38** 153,196.45** 617,021.62**

Treatments 1 15,918.98** 184,554.02** 1,706,033.41** 48,095.08** 48,579.49** 30,647.47** 42,221.58** 91,904.38**

Replicates 2 14.29* 5.90* 42.09** 91.23** 51.76** 210.59** 12.22** 140.40**

Genotypes 391 1878.00** 652.11** 6770.70** 151.11** 151.03** 87.37** 348.35** 491.02**

Geno‑
types × Years

391 33.29** 82.96** 5.76** 0.03 ns 0.07 ns 0.01 ns 361.64** 953.73**

treatment x 
Years

1 41.96** 150.56** 1196.06** 6.77** 5.46** 0.40 ns 45,575.07** 526,871.42**

Genotypes x 
treatment

391 294.14** 269.96** 884.57** 28.74** 29.34** 53.82** 156.69** 342.31**

Genotypes x 
treatment x 
Years

391 32.53** 80.75** 6.54** 0.03 ns 0.06 ns 0.01 ns 156.63** 286.58**

Error 3143 3.31 0.38 4.67 0.40 0.32 0.26 0.25 0.48

Heritability 
 (H2)

93.99 81.85 95.77 94.02 93.89 82.94 90.14 87.17

Table 4 Phenotypic correlation among studied traits in 2021 (bold font), among yield traits in 2022 (normal font), and the diagonal 
values refer to the correlation between each trait under WD condition in the two growing seasons

*p value < 0.05, **p value < 0.01 and ns Nonsignificant p value

NDH FLA PH NTP NPP PL HGW SET

NDH 0.91** 0.23** 0.30** 0.12* 0.11* 0.04  − 0.15** 0.09
FLA 0.06 0.25** 0.31**  − 0.09  − 0.09 0.18**  − 0.04  − 0.09
PH 0.28** 0.14** 0.99**  − 0.001  − 0.004 0.34** 0.03  − 0.17**
NTP 0.08  − 0.02  − 0.004 0.99** 0.99**  − 0.17**  − 0.28** 0.21**
NPP 0.07  − 0.02  − 0.007 0.99** 0.99**  − 0.17**  − 0.27** 0.23**
PL 0.04 0.06 ns 0.34**  − 0.16**  − 0.17** 0.99** 0.11*  − 0.24**
HGW  − 0.02  − 0.04 0.02  − 0.23**  − 0.22** 0.02 0.60**  − 0.23**
SET 0.08  − 0.02  − 0.17** 0.22** 0.23**  − 0.24**  − 0.12* 0.99**
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Selection for the Most Promising Drought TOLERANCE 
Genotypes for the Upcoming Breeding Program
Different stress tolerance indices were calculated for all 
traits to select the most drought tolerant genotypes in 
both years. The results of each stress selection index for 
each trait are presented in Additional file  1: Table  S2. 
In each stress index, all genotypes were sorted based on 
average sum of ranks (ASR), then the highest drought 
tolerant genotypes were selected. In each growing sea-
son, the genotype was finally selected if it was among the 
best 50 drought tolerant genotype in at least three stress 
indices. As a result, a set of 39 genotypes were considered 
drought tolerant genotypes in the two growing seasons. 
Interestingly, 23 genotypes were common and stable in 
the two-growing season (Fig. 1a, Table 5). We focused on 
the 23 genotypes in the following sections. The selected 
genotypes were from different countries representing 
West Europe, East Asia, Central America, Southeast 
Asia, Africa, and South America.

The population structure which previously done by 
(McCouch et  al. 2016) using fast STRU CTU RE were 
divided the RDP1 into five subpopulation. The five sub-
populations were named aus, indica, tropical, temperate, 
and admixed (ADMIX) japonicas. Figure  1b shows the 
distribution of the 23 common genotypes among the five 
subpopulations. The Indica subpopulation has the high-
est number of common genotypes (7), followed by the 
temperate japonica TEJ subpopulation with 5 genotypes, 
the tropical japonica TRJ and AUS subpopulation with 4, 
and the ADMIX subpopulation with 3 genotypes.

Genome Wide Association Study
The analysis of GWAS revealed 340 significant SNPs 
associated with all traits in both growing seasons under 
both conditions. In both conditions, the QQ-plot results 
represented that the best GWAS models for all the traits 

was FarmCPU the Q-Q plots were presented in Addi-
tional file  1: Fig. S1and S2. An approximate number 
of significant SNPs were found under N in both years, 
while the number of significant SNPs were higher in 
2021 (123 SNPs) than those detected in 2022 (23 SNPs) 
under WD (Fig. 2a). The distribution of all 324 significant 
SNPs across all the rice chromosomes was presented in 
(Fig. 2b). Under N conditions, the highest number of sig-
nificant SNPs was observed on chromosome 3 (33 SNPs), 
while, chromosomes 1 and 4 had the highest number of 
significant SNPs (28 SNPs) under WD. Chromosome 9 
had the lowest number of significant SNPs under both 
conditions.

In 2021, the GWAS found a total of 191 significant 
SNPs under both conditions Additional file  1: Table  S3 
and the summarize GWAS results are presented in 
Table  6. The manhattan plot for all traits scored under 
WD conditions in the two-growing season of 2021 and 
2022 were presented in Fig.  3. The Manhattan plot for 
all traits scored under N conditions in the two-growing 
season of 2021 and 2022 were presented in Additional 
file l:   Fig. S3. NTP had the highest number of significant 
SNPs (42 SNPs), while one SNP was found to be signifi-
cant associated with PL under WD. A set of 12 significant 
markers were detected for FLA under N, while only five 
SNP markers were detected for PL. One shared marker 
SNP-12.24590895 (chr. 12) was detected under both con-
ditions. The allele T of this SNP marker was found to be 
associated with increased HGW under both conditions.

A total of 133 SNP markers were found to be associ-
ated with yield traits in 2022 under both conditions 
Additional file  1: Table  S4 and the summarize GWAS 
results are presented in Table 6. The manhattan plot for 
all traits scored under N conditions in the two-growing 
season of 2021 and 2022 were presented in Additional 
file 1: Fig. S1. SET% had the highest number of significant 
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Table 5 The individual ID, name, Original providing country, region and subpopulation group according to (McCouch et al. 2016)

† GSOR: Genetic Stocks-Oryza collection identification number
†† NSFTV: National Science Foundation-"Exploring the Genetic Basis of Transgressive Variation in Rice" project accession identification number
# Subpopulation identified by fastStructure analysis based on 700,000 SNPs [McCouch et al.; Nature Communications (2016)7:10532]

Aus is coded with AUS, indica with IND, temperate japonica with TEJ, tropical japonica with TRJ and admixed with ADMIX

GSOR ID† NSFTV ID†† Name Original providing 
country

Region #Subpopulation 
group (fastStructure) 
(McCouch et al. 2016)

301,001 NSFTV_1 Agostano Italy West Europe TEJ

301,012 NSFTV_13 NSF‑TV 13 Unknown Unknown AUS

301,383 NSFTV_15 Beonjo Republic of Korea East Asia TEJ

301,028 NSFTV_30 Chiem Chanh Vietnam Southeast Asia IND

301,033 NSFTV_35 CO18 India South Asia IND

301,057 NSFTV_61 Guan‑Yin‑Tsan China East Asia IND

301,058 NSFTV_65 Honduras Honduras Central America TRJ

301,061 NSFTV_68 I‑Geo‑Tze Taiwan East Asia ADMIX

301,072 NSFTV_79 Jouiku 393G Japan East Asia TEJ

301,079 NSFTV_87 Keriting Tingii Indonesia Southeast Asia ADMIX

301,084 NSFTV_92 Kinastano Philippines Southeast Asia TRJ

301,094 NSFTV_102 Leung Pratew Thailand Southeast Asia IND

301,125 NSFTV_134 Romeo Italy West Europe TEJ

301,137 NSFTV_146 Shuang‑Chiang Taiwan East Asia IND

301,139 NSFTV_148 Sintane Diofor Burkina Faso Africa IND

301,154 NSFTV_163 Taducan Philippines Southeast Asia IND

301,204 NSFTV_213 WC 3397 Jamaica Caribbean TRJ

301,252 NSFTV_262 Halwa Gose Red Iraq West Asia AUS

301,269 NSFTV_279 Kon Suito Mongolia East Asia TEJ

301,347 NSFTV_359 Surjamkuhi India South Asia AUS

301,348 NSFTV_360 PTB 30 India South Asia AUS

301,361 NSFTV_376 Breviaristata Portugal West Europe ADMIX

301,364 NSFTV_379 Wanica Suriname South America TRJ
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markers across all the rice chromosomes (b)
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SNPs (16) under WD, while one marker was detected for 
PL. Under N, on the other hand, five significant SNPs 
were found to be associated with PL in 2022. One shared 
marker (SNP-11.20585882.) located on chr 11. The allele 
T of this SNP was significantly associated with increased 
HGW with approximately the same effect (0.18 g) under 
both conditions.

By considering the four conditions, one SNP marker 
(SNP-3.2647479) was found to be associated with N2022, 
N/2022, and WD/2022. Moreover, SNP-8.16430497 
was found to be associated with SET% under WD/2021 

(SET%) and WD/2022(SET%), NDH (N/2022) (Fig.  4a). 
The number of significant validated and stable markers 
in both growing seasons 2021 and 2022 under WD and 
N conditions are presented in Fig.  4b. Under N condi-
tions the FLA showed the highest number of validated 
and stable markers (11 SNPs) in both growing seasons. 
On the other hand, no markers are validated in the FLA 
under WD conditions. In the SET% 7 validated and stable 
markers were reported in both growing seasons under 
WD and N conditions. The lowest number of validated 
markers (1 SNP).

Table 6 The significant SNPs associated with NDH, FLA, PH, NTP, NPP, PL, HGW and SET% under WD and N irrigation in both growing 
season

Stress Trait No. of SNPs  − log10 P value Allele effect

Min. Max. Min. Max.

Season 2021

WD NDH 9 5.15 ×  10−33 1.10 ×  10−6  − 106.50 5.85

N 11 9.54 ×  10–20 5.50 ×  10–7  − 3.82 8.24

WD FLA 19 2.10 ×  10–8 1.19 ×  10–6 7.91 27.88

N 12 1.37 ×  10–7 1.18 ×  10–6  − 7.17 4.64

WD PH 11 1.07 ×  10–10 1.14 ×  10–6  − 9.77 11.56

N 7 8.76 ×  10–11 1.37 ×  10–6  − 9.33 35.80

WD NTP 42 1.44 ×  10–8 1.41 ×  10–6  − 2.06 8.61

N 8 3.50 ×  10–8 1.12 ×  10–6 1.74 4.33

WD NPP 11 7.35 ×  10–17 2.69 ×  10–7

N 8 4.39 ×  10–8 1.14 ×  10–6 1.74 4.33

WD PL 1 5.14 ×  10–7  − 1.97

N 5 2.96 ×  10–7 1.17 ×  10–6 1.64 4.10

WD HGW 14 2.83 ×  10–12 1.12 ×  10–6  − 0.86 0.91

N 7 1.14 ×  10–10 7.34 ×  10–7  − 0.16 0.26

WD SET% 16 1.70 ×  10–17 1.40 ×  10–6  − 6.31 47.02

N 10 2.30 ×  10–24 9.31 ×  10–7  − 1.01 11.27

Season 2022

WD 12 1.18 ×  10–10 1.13 ×  10–6  − 17.46 26.03

N NDH 8 2.24 ×  10–15 4.58 ×  10–7 3.39 26.48

WD FLA 2 2.6 ×  10–7 1.35 ×  10–6 3.10 6.62

N 11 1.36 ×  10–7 1.37 ×  10–6  − 6.19 4.56

WD PH 13 3.54 ×  10–10 7.65 ×  10–7  − 20.02 11.83

N 7 1.46 ×  10–11 6.98 ×  10–7  − 17.81 10.47

WD NTP 7 9.49 ×  10–14 8.44 ×  10–7  − 0.94 7.03

N 8 3.57 ×  10–8 1.12 ×  10–6 1.74 4.26

WD NPP 10 6.16 × 10–16 1.14 ×  10–6  − 1.16 7.38

N 7 2.71 ×  10–8 1.07 ×  10–6 1.73 4.17

WD PL 1 5.84 ×  10–7  − 1.97

N 5 3.06 ×  10–7 1.28 ×  10–6 1.65 4.13

WD HGW 5 5.95 ×  10–8 1.16 ×  10–6 0.159 0.308

N 6 1.25 ×  10–7 1.14 ×  10–6 0.123 0.18

WD SET% 16 2.19 ×  10–17 1.17 ×  10–6  − 2.59 35.31

N 15 5.60 ×  10–20 8.04 ×  10–7  − 1.28 9.92
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Fig. 3 Manhattan plot for all traits scored under drought stress in the two growing seasons of 2021 and 2022



Page 11 of 17Ghazy et al. Rice           (2024) 17:29  

In this study, we focused on the 26 common markers 
detected under WD in both growing seasons in the next 
sections. The list of shared significant markers between 
the two years under stress is presented in Additional 
file 1: Table S5. The 26 common markers were distributed 
on all chromosomes except Chr. 6 Fig. 4c. Chromosome 8 
had the highest number of common significant markers, 
while two common SNPs were found to be located on 
chromosome 1, 9, 10, 11, and 12. The linkage disequilib-
rium among markers located on the same chromosome 
was calculated. No significant LD was found among SNP 
pairs located on the same chromosome (data not shown). 
Interestingly, each common marker was found be associ-
ated with the same trait except three markers five mark-
ers that were associated with the same trait in both years 
in addition to a third different trait. For example, SNP-
8.16430497 marker was significantly associated with 
NDH in both years and with SET% under WD/2022. NPP 
had the highest number of common markers (9), while 
PL had only one common makers in both growing sea-
sons. The allele effect of the 26 common markers in both 
growing seasons under WD was investigated to see the 
stability of these markers on the traits (Fig. 5). High sig-
nificant correlation was found between the allele effects 
between 2021 and 2022 under WD with r = 0.97**.

Discussion
Genetic Variation in Yield Traits Under Normal and Water 
Deficit Conditions
The productivity of most field crops is significantly 
impacted by abiotic conditions like drought. Depend-
ing on the timing, duration, and severity of the drought, 
drought stress can occur at any stage of a crop’s growth 
and have varying effects on productivity (Mondal et  al. 
2021; Mourad et al. 2019; Sallam et al. 2019). It has been 
noted that drought stress directly lowers production dur-
ing the reproductive stage of plants (Table 7), as well as 
typically suppressing plant growth during the vegetable 
stage (Ma et al. 2016; Yue et  al. 2006). Although agron-
omists and breeders have made significant progress 
towards making crops more drought tolerant, the genetic 
and molecular bases of drought resistance in crops are 
still largely unclear (Ahmed et  al. 2021; Sallam et  al. 
2022).

In this study, highly diverse rice population showed 
high genetic variation in yield-related traits under 
water deficit. Such genetic variation is very useful for 
rice breeders to select promising drought tolerant rice 
genotypes as candidate parents for breeding program. 
Screening a large plant germplasm for target traits is 
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very important to precisely improve crop production 
through breeding program (Amro et  al. 2022; Bhandari 
et al. 2021; Abou-Zeid and Mourad 2021). The ANOVA 
revealed highly significant G x E interaction indicated 
that genotypes performed differently in both years under 
N and WD conditions. Therefore, selection based on dif-
ferent stress indices for drought tolerance was performed 
each year separately. Drought-tolerant genotypes in each 
single trait for all stress indices were considered and 
superior genotypes were selected if they had a high per-
formance in at least four stress indices. Selection based 
on multiple traits is highly performed than single-trait 
selection to obtain the true promising candidate geno-
types for future breeding program (Ghazy et  al. 2021; 
Raman et al. 2012). As a result, a set of 23 drought tol-
erant rice were selected due to their high yielding attrib-
uted in both years. These genotypes represented different 
countries and different subpopulations (Fig. 1b), indicat-
ing that these genotypes also have a high genetic diversity 
among them. Crossing highly divergent drought-tolerant 
genotypes is very important to produce cultivars having 
higher degree of drought tolerance in rice. Ghazy et  al. 
2021, utilize the analysis of genetic diversity, QTL, and 
genetic variation in a set of 22 rice cultivars and select the 
most diverse and high tolerant rice genotypes for future 
crossing. Therefore, investing genetic diversity in par-
allel with genetic variation in target trait will help plant 
breeder to accelerate breeding programs to genetically 
improve target traits (Eltaher et  al. 2018; Mourad et  al. 
2020; Salem & Sallam 2016).

It was noted the SET% was the most trait affected by 
WD stress with an increase reached to 61% on average in 
both years. Drought stress leads to increase spike fertil-
ity due to the increase of reactive oxygen species (ROS) 
levels (Selote & Khanna-Chopra 2004). Highly resistant 
rice genotypes tend to have a high efficient mechanism 
that protect them from oxidative conditions (Selote & 
Khanna-Chopra 2004). Therefore, SET% is an impor-
tant trait that should be considered to highly determine 
drought tolerant genotypes.

Genome‑Wide Association Study (GWAS)
In this study, a set of 413 highly diverse rice genotypes 
were used to detect maker- association through GWAS. 
It was previously reported that 100–500 individual are 
required for genome-wide studies (Alqudah et al. 2020). 
The use of a diverse panel in GWAS not only helps to 
map relationships between traits and DNA polymor-
phisms but also enables us to understand the genetic 
basis of genetic correlations among phenotypic traits, i.e., 
pleiotropy versus genetically linked genes, and makes it 
easier to choose donors with a mix of traits that are likely 
to be adaptive and selectively advantageous for breeding 
in target environments. The genotypes and SNP markers 
used in the current study were previously investigated to 
identify QTLs associated with phenotypic performance 
under cold stress conditions in the USA (Shakiba et  al. 
2017). This study has sufficient power, given our marker 
density and sample size, to identify alleles with big effects 
that are shared across populations, but a larger panel 

Fig. 5 The allele effect of the 26 common markers in both growing seasons under water deficit conditions (WD)
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with a greater density of SNPs might enable us to identify 
more QTLs with small effects.

The analysis of the population structure for the RDP 
was previously performed by McCouch et  al. (2016). In 
GWAS studies, population structure should be consid-
ered to prevent spurious association. Therefore, PCA, 
kinship, and PCA + kinship was included with GLM, 
MLM, and FarmCPU. Bhandari et al. 2020, draw findings 
that are based on recent research showing that multi-
locus methods—particularly Farm-CPU—are more 
effective than single-locus methods (like MLM) for ana-
lyzing associations between traits that have high or low 
heritability. This is because they effectively control for 
false positives and negatives, as evidenced by the sharp 

deviations seen in the p-value distribution in qq plots 
(Kaler & Purcell 2019; Xu et al. 2018). Based on q-q plot 
results, FarmCPU was the best GWAS model for all traits 
scored in this study (Lawson et al. 2020).

Notably, some of the strongest signals can be found 
quite a distance from known candidate genes. The opti-
mal tag-SNP for a candidate gene may be quite far from 
the expected locus due to ascertainment bias, or we may 
be tagging previously unknown loci that just so happen 
to map close to a known candidate (Zhao et al. 2011).

The GWAS of this study revealed very important SNP 
markers associated with yield traits under both con-
ditions and the two growing seasons. It was observed 
that the number of QTL detected in 2021 under both 

Table 7 The gene ID, gene name coding protein and the biological process for the 16 SNPs

Year Stress Trait SNP ID Gene ID Gene Name Protein coding Biological process

2021 WD NPP/NTP SNP‑3.1410415 Os03g0124300 FER Receptor‑like protein kinase 
FERONIA‑like

Response To Water Deprivation

2022

2021 WD PH SNP‑3.8751808 Os03g0265300 PXN Peroxisomal Transport Primary and secondary metabolism, 
development, and responses to abi‑
otic and biotic stresses

2022

2021 WD SET% SNP‑4.16583620 Os04g0348300 CDC5 Pre‑mRNA splicing factor compo‑
nent CDC5L/Cef1

Regulation Of Protein Localization

2022

2021 WD PL SNP‑4.33316160 Os04g0653200 OSCAX3 Calcium/proton exchanger Ion Transport

2022

2021 WD NDH SNP‑10.19624308 Os10g0510400 AdoMet Putative S‑adenosyl‑L‑methionine‑
dependent methyltransferase

Response To Water Deprivation

2022

2021 WD NPP/NTP SNP‑11.20345396 Os11g0549620 PAP3 Purple acid phosphatase Response To Water Deprivation

2022

2021 N SET% SNP‑2.24141959 Os02g0612800 BIP135 Sister chromatid cohesion protein 
Pds5

Mitotic Sister Chromatid Cohesion

2022

2021 N PL SNP‑3.15006885 Os03g0379500 RPS9 Ribosomal protein S4/S9 Positive Regulation of Translational 
Fidelity2022

2021 N FLA SNP‑3.27988841 Os03g0698300 MTs Transmembrane Transporter 
Activity

Water and nutrient movement 
and improving tolerance mecha‑
nisms against numerous abiotic 
stresses
Regulation Of Developmental 
Growth

2022

2021 N FLA SNP‑3.27992294 Os03g0698350 ADCK ADCK1‑like domain

2022

2021 N FLA SNP‑3.28018218 Os03g0698900 ACER Alkaline ceramidase, plant Important functions in plant growth 
and stress responses2022

2021 N FLA SNP‑3.28135195 Os03g0701000 emb2734 Importin beta family Nucleocytoplasmic transport recep‑
tors2022

2021 N FLA SNP‑3.28220322 Os03g0702500 UGT91D2 UDP‑glucuronosyl/UDP‑glucosyl‑
transferase

Role in conferring drought tolerance

2022

2021 N PH SNP‑6.3158894 Os06g0162700 MYB98 SANT/Myb domain Regulation of a plant‑specific devel‑
opmental program2022

2021 N NPP/NTP SNP‑6.422802 Os06g0106500 PLCP Papain‑like cysteine peptidase 
superfamily

Protein proteolysis and involved 
in numerous physiological processes2022

2021 N SET% SNP‑6.682168 Os06g0112100 BSPA Catalytic Activity Nucleoside Metabolic Process

2022
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conditions was higher than those detected in 2022. This 
was due to the effect of environment (year) on identify 
significant SNPs associated with target traits (Eltaher 
et al. 2021a). Therefore, it is highly recommended to test 
the same population over locations or years to truly iden-
tify significant markers. Recently, 17 QTLs were linked 
to drought tolerance in the vegetative stage when grown 
in a greenhouse, according to GWAS research done on 
180 Vietnamese rice landraces (Hoang et al. 2019). Using 
a mixed model approach with structure control and kin-
ship among the landraces under research, different signif-
icant MTAs were found in the two subpanels of the study, 
indica and japonica. For improved adaptability in the dry 
direct seeded rice (DDSR) system, GWAS conducted by 
(Subedi et al. 2019) revealed 37 highly significant MTAs 
for 20 parameters, including plant and root morphologi-
cal traits, nutrient uptake, yield, and its components in 
MAGIC population of 5 different parents. Wang et  al. 
)2023(, identified 78 SNPs significantly associated with 
drought tolerance in the 305 accessions, including 15, 33, 
17, and 13 SNPs associated with grain number per plant 
(GYP), grain number per panicle (GNP), panicle number 
per plant (PNP), and plant height (PH), respectively. All 
these 78 significant SNPs were tagged to only 42 QTLs 
distributed on all 12 chromosomes, which agrees with 
our finding.

A set of shared 34 and 26 significant SNPs were found 
in both years under N and WD, respectively. These mark-
ers can be considered as stable markers; however, they 
should also be tested in further genetic backgrounds 
before using them in MAS. Genetic validation testes 
whether the same marker (or QTL) or candidate gene is 
likely to be significantly detected when the plant material 
is evaluated in other years or different locations (Elta-
her et al. 2021b; Hashem et al. 2023; Sallam et al. 2016, 
2022, 2023). Notably, no significant marker was found 
in the four environments: N2021, N2022, WD2021, and 
WD2022. However, four markers were significant under 
three environments (Fig.  4a). These markers could be 
specifically tested in different genetic backgrounds under 
both conditions.

The 26 significant markers detected under WD in both 
growing seasons provide very important information that 
can be utilized to genetically improve yield traits under 
WD conditions. These markers were found to be asso-
ciated with PH, NPP, SET%, NTP, and NDH. The NDH 
and SET% had the highest number of shared markers 
in both years. Out of 26 markers, five were found to be 
associated with more than one trait, indicating that these 
markers had pleiotropic  effects. Markers with pleio-
tropic  effects are very useful in marker-assisted selec-
tion. Of the five markers with  pleiotropic  effects, four 
(SNP-11.20345396., SNP-2.27812486, SNP-9.14101710., 

and SNP-3.1410415 were associated with NTP and NPP. 
Shared markers between these two traits were expected 
due to the strong phenotypic correlation between NTP 
and NPP. Only one marker SNP-8.16430497 was found 
to be associated with NDH and SET% although no sig-
nificant correlation between them. Gene annotation 
of the 26 SNPs was investigated. Only six SNPs were 
found to be located within six different gene models 
(Table 7). SNP-3.1410415. was found to be located within 
LOC_Os03g03290 gene model which encodes Receptor-
like protein kinase FERONIA-like. The receptor-like 
kinase FERONIA was previously found to be tightly 
involved in plant development, plant growth, responses 
to various stresses (Jing et al. 2023). In apple plants, the 
FERONIA receptor kinase was associated with induced 
abscisic acid under different drought treatments. The 
activity of receptor-like protein kinase FERONIA-like 
was associated with less photosystem damage and higher 
photosynthetic rates under drought conditions (Jing et al. 
2023). Also, Receptor-like kinase OsSIK1 was found to 
significantly improve drought and salt stress tolerance 
in rice through the activation of the antioxidative sys-
tem (Ouyang et al. 2010). SNP-3.8751808. markers were 
located within LOC_Os03g15860 which encodes NAD/
FAD transporter SLC25A32-like/Peroxisomal Transport. 
SNP-4.33316160. was located within LOC_Os04g55940 
gene model that encodes calcium/proton exchanger. 
Ca2+ regulates the physiological response to drought 
stress by acting as a secondary messenger and transmit-
ting drought signals (Hong-Bo et  al. 2008). Moreover, 
cytosolic-free calcium plays a vital role in the movement 
of stomata and the regulation of the closing and opening 
of the stomata (Wang et  al. 2005). in Wheat seedlings, 
it was noted that with the increase in drought dura-
tion, the concentration of free Ca2+ in the nucleus was 
increased, indicating the potential role of the  Ca2+ in 
maintaining nucleus structure and integrity (Song et  al. 
2008). The candidate gene LOC_Os04g28090 (SNP-
4.16583620.) that was found for SET% under both years 
encodes Pre-mRNA splicing factor component CDC5L/
Cef1. The LOC_Os10g36690 gene model that included 
SNP-10.19624308 SNP marker (NDH) encodes putative 
S-adenosyl-L-methionine-dependent methyltransferase. 
The protein was highly increased under drought stress 
in coffee leaves (Mofatto et al. 2016) and maize roots (He 
et  al. 2016). SNP-11.20345396 (NPP and NTP) marker 
was located within LOC_Os11g34720 gene model which 
encodes purple acid phosphatase (PAP). In rice, the PAP 
was found to be associated with pollen development 
and phosphorus Pi starvation (Deng et  al. 2020). It was 
also reported that the PAP interacts with other genes 
to alleviate the effect of drought stress on Arabidopsis 
(.e.g. AtGAL1) (Ghahremani et al. 2019) and wild plants 



Page 15 of 17Ghazy et al. Rice           (2024) 17:29  

(RAP2.2)(H. Xu et al. 2022; Zhang et al. 2008). The strong 
association between the biological function of candidate 
genes and drought tolerance indicates the successful-
ness of our GWAS in identifying markers associated with 
yield traits under drought stress in rice. Also, the candi-
date genes for SNPs (10 SNPs) associated with the same 
traits in the both growing season under normal condi-
tions is presented in Table 7.

The LD among SNPs located on the same marker was 
calculated and non-significant LD was found between 
any marker pairs, indicating that each significant SNP 
represented individual QTL. Interestingly, the allele 
effects of 26 markers were compared in the two growing 
seasons under WD stress. High significant correlation 
(r = 0.97**) was found among the allele effects of the 26 
marker between 2021 and 2022 indicating the stability of 
these markers regarding to their effects on the traits. In 
both growing seasons, the allele T in SNP-5.6758958 was 
found to be associated with increased PH in 2021 (11.5 
cm) and 2022 (11.8). The allele G in SNP-8.16430497 
was found to be associated with decreases SET% in 2021 
( − 47.01%) and 2022 (32.54%).

Conclusion
Large-scale resequencing-based genome-wide associa-
tion studies (GWAS) offer an efficient means for find-
ing genetic variants that can be utilized to improve crop 
quality, including drought tolerance. High resolution 
GWAS has been effectively applied to identify relation-
ships involving complex variables from different col-
lections of rice cultivars with genetic variants. GWAS 
offers high-resolution genetic mapping that can filter the 
related regions to potential genes by using high density 
SNPs at the whole-genome level. This result further sup-
ports the usefulness of utilizing such markers to improve 
drought tolerance in rice. These markers had many 
advantages (1) they were able to be significantly detected 
in both growing season under WD stress, (2) each marker 
was found be associated with the same train, and (3) the 
effect of target allele of these markers was stable over the 
two years. Therefore, these markers can be converted to 
Kompetitive allele specific PCR (KASP) markers to be 
validated in a different genetic background tested for 
yield traits under WD stress.
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