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Abstract

The complex trait of yield is controlled by several quantitative trait loci (QTLs). Given the global water deficit issue,
the development of rice varieties suitable for non-flooded cultivation holds significant importance in breeding
programs. The powerful approach of Meta-QTL (MQTL) analysis can be used for the genetic dissection of complicated
quantitative traits. In the current study, a comprehensive MQTL analysis was conducted to identify consistent QTL
regions associated with drought tolerance and yield-related traits under water deficit conditions in rice. In total, 1087
QTLs from 134 rice populations, published between 2000 to 2021, were utilized in the analysis. Distinct MQTL analysis
of the relevant traits resulted in the identification of 213 stable MQTLs. The confidence interval (Cl) for the detected
MQTLs was between 0.12 and 19.7 cM. The average Cl of the identified MQTLs (4.68 cM) was 2.74 times narrower
compared to the average Cl of the initial QTLs. Interestingly, 63 MQTLs coincided with SNP peak positions detected
by genome-wide association studies for yield and drought tolerance-associated traits under water deficit condi-
tions in rice. Considering the genes located both in the QTL-overview peaks and the SNP peak positions, 19 novel
candidate genes were introduced, which are associated with drought response index, plant height, panicle number,
biomass, and grain yield. Moreover, an inclusive MQTL analysis was performed on all the traits to obtain “Breeding
MQTLs". This analysis resulted in the identification of 96 MQTLs with a Cl ranging from 0.01 to 9.0 cM. The mean Cl

of the obtained MQTLs (2.33 cM) was 4.66 times less than the mean Cl of the original QTLs. Thirteen MQTLs fulfill-

ing the criteria of having more than 10 initial QTLs, CI< 1 cM, and an average phenotypic variance explained greater
than 10%, were designated as "Breeding MQTLs" These findings hold promise for assisting breeders in enhancing rice
yield under drought stress conditions.

Key message

Meta-QTLs associated with yield-related traits under drought stress were identified in rice applying an integrated
meta-analysis approach, which will be useful in molecular breeding of rice to improve drought tolerance.
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Introduction

To meet the global food requirements by 2050, an aver-
age annual increase of 44 million tons in food production
is necessary (Tester and Langridge 2010). The scarcity
of water resources has exacerbated the food shortage
situation, and enhancing the drought tolerance (DT) of
crops is an effective method to ensure food security (Hu
and Xiong 2014). Rice (Oryza sativa L.) not only feeds
more than half of the world’s population but is also an
important model plant in cereals (Xing and Zhang 2010).
Drought stress is a main abiotic stress which restricts rice
growth and productivity (Singhal et al. 2016). So, enhanc-
ing drought tolerance in rice is of great importance.

Enhancing DT in crops is a challenging process, given
its complexity, which involves various physiological and
molecular responses influenced by multiple alleles with
minor effects (Blum 2011; Fukao and Xiong 2013). To
comprehend the genetic basis of DT in rice, researchers
have utilized quantitative trait locus (QTL) mapping with
recombinant inbred lines (RILs) populations (Yue et al.
2006). Yield-associated traits and visible scores for plant
performance during or after water deficit conditions are
commonly used to assess DT, however; a limited number
of QTLs were repetitively identified in various popula-
tions or different years or environments. Drought stress
significantly reduces grain yield (GY), and identifying
trustworthy loci related to DT using GY is challenging,
considering that grain yield is influenced by many genes
with minor effects and numerous uncontrolled environ-
mental factors in the field (Guo et al. 2018a).

QTL mapping has been widely employed as an influen-
tial statistical approach to detect genomic regions related
to important traits for breeding (Wang et al. 2019).
Numerous QTL-based studies have been conducted on
different populations for several DT-associated traits
and GY components such as water use efficiency (Zhou
et al. 2013), carbon isotope discrimination (Takai et al.
2006), canopy temperature (Prince et al. 2015), flag leaf
size (Yue et al. 2008), heading date and delay in flower-
ing (Trijatmiko et al. 2014), drought response index (Kim
et al. 2017), leaf drying (Michael Gomez et al. 2010),
grain number per panicle (Baisakh et al. 2020), biomass
yield (Dixit et al. 2015) and plant height, number of tillers
per plant, leaf rolling, leaf drying, harvest index, spikelet
fertility, and relative water content (Barik et al. 2019).

Different positions of a QTL in various mapping pop-
ulations result in a immense confidence interval and an
unreliable QTL position. Additionally, several factors

such as differences in mapping population size, sam-
pling errors, marker density, experimental replicates and
QTL mapping models can further complicate the situa-
tion (Darvasi and Soller 1997; Darvasi et al. 1993). Dif-
ferent methods have been applied till now to validate the
QTL results, like QTL mapping utilizing first-generation
populations, and confirmed in advanced-generation
breeding populations of the same cross (Gelli et al. 2017).
Furthermore, QTL validation is accomplished using the
candidate gene method or positional cloning, followed
by incorporating functional and genetic data within the
breeding process (de Dorlodot et al. 2007). However, this
is a challenging process that requires high-density link-
age maps, extensive genomic resources and logical infor-
matics data (de Dorlodot et al. 2007).

Meta-analysis is a statistical method that combines
consensus loci from various QTL studies for multi-
ple traitsinto a single dataset to determine the most
probable position and confidence interval (CI) of QTL
regions (Loni et al. 2023; Bilgrami et al. 2023). This
approach has been applied to identify genomic consen-
sus regions over various QTL studies considering their
effects and constancy across different genetic back-
grounds and environments. Moreover, it can enhance-
and validate QTL positions on a consensus map through
mathematical models. The identified consistent QTL
for a set of QTLs with a CI of 95% via meta-analysis is
called meta-QTL (MQTL) (Swamy et al. 2011). Another
important advantage of meta-analysis of QTLs is its abil-
ity to decrease the CI of the MQTLs compared to QTLs.
MQTL analysis determines the most constant QTLs irre-
spective of the population’s genetic background and field
trial conditions, and it efficiently decreases the CI for
identifying candidate genes and developing markers (Bil-
grami et al. 2023; Khahani et al. 2021). Therefore, QTL-
based meta-analysis provides more precise and stronger
results. In addition, meta-analysis of QTLs provides a
perception into the genetic analysis of complicated traits
like drought, salt and heat response. Meta-analysis of
QTLs has been applied to accurately evaluate many agro-
nomical traits in different crops (Khowaja et al. 2009).

Several studies have been conducted for the meta-
analysis of QTLs controlling grain yield components
and DT-related traits under water deficit conditions in
rice. Some MQTLs have been reported for plant height
througha meta-analysis of published QTLs up to2009
(Khowaja et al. 2009). Swamy et al. (2011) projected 53
grain yield QTLs, reported in 15 studies under drought
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stress, on a consensus map and conducted a meta-anal-
ysis that resulted in the identification of 14 MQTLs on
7 chromosomes. They showed that a grain yield MQTL
under drought coincided with at least one of the MQTLs
discovered for root and leaf morphology in previous
studies (Swamy et al. 2011). In another study, MQTL-
analysis for grain yield and yield component under
drought stress resulted in identification of a GY MQTL
in a region close to the semi dwarf gene (sdI) locus on
chromosome 1 which co-localized with QTLs for leaf
rolling and osmotic adjustment (OA) (Trijatmiko et al.
2014). In addition, a QTL for percent seed set and grains
per panicle under drought stress was discovered on
chromosome 8 in the region where a QTL for OA was
reported in previous studies (Trijatmiko et al. 2014).
Yang et al. (2018a, b) reported some MQTLs for head-
ing date through a meta-analysis of published QTLs till
2018 (Yang et al. 2018a). Khahani et al. (2021) conducted
a meta-analysis of 536 QTLs related to yield and yield-
associated traits such as yield (YLD), grain weight (GW),
heading date (HD), plant height (PH) and tiller number
(TN) plus root-architecture related traits under drought
stress conditions. They identified 61 stable MQTLs
across different genetic backgrounds and environments
(Bilgrami et al. 2023; Khahani et al. 2021). Abdirad et al.
(2022) combined root tip transcriptome sequencing and
meta-analysis of QTLs to find the main genes engaged in
drought stress response in rice (Abdirad et al. 2022). In
addition, for complex quantitative traits, GWAS is widely
employed to identify significant effects of genomic loci.
It has been indicated that combining meta-analysis of
QTLs and GWAS data can lead to dissecting important
genomic regions and the genetic foundation of important
quantitative traits (Bilgrami et al. 2023; Bilgrami et al.
2020; Daryani et al. 2022). Furthermore, an integrated
approach of meta-QTL analysis was used to identify the
genomic regions and candidate genes related to drought
tolerance and yield-related traits in foxtail millet (Loni
et al. 2023).

In the current study, a meta-analysis of 1,087 QTLs
controlling DT and yield-related traits under drought
stress conditions in rice was performed. The QTLs were
gathered from QTL mapping studies conducted under
drought stress in rice from 2000 to 2021. After mapping
the 1,087 QTLs onto the consensus genetic map, the den-
sity of QTLs, described as the “QTL-overview index’,
was computed for the considered interval of 0.5 cM on
each chromosome to detect genomic regions signifi-
cantly associated with yield and yield-related traits under
drought stress conditions. Overlap between MQTLs
identified using meta-analysis and SNPs identified using
the GWAS technique for yield and yield-related traits
under drought stress conditions was examined to select
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candidate genes. In our study, in addition to conducting a
distinct MQTL analysis for each trait, an inclusive MQTL
analysis was performed on all the investigated traits to
identify and introduce hotspots for breeding programs.
The consensus genomic regions identified by meta-anal-
ysis of QTLs were subsequently confirmed by the GWAS
studies. The genes located within the MQTLs were found
and categorized based on their function. Furthermore,
the rice drought-responsive genes were identified by
the RNA-seq and microarray datasets analysis, and the
MQTL regions related to yield and yield-related traits
were searched to identify the drought-responsive genes.
Conclusively, the integration of QTLs, GWAS, and tran-
scriptome data has facilitated the detection of the prom-
ising MQTLs and candidate genes. These findings would
be utilized in MQTL-assisted breeding to improve yield
potential under drought stress in rice.

Materials and Methods

Compilation of QTLs Linked to Drought Tolerance and Yield
Associated Traits

All the publications reporting QTLs associated with DT
and yield-related traits under drought treatment in rice
from 2000 to 2021 were reviewed. Totally, 1,388 original
QTLs belonging to 21 different traits from 134 bi-paren-
tal rice populations extracted from 76 studies, of which
1,087 QTLs were utilized for the meta-analysis. Out of
this dataset, 1,087 QTLs (Table 1) were considered for
the meta-analysis, which had the necessary information
such as phenotypic variance, population size, etc. Moreo-
ver, the QTLs with a large confidence interval and small
phenotypic variance were removed. Table 1 provides
information on the parents used in the populations, the
type and size of the populations, the markers used for
genotyping (including AFLP, SSR, SNP, and RFLP), and
the number of primary QTLs. The original QTLs were
classified into 10 trait categories, including biomass yield
(BY), canopy temperature (CT), drought response index
(DRI), flag leaf size (FLZ), grain yield (GY), heading/days
to flowering (HD), harvest index (HI), plant height (PH),
panicle number (PN), and spikelet fertility (SF) (Addi-
tional file 4: Table S1).

Consensus Genetic Map

The most comprehensive genetic map, developed by Wu
et al., (2016) was used as a reference map for the meta-
analysis of QTLs. This map integrated different types
of markers such as SSR, RFLP and AFLP, from six rice
saturated maps, and contained 6,970 markers spanning
1,823.1 cM with a genetic distance between markers
ranging from 0.19 to 0.5 cM on all the chromosomes (Wu
et al. 2016) (Additional file 5: Table S2). In order to incor-
porate those initial QTLs with SNP markers (Table 1)
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Table 1 Brief of the QTL mapping studies used in meta-analysis of the QTLs for yield components and drought tolerance-associated
traits in rice

No Parents of

Population size

Genotyping method Population type

Number of initial QTL References

population under drought stress

1 M23xTC189 100 SSR F, 26 Lin et al. (2007)

2 BasmatixIR55419-04 418 SSR Fy 12 Sabar et al. (2019)

3 CT9993 x IR62266 154 SSR, AFLP. RFLP DH 78 Lanceras et al. (2004)

4 IR64 X Apo 50 SSR BILs 3 Baghyalakshmi et al.

(2016)

5 Zhenshan 180 SSR RILs 47 Yue et al. (2006)
97 x IRAT109

6 N22 x Swarna, 292,289,362 SSR BSA 22 Vikram et al. (2011)
N22 x IR64,
N22 x MTU1010

7 CR143-2-2xKrishna- 190 SSR RILs 12 Barik et al. (2019)
hamsa

8  VandanaxWay Rarem 126 SSR F3 39 Bernier et al. (2007)

9  Xiaobaijin- 220 SSR RILs (F,.) 13 Xing et al. (2014)
gzixKongyu131

10  Swarna x WAB 450 188 SSR BILs (BC;F¢) 10 Sangodele et al. (2014)

11 Akihikari x IRAT109 106 SSR BILs (BC,F)) 5 Kato et al. (2008)

12 CocodriexVandana 187 SNP, SSR Fos 6 Solis et al. (2018)

13 Morobere- 260 SNP BC,Fs 47 Dixit et al. (2015)
kan x Swarna

14 Anbarbux Spidroud 96 SSR RILs 8 Sabouri et al. (2013)

15 Kali Aus x IR64, Kali 300 SSR BSA 7 Palanog et al. (2014)
AusxMTU1010

16 IR20x Nootripathu 200 SSR RILs 35 Prince et al. (2015)

17 SwarnaxDular, 350 SNP BC,Fs 41 Yadav et al. (2019)
IRTTN121 X Aus196

18  SwarnaxWAB450--B- 202 SSR BIL(BC,F¢) 28 Saikumar et al. (2014)
P-157-2-1

19 Zhen- 105 SSR NILs 4 Nie et al. (2015)
shan97B x IRAT109

20 DanteshwarixDagad 162 SSR, HVSSR RILs 27 Verma et al. (2014)
deshi

21 IR77298-5- 487,478,457,286,485 SSR BILs (BC4F5) 10 Swamy et al. (2013)
6-B-18 x1R64, IR77298-
5-6-B-18 x IR77298-
5-6-B-11,
IR77298-14-1-2 X IR64,
IR77298-14-1-
2-B-10xIR64

22 IR55419-04/2xTDK1 365 SSR BSA (BC,F3.) 19 Dixit et al. (2014a)

23 Kali Aus/2xMTU1010, 134,109 SSR BSA (BC,F,) 6 Sandhu et al. (2014)
KaliAus/2 x IR64

24 Cocodrie xN22 181 SNP RILs 21 Bhattarai and Subudhi

(2018)

25 IR74371-46- 294 SSR BILs 9 Mishra et al. (2013)
1-1 X Sabitri

26 ApoxSwarna, Aday 490, 288, 180,470 SSR BC,F,, BC,F5, BCFs, 14 Dixit et al. (2012)
sel X IR64, Van- BCsFs
danaxWay Rarem

27  CocodriexN22 190 SSR, SNP Fos 8 Dixit et al. (2012)

28  Swarnax Morobere- 361 SNP BC,Fs 19 Dixit et al. (2014b)
kan

29 SamgangxNagdong 218 SSR, STS DH 4 Kim et al. (2017)
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No Parents of

Population size

Genotyping method Population type

Number of initial QTL  References

population under drought stress
30 Zhen- 195 SSR RILs 18 Liu et al. (2005)
shan97B x IRAT109
31 HaogelaoxShen- 94 SSR RILs 31 Gu et al. (2014)
nong265
32 IR64xCabacu 154 SNP RILs 11 Trijatmiko et al. (2014)
33 IR64 x Adaysel, 230 SSR BC,Fs 3 Shamsudin et al. (2016)
Swarna X Apo, Van-
danaxWay Rarem
34 IR64xMTU1010 119 SSR BAC 12 Swamy et al. (2017)
35 N22 x Swarna, 292,289,362 SNP RILs 12 Vikram et al. (2011)
N22 x IR64,
N22 x MTU1010
36 Norungan xIR62266 232 SSR RILs 79 Sujietal. (2012)
37 DongxiangxDXCWR 159 SSR RILs 17 Tian et al. (2006)
38 Guichao2x(0.satival. 135 SSR BC,F, 12 Shao-Xia et al. (2006)
ssp. Indica)
39 IRAT109x Zhenshan 180 SSR RILs 47 Yue et al. (2008)
97
40 IRAT109x Zhenshan 181 SSR RILs 41 Yue et al. (2005)
97
41 (CT9993 x IR62266 154 SSR, AFLP, RFLP DH 6 Babu et al. (2003)
42 IR64 x RAM 40 513 SSR, STS BC,Fs 19 Bimpong et al. (2011)
and RAM 90
43 (CT9993-5-10-1-M x 154 SSR, AFLP, RFLP DH 6 Chakraborty and Zeng
IR62266-42-6-2 2011)
44 |R64 xAzucena 135 RFLP, RAPD, Isozyme DH 31 Courtois et al. (2000)
45 Swarna x Dhagad- 269 SSR RILs (F3.) 7 Ghimire et al. (2012)
deshi, IR64 x Dhagad-
deshi
46 IR20 x Nootripathu 259 ISSR, RAPD, EST RILs (Fg) 19 Michael Gomez et al.
(2010)
47 Shennong265 X 94 SSR BILs (BC5F¢) 9 Guetal. (2012)
Haogelao
48 IR64 x Azucena 135 RFLP DH 3 Hemamalini et al.
(2000)
49  Zhenshan 978 x 195 SSR RILs (Fy0) 9 Hu et al. (2009)
IRAT110
50 Balax Azucena 176 SSR, AFLPRFLP RILs (Fg) 4 Khowaja and Price
(2008)
51 (CT9993-5-10-1-M x 105 SSR, AFLP, RFLP DH 3 Kumar et al. (2007)
IR62266-42-6-2
52 Balax Azucena 205 SSR, AFLP, RFLP RILs 21 Lafitte et al. (2004)
53 (CT9993-5-10-1-M x 154 SSR, AFLP. RFLP DH 36 Lanceras et al. (2004)
IR62266-42-6-2
54 OM1490 x WAB880-1- 229 SSR BILs (BC,F,) 10 Langetal. (2013)
38-18-20-P1-HB
55 Zhenshan 97B x 187 SSR RILs (Fy0) 12 (Liu et al. 2008)
IRAT109
56  Gharib x Sepidroud 148 SSR Fou 8 Mardani et al. (2013)
57 Maybelle x Baiyegiu 251 SSR DH 8 Qunetal. (2011)
58 IR62266-42- 150 RFLP, SSR, Candidate  BILs 6 Robin et al. (2003)
6-2 xIR60080-46-A genes
59 PusaBasmatil460 x 94 SSR RILs (F55) 25 Sandhu et al. (2013)

MASARB 25, HKR47 x
MAS26
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Table 1 (continued)

No Parents of Population size Genotyping method Population type Number of initial QTL  References
population under drought stress

60 IR64 x Kali, 300 SSR BILs (BC,F,) 23 Sandhu et al. (2014)
MTU1010 x Kali, Kali
Aus/2xMTU1010

61 CT9993-5-10-1-M x 135 SSR, AFLP, RFLP DH 4 Sellamuthu et al. (2015)
IR62266-42-6-2

62 (CT9993-5-10-1-M x 154 SSR, AFLP, RFLP DH 4 Srinivasan et al. (2008)
IR62266-42-6-2

63 IR64 x Norungan 380 SSR RILs (Fg) 28 Subashri et al. (2009)
and IR50 x Norungan

64  Milyang 23 xAdhikari 126 SSR, RFLP RILs 5 Takai et al. (2006)

65 IR64 x Azucena 91 SSR DH 42 This et al. (2010)

66 IR64 x Azucena 165 SSR RILs 32 This et al. (2010)

67 IR64 X IRAT177 154 SNP RILs (Fy) 11 Trijatmiko et al. (2014)

68 IR64 x Azucena 90 SSR DH 4 Venuprasad et al. (2009)

69 Swarna X Basmati 334 367 SSR RILs (F5.) 8 Vikram et al. (2012)

70  MTU 1010xN22 362 SSR RILs (F3.4) 2 Vikram et al. (2011)

71 IR64xTarom molaei 72 SSR BILs (BC,Fg) 29 Wang et al. (2013)

72 Teqing X Lemont 133 SSR BILs 33 Xu et al. (2005)

73 Sabitri x IR77298-5- 294 SSR BlLs 4 Yadaw et al. (2013)
6-18

74 Tequing X Lemont 254 SSR BILs 24 Zhao et al. (2008)

75  Zhenshan 97B x 180 SSR RILs (Fy0) 22 Zhouetal. (2011)
IRAT109

76 Zhenshan 97B x 187 SSR RILs (Fg) 14 Zou et al. (2005)
IRAT109

into the reference map, we employed our previous
method (Daryani et al. 2022) in which the genomic posi-
tions of SNP markers on the rice genome were detected
and the closest markers based on the physical position
were utilized to project them on the reference map.

Projection of QTLs into the Consensus Map

To project the QTLs on the reference map, the LOD
(Logarithm of the odds) score, the phenotypic variation
explained by the QTL (R?), the closest or flanking mark-
ers, and the position of the QTL-linked markers were
used. A simple scaling rule was used to project the QTLs
based on the consensus map, which involved the inter-
val of the markers flanking the original QTL and the rel-
evant interval on the chromosome. The projection was
done using a Gaussian mixture model-based algorithm
to estimate the new CI of a QTL on the consensus map.
In the research, BioMercator v4.2 (http://moulon.inra.
fr/) was used for meta-analysis of QTLs. The formula
CI=530/(NxR? was used to calculate the 95% CI for
QTLs obtained from backcross (BC) and F, populations,
where N is the population size and R? is the proportion
of phenotypic variance described by a QTL (Darvasi and
Soller 1997). For QTLs obtained from doubled haploid

(DH) and recombinant inbred (RI) lines, the formu-
las CI=287/(NxR?) (Visscher and Goddard, 2004) and
CI=163/(NxR?) (Guo et al., 2006) were used to compute
the 95% CI, respectively.

Meta-QTL Analysis and QTL-Overview Index

Integrated QTLs on the consensus map were used to
conduct MQTL analysis using BioMercator V4.2 (Arcade
et al. 2004). Two types meta-analysis of QTLs were con-
ducted; 1: Distinct MQTL analysis: individual trait-
based analysis for 10 traits separately (Additional file 4:
Table S1), 2: Inclusive MQTL analysis: a comprehen-
sive analysis using all the original QTLs associated with
drought tolerance and yield-related traits under drought
stress. Two different methods were applied for MQTL
analysis based on the number of primary QTLs. When
the number of the primary QTLs was fewer than 10 for a
chromosome, the method suggested by Goffinet and Ger-
ber was used (Goffinet and Gerber 2000). Based on this
approach, the model with the minimum AIC value was
chosen for integrating QTLs and identifying MQTL posi-
tions. When the number of primary QTLs for an individ-
ual chromosome was at least 10, method recommended
byby Veyrieras et al. was utilized (Veyrieras et al. 2007).
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This method used five criteria (AIC, AICc, AIC3, BIC,
and AWE) for selecting the number of potential MQTLs
on a chromosome. The model with the minimum value of
three criteria out of five was selected as the best model,
and the 95% CIs and MQTL positions were defined based
on the chosen model. QTLs integration was done such
that the peak position of the primary QTLs lay within the
confidence interval of the MQTLs. QTLs with a mem-
bership probability greater than 60% for an MQTL were
assigned to the same MQTL (Chardon et al. 2004). The
“QTL-overview index” method was used to estimate the
probability of QTL for 0.5-cM-long segment of the refer-
ence map (Daryani et al. 2022; Chardon et al. 2004).

Identification of the Genes Located Within the MQTL
Regions

The flanking markers were mapped onto the Oryza sativa
Japonica group (IRGSP-1.0) reference genome (Kawahara
et al. 2013) to determine their physical position. Finally,
BioMart tool on the Ensemblplants website (https://
plants.ensembl.org/biomart/martview/) was employed
to find the genes placed within the MQTL regions (Addi-
tional file 6: Table S3 and Additional file 7: S4).

Dataset Collection and Gene Expression Analysis
Differentially expressed genes (DEGs) under drought
stress in rice were obtained from related microarray (11
published articles) and RNA-seq (13 published articles)
data (Additional file 8: Table S5) available at https://
www.ncbinlm.nih.gov. The genes having—1>log, fold
change>1 and p-value<0.05 were identified as DEGs.
The drought responsive genes placed within the MQTL
regions were identified using Venn diagram (Venn dia-
gram was drawn using a tool on this website: http://www.
interactivenn.net/ (Heberle et al. 2015)) (Additional file 9:
Table S6, Additional file 1: Fig. S1).

Comparison of the MQTLs with DT-Associated
Genome-Wide Association Studies (GWAS)

Reviewing DT-related GWAS studies (Bhandari et al.
2020; Courtois et al. 2013; Guo et al. 2018b; Kadam et al.
2018; Liang et al. 2016; Ma et al. 2016a; Pantaliao et al.
2016; Pariasca-Tanaka et al. 2020; Sandhu et al. 2019; Su
et al. 2021; To et al. 2019; Zhang et al. 2021) was done
to collect the reported SNP peak positions and discover
the overlaps between their positions with MQTLs (Addi-
tional file 10: Table S7). Using the physical positions on
the Oryza sativa Japonica group (IRGSP-1.0) reference
genome, the genes placed within the SNP peak positions
(+ 25 kb) were identified.
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Graphical Representation

To visually represent the data, the Circos software (Krzy-
winski et al. 2009) were utilized to create a comprehen-
sive graphical summary of the original QTLs, MQTLs,
and QTL-overview statistics on all 12 rice chromosomes.
Furthermore, additional graphs were generated using the
ggplot2 R package.

Results

Collection of Original QTLs Associated with DT

and Yield-Related Traits Under Drought Stress in Rice

A sum of 1,087 QTLs related to DT and yield-associated
traits under drought stress in rice were collected which
were from 134 different rice populations, including F,
(2 populations), BC (11 populations), RILs (30 popula-
tions), DH (13 populations), BAC (1 population), BIL (21
populations), BSA (4 populations), F,.; (3 populations),
F; (1 population) and NILs (1 populations), with popula-
tion size ranged from 50 (Baghyalakshmi et al. 2016) to
485 (Swamy BP et al. 2013) (Additional file 11: Table S8,
Table 1). Additional file 11: Table S8 presents the com-
plete information about the original QTLs including the
QTL name, trait controlled by the QTL, related chromo-
some, LOD score, phenotypic variance described by the
QTL, left and right flanking markers, interval between
left and right markers (cM), parents of the mapping pop-
ulations, type of the population, population size, number
of used markers, location where the experiment was con-
ducted and the reference.

Analyzing the distribution pattern of these 1,087
QTLs across the rice chromosomes revealed interesting
insights. chromosome 1 hosted the highest number of
QTLs (176), followed by chromosomes 3 (155), 6 (128),
2 (122), 4 (104), 8 (98), 9 (67), 5 (53), 12 (50), 7 (46), 11
(44), and 10 (44), respectively (Fig. 1 and Table 2). The
highest number of the initial QTLs related to grain yield
(GY) (304), followed by biomass yield (BY) (151), head-
ing/days to flowering (HD) (128), plant height (PH) (119),
drought response index (DRI) (109), panicle number
(PN) (102), spikelet fertility (SF) (71), harvest index (HI)
(48), flag leaf size (FLZ) (38) and canopy temperature
(CT) (21), respectively (Table 2). These QTLs exhibited
95% CI spanning from 0.43 to 50.40 cM, with an average
of 12.36 cM. Notably, nearly 30% and 85% of the original
QTLs had CIs of less than 10 ¢cM and 20 cM, respectively
(Fig. 2a). In terms of the phenotypic variance described by
the investigated QTLs, there was considerable variability,
ranging from 1.1% to 85% (Fig. 2b). Each trait’s original
QTLs were ranked based on the proportion of pheno-
typic variance they accounted for (Fig. 2c). Remarkably,
52.7% of the original QTLs (585 out of 1,087) described
more than 10% of the phenotypic variance, while 47.2%
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Total

Canopy temperature 1 3 3 2
Flag leafsize 4 8 7 6
Harestindex 5 5 17 1
Spikelet fertility 3 6 4 14
Panicle number 14 17 3 23
13 9 14 10

.9115

16 8 [36 5

19 11 22
1 2 3

Drought respond index
Plant height

Heading & Flowering
23

Biomass

Grain yield 15
4

Number of QTLs

174 122 155 104 54
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7 20 5 9 6 6 4 6 128
11 17 3 9 11 5 13 7 151
6 [33 17 /35 18 12 13 14 304
5 6 7 8 9 10 11 12 Total

Chromosome

0 10 20 30 40 50 60

Fig. 1 Dispersion pattern of the original QTLs related to yield components and drought tolerance associated traits under drought stress on the 12

rice chromosomes in terms of number

of them (524 out of 1,087) had a PVE of less than 10%
(Fig. 2b). Specifically, out of the 304 QTLs linked to GY,
a total of 173 QTLs surpassed the 10% threshold for PVE
(Fig. 2¢).

Identification of MQTLs Controlling Yield Components

and DT-Related Traits by Meta-Analysis

The collected original QTLs were categorized into 10
major traits and subjected to MQTL analysis to detect
MQTLs controlling each trait associated with DT and
yield components under drought stress in rice. The meta-
analysis resulted in the identification of 213 MQTLs with
at least eight MQTLs on each chromosome (Fig. 2d;
Table 2 and 3). The identified MQTLs included 50
MQTLs for GY, 29 MQTLs for BY, 27 MQTLs for HD,
25 MQTLs for PN, 23 MQTLs for PH, 24 MQTLs for
DRI, 13 MQTLs for SF, 10 MQTLs for FLZ and HI and
two MQTLs for CT. MQTL_GY1.4 was recognized as the
most stable MQTL with the greatest number of original
QTLs (22) (Fig. 3; Table 3). In addition, the results indi-
cated that 29 MQTLs out of the detected 213 MQTLs

were involved in the genetic control of more than one
trait (Additional file 12: Table 9). These MQTLs were dis-
tributed across the rice chromosomes, with the number
of MQTLs per chromosome varying, ranging from 29
MQTLs on chromosome 1 to eight MQTLs on chromo-
some 11 (Fig. 2d; Tables 2 and 3). The results indicated
that all the chromosomes of rice were engaged in control-
ling yield components and DT-related traits. The number
of initial QTLs grouped in a MQTL varied from two to 22
QTLs (Table 3). The proportion of phenotypic variance
explained by these MQTLs displayed a range from 3.05%
to 70.1%, with an average of 12.76% (Table 3). When it
comes to the 95% Cls for these identified MQTLs, they
spanned from a minimal 0.12 cM for the RM482-RM213
interval on chromosome 2 to a maximal 19.7 ¢cM for the
E2801S-HSP70A interval on chromosome 5 (Table 3).
Notably, a narrower confidence interval was observed
for each MQTL when compared to the average CI of the
original QTLs clustered within that specific MQTL. Spe-
cifically, the confidence interval of 17 MQTLs was dimin-
ished to less than 1 cM, effectively reducing the length
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Table 2 Distribution of the original QTLs used for the MQTL analysis on 12 rice chromosomes
Yield traits Chromosome Total QTLs QTLs MQTL number®
proportion
1 2 3 4 5 6 7 8 9 10 11 12 (%)
BY 20 11 22 23 Il 17 3 9 I 5 12 7 151 1361 29
cT 1 3 3 2 1 1 2 3 2 2 1 0 21 1.89 2
DRI 13 9 14 10 14 8 7 7 9 4 4 7 106 9.55 26
FLZ 4 8 7 6 2 2 2 0 2 2 0 3 38 342 10
GY 56 46 38 15 5 33 17 35 18 13 13 15 304 2741 49
HD 16 8 36 5 7 20 5 9 6 6 4 6 128 11.54 27
HI 5 5 17 1 0 13 1 1 2 1 0 2 48 432 10
PH 43 9 Il 5 4 15 4 9 4 6 4 5 119 10.73 26
PN 13 17 3 23 3 1 3 15 2 4 5 2 101 9.10 26
SF 5 6 4 14 6 8 2 10 1 1 1 3 71 6.40 13
Total QTLs 181 123 159 104 54 130 46 100 70 44 46 52 1087
QTLs proportion (%) 1632 1190 1433 937 486 1172 414 901 631 396 414 468
Total MQTLs® 31 28 28 19 14 23 10 22 14 10 8 11
MQTLs proportion (%) 14.22 1284 1284 871 642 1055 458 1009 642 458 366 504

a.Numbers in brackets indicate the total number of MQTLs identified on each chromosome

b. Number of MQTL containing an individual QTL for the trait

BY: biomass yield, CT: canopy temperature, DRI: drought respose index, FLZ: flag leaf size, GY: grain yield, HD: heading/days to flowering, HI: harvest index, PH: plant

height, PN: panicle number, SF: spikelet fertility

of these MQTLs by approximately 15.66 times when
compared to the average CI of the original QTLs. The
mean phenotypic variance for these 17 MQTL regions
was calculated at 20.3. It’'s worth noting that the flank-
ing markers of these aforementioned MQTLs present as
promising candidates for deploying molecular breeding
and marker-assisted selection strategies aimed at bolster-
ing drought tolerance in rice (Table 3).

Identification of DEGs Involved in Drought Stress Response
of Rice

RNA-seq and microarray datasets were used to identi-
fydrought-responsive genes in the rice (Additional file 8:
Table S5). In total, 1.4814 and 23.722 genes were found
to be drought responsive by RNA-seq and Microarray
analysis (Additional file 13: Tables S10 and Additional
file 14: S11 and Additional file 1: Fig. S1). On the other
hand, MQTL regions identified to control DT-associated
traits and yield components were investigated to discover
the genes placed in those regions. Comparing the DEGs
discovered by RNA-seq and microarray analysis with
genes located within all 213 identified MQTL regions
using Venn diagrams revealed the presence of 6,877 com-
mon genes. Furthermore, 375 genes were shared among
the DEGs identified by RNA-seq and microarray analysis
and genes within the 17 MQTLs with CI<1 ¢cM (Addi-
tional file 1: Fig. S1). The mentioned genes are recognized
as differentially expressed candidate genes due to being
both drought responsive and locating in MQTL regions.

Estimating QTL-Overview Index for DT-Associated QTLs

in Rice and Validating MQTLs Using GWAS Studies

To strongly associate genomic regions with yield compo-
nents and DT associated traits in rice, the QT L-overview
index was estimated. The QTL-overview index, repre-
senting QTL density, was calculated for every 0.5 cM
segment on each chromosome (Additional file 2: Fig.
S2). The findings revealed that 213 overview index peaks
exceeded the genome-wide mean value (Chardon et al.
2004), showing the presence of real QTLs controlling
yield components and DT-associated traits in rice (Addi-
tional file 2: Fig. S2). In addition, 113 peaks (out of the
213 peaks) were higher than the high-value threshold
(Chardon et al. 2004) and were considered as QTL hot-
spots (Additional file 2: Fig. S2).

Significant concurrences were observed between the
MQTLs identified through a comprehensive analysis and
the SNPs uncovered via the GWAS approach concern-
ing traits associated with DT within the rice genome.
Notably, among the total of 213 identified MQTLs, 63
were found to be colocated with 130 peak SNP posi-
tions, which were detected through the GWAS approach
for traits associated with DT in rice (Additional file 10:
Table 7). Totally, 765 rice genes were identified in the
SNP peak positions (+25 kb) overlapped with MQTLs.
Furthermore, 61 SNP peak positions (out of the 130 SNP
peak positions) overlapped with high-overview-index
MQTLs (QTL hotspots). In this study, we identified
novel candidate genes among those situated within the
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Fig. 2 Brief of the 1,087 original QTLs associated with yield components and DT-associated traits utilized under drought stress for MQTL analysis.

a The frequency dispersion of the original QTLs density according to diverse levels of the 95% confidence interval. b Original QTLs distribution
based on the amount of the phenotypic variance explained by them, ¢ The percentage of original QTLs with different phenotypic variance
explained (R?<5,5<R?< 10 and R? > 15) for each of the yield components and DT-associated traits, d The dispersion of original QTLs and MQTLs
on rice chromosomes. BY: biomass yield, CT: canopy temperature, DRI: drought response index, FLZ: flag leaf size, GY: grain yield, HD: heading/days
to flowering, HI: harvest index, PH: plant height, PN: panicle number, SF: spikelet fertility

significant SNP peaks and regions characterized by high
QTL-overview indices associated with yield components
and DT traits. Specifically, we discovered nineteen genes
within SNP peak positions that coincided with QTL hot-
spots, thereby designating them as novel candidate genes
(Fig. 3, Additional file 10: Table S7).

Conclusively, we integrated the results achieved by the
meta-analysis of QTLs, GWAS studies, and the tran-
scriptome data analysis leading to the discovery of 231
candidate genes (Additional file 3: Fig. S3, Additional
file 15: Table S12), which might play key roles in rice

DT and yield-associated traits under drought stress. In
addition, 9 genes were common between GWAS stud-
ies results for DT and yield-related traits, DEGs discov-
ered by RNA-seq and microarray analysis and the genes
placed in the 17 MQTLs having CI<1 cM (Additional
file 3: Fig. S3, Additional file 15: Table S12). Following
functional analysis, the identified candidate genes hold
promise for applications in genetic engineering efforts
targeting improvements in yield potential, stability, and
performance under water deficit conditions, specifically
focusing on DT and yield-related traits.
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| Drought response index | Canopy temperature | Flag leaf size B Biomass | | Plant height

| Spikelet fertility | Heading/Flowering O Harvest index B Grain yield Panicle number
Fig. 3 Concentric circles indicate different features drawn in Circos (Krzywinski et al. 2009). a Genetic positions (cM) of rice chromosomes
represented by bars. b Molecular markers density on rice chromosomes shown on a scale from white to orange to indicate the lowest to highest
density. ¢ Distribution of QTLs across the twelve rice chromosomes. d Genetic positions of MQTLs for each distinct trait with 95% Cls. @ Heatmap
illustrating the QTL-overview index, which is estimated by the frequency of QTLs for yield components and DT-associated traits on each 0.5-cM

segment of the rice consensus map. f Genetic positions of inclusive MQTLs with 95% Cls. g Proportion of phenotypic variance explained (R?)
by each QTL

Inclusive Meta-Analysis of Traits, QTL-Overview Index meta-analysis of all the 1,087 original QTLs related to
and Identification of Breeding MQTLs yield components and DT-associated traits in rice. The
Totally, 96 MQTLs were detected by inclusive number of the detected MQTLs on each chromosome
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varied from 13 MQTL on chromosome 3 to 4 MQTLs
on chromosome 9 (Fig. 3f; Table 4). The CI of the iden-
tified MQTLs was between 0.01 and 9 cM, having a
mean of 2.33 ¢cM, which was 4.66 times narrower than
the CI average of the initial QTLs. Only 8 MQTLs (out
of the 96 identified MQTLs) had a confidence inter-
val>5 cM. The CI values of 52 and 25 MQTLs were
less than 2 and 1 cM, respectively (Table 4, Fig. 3).
The number of the initial QTLs clustered in a MQTL
ranged from 2 to 59 QTLs (Table 4). Forty MQTLs
included more than 10 initial QTLs. For 71 MQTLs,
the PVE mean of the initial QTLs was higher than
10 (Table 4, Fig. 3). There were 59 common MQTLs
between the obtained results by inclusive meta-anal-
ysis for all the traits and meta-analysis for each trait
(Fig. 3).

After mapping the 1,087 QTLs on the consensus
genetic map, the QTL density, described as the "QTL-
overview index", was calculated for a 0.5 cM distance on
each chromosome to find genomic regions significantly
related to the studied traits (Additional file 2: Fig. S2 a).
Ninety-six overview index peaks were attained, which
were exceeded 0.0043 as the average of the genome-
wide statistic and indicated the “Real QTLs” affecting
all yield traits in rice. Based on the Additional file 2:
Fig. S2 a, out of the 96 peaks considered as “Real QTLs’,
49 peaks overpassed 0.0219 as the high-value threshold
and thus can be considered as “QTL hotspots”.

According to the criteria presented by Loffler et al.
2009, an MQTL with a narrow confidence interval,
a high number of the original QTLs and a high PVE
value for the original QTLs are considered suitable for
marker-assisted breeding (Loffler et al. 2009). Based on
the achieved results, 13 MQTLs with CI<1 c¢M, sum of
the original QTLs > 10 and mean PVE value of the orig-
inal QTLs> 10, identified using the inclusive MQTL
analysis of all the investigated traits, can be considered
as “Breeding MQTLs” (Table 5, Fig. 3). Interestingly,
these thirteen MQTL regions are located in the QTL
hotspots.

Candidate Genes with Inclusive/Distinct Analysis of Traits
Combining the results of MQTL analysis for yield and
DT-related traits (both inclusive and distinct analysis of
traits), GWAS studies, and transcriptome data resulted
in identification of 82 candidate genes (Fig. 4 and Addi-
tional file 16: Table S13). Among these candidate genes,
two genes including 0s02g0700700 (OsBRXL2) and
0s04g0431200 (OsDRF1) are placed both on the SNP
peak positions and in the high-overview-index MQTLs
i,e. MQTL_BY2.2 and MQTL_GY4.2, respectively
(Additional file 10: Table S7).
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Discussion

Candidate MQTLs/Genes for Yield Maintenance Under
Drought with Potential Application in Breeding Programs
One effective statistical approach for accurately detect-
ing QTLs that control yield components and DT-asso-
ciated traits in the genome could involve conducting a
meta-analysis on a large number of independent QTLs
associated with these traits. In this particular study, a
meta-analysis was performed on 1,087 QTLs obtained
from 76 different studies and 134 distinct rice popula-
tions, all related to yield components and DT-associ-
ated traits (Additional file 11: Table S8). This analysis
led to the identification of 213 MQTLs (Table 3). The
utilization of MQTL analysis resulted in a significant
reduction in the CI, enabling the identification of a
more precise set of candidate genes potentially involved
in controlling the investigated traits. The average CI of
MQTLs was 4.68 cM, representing a 2.74-fold decrease
compared to the average CI of the original QTLs, which
was 12.86 cM (Table 3). Notably, 62.4% of the MQTLs
had a CI of less than 5 cM, while 17 MQTLs displayed a
CI of less than 1 ¢cM (Table 3). Apart from having a nar-
row CI, an MQTL selected for breeding should possess
a high number of original QTLs and a high PVE value.
In this study, 17 MQTLs (including MQTL_PH1.2,
MQTL_GY6.4, MQTL_GY8.4, MQTL_DRI1.1, MQTL_
SF4.2, MQTL_HDe6.2, MQTL_GY8.5, MQTL_PH1.4,
MQTL_BY6.1, MQTL_GY6.2, MQTL_PN4.4, MQTL_
GY3.3, MQTL_HI3.2, MQTL_GY2.4, MQTL_GY2.1,
MQTL_HD3.5, and MQTL_GY1.4) fulfilled these crite-
ria, with more than 10 original QTLs, an average PVE
of 14.2, and a mean CI of 1.98 cM. Consequently, they
can be regarded as potential MQTLs for future breed-
ing programs aimed at enhancing yield and drought
tolerance in rice.

To identify candidate genes involved in controlling
yield components and DT-related traits in rice, the
genes located within the MQTL regions were com-
pared with differentially expressed genes (DEGs) iden-
tified through RNA-seq and microarray data analysis
(Additional file 9: Table S6). The genes responsible
for regulating various investigated traits are discussed
below. Furthermore, following the criteria defined by
Loffler et al. in 2009, MQTLs exhibiting a high num-
ber of original QTLs, a high PVE value, and a narrow
CI were identified as "Breeding MQTLs". Additionally,
QTL-overview peaks that overlapped with SNP peaks
reported in GWAS studies were considered, and the
genes situated within these regions were recognized as
potential candidate genes involved in controlling yield
components and DT-related traits (Fig. 5, Table 3, and
Additional file 10: Table S7).
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Fig. 4 Venn diagram showing the genes placed in the detected MQTLs through inclusive MQTL analysis on all the traits (orange) and distinct
MQTL analysis for each individual trait (green), genes placed in SNP peak positions based on GWAS studies (pink) for yield and DT-associated traits
under drought stress conditions, and the drought responsive genes based on RNA-seq (blue) and microarray (yellow) data

MQTLs and Candidate Genes for Grain Yield

Drought stress during the reproductive stage of rice leads
to a significant reduction in grain yield (Palanog et al.
2014). According to the obtained results, 50 MQTLs
were identified for the GY trait (Table 3). Chromosomes
1, 2, 3, 6 and 8 had the highest number of GY-associated
MTQLSs with 6 MTQLSs per chromosome. The most sta-
ble GY-associated MQTLs were MQTL_GY1.4, MQTL_
GY3.4, MQTL_GY2.1, MQTL_GY2.4, MQTL_GY3.3,
MQTL_GY6.2, MQTL_GY8.5, MQTL_GY6.4, MQTL_
GY8 having the uppermost number of original QTLs
from 22, 17, 14, 13, 12, 11, 11, 10 and 10 different stud-
ies, respectively. The confidence interval of 8 MQTLs
including MQTL_GY2.6, MQTL_GY1.6, MQTL_GY6.5,
MQTL_GY3.6, MQTL_GY8.6, MQTL_GY3.3, and
MQTL_GY1.4 was decreased to less than 1 ¢cM (Table 3),
indicating the potential of the mentioned MQTLs to be

used in breeding programs to enhance GY under drought
stress in rice.

The genes located within each MQTL interval are listed
in Additional file 6: Table S3. One of these genes, OsTFIL,
located within the MQTL_GY8.3 interval, is engaged in
controlling GY in rice under drought stress treatment.
Transgenic plants overexpressing OsTFIL indicated more
tolerance to drought stress in comparison with wild type
plants at the reproductive stage. In addition, transgenic
plants produced higher GY compared to wild type plants
under drought stress. Encouraging lignin biosynthesis
and stomatal closure by the HD-Zip transcription factor
of OsTFIL is the reason for improved drought tolerance
in transgenic plants (Bang et al. 2019).

OsCBL8 gene, detected in MQTL_GY2.2 interval, is
engaged in rice response to abiotic stresses. Up- and
down-regulation of OsCBLS in sense (salt tolerant) and
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Fig.5 The Circos diagram illustrates the positioning of MQTLs and GWAS-based SNPs associated with yield and drought tolerance (DT)-related
traits under water deficit conditions on the physical map of Oryza sativa japonica (Nipponbare). a The twelve rice chromosomes are arranged

in a clockwise direction. b The gene density on rice chromosomes shown in yellow to red scale for the lowest to the highest density in 500 kb
windows. ¢ The locations of identified MQTLs through comprehensive MQTL analysis on the physical map of each chromosome. d Position

of the identified MQTLs for each distinct trait on the physical map of each chromosome. e Showing the genes locating inside both the SNP peak
positions and the QTL-overview peaks for yield and DT-associated traits under drought stress conditions as novel candidate genes (Supplementary
Table S7). f Points having various colors symbolize significant SNPs discovered through GWAS studies for yield and DT-associated traits under water
deficit conditions. g The heatmap representing the Indels density in white to dark blue color scale for the lowest to the highest density. h The
heatmap representing the structural variants (SV) density in white to dark red color scale for the lowest to the highest density. Physical positions

of all markers (including those used in the flanking markers each MQT and map markers) were determined using the genome assembly IRGSP-1.0

| Spikelet fertility |
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anti-sense (drought tolerant) transgenic lines resulted
in a remarkable reduction in both the number of filled
grains per panicle and the seed setting rate in rice (GU
et al. 2010).

OsGRF4 gene, located in MQTL_GY2.5, encodes a
transcriptional regulator and is regulated by OsmiR396c.
It has been reported that the module of OsmiR396¢c-
OsGRF4-OsGIF1 is involved in determining GY and
size in rice. It was demonstrated that a 2 bp substitu-
tion mutation in OsGRF4 disturbs its regulation by
OsmiR396c¢, leading to enhanced GY through increasing
the weight and size of grains. In addition, there is direct
interaction between OsGRF4 and OsGIFI and it has been
reported that overexpression of OsGIF1 enhanced grain
size (Li et al. 2016). Furthermore, increased expression
of OsGRF#4 caused by mutation, activates brassinosteroid
responses, promoting grain development (Hu et al. 2015).

OsLHTI, discovered in the MQTL_GY8.1 interval,
encodes Lysine-Histidine-type Transporter 1, which
is involved in translocating amino acids from vegeta-
tive organs to reproductive ones, determining GY. High
GY and N use efficiency are determined by the suitable
allocation of nitrogen from source leaves to grains. Pani-
cle length, the grain number per panicle and total grain
weight were reduced in knockout mutants of OsLHT1
(Guo et al. 2020). SAPK?2, located within MQTL_GY7.4
interval, encodesfor a serine/threonine-protein kinase
and is able to increase GY via regulating nitrogen use effi-
ciency under drought stress in the reproductive stage. In
addition, contents of nitrogen, phosphorus, and potas-
sium in rice grain are remarkably influenced by SAPK2
(Lou et al. 2020). RL9 (SLL1, AH2, OsADD]I), found in
MQTL_GY9.2 interval, codes for a MYB domain pro-
tein that is involved in the development of hull and grain.
RLY influences on GY, grain size and quality. Rice plants
overexpressing SLL1 had longer lateral roots, indicat-
ing the potential of SLLI gene to be used for improving
root architecture in rice (Ren et al. 2019; Shelley et al.
2013). RAG2, located in MQTL_GY?7.1 interval, codes for
a 14-16 kDa a-amylase/trypsin inhibitor. Overexpres-
sion of RAG2 led to improved GY and grain quality in
rice (Zhou et al. 2017). PLANT ARCHITECTURE AND
YIELD 1 (PAY1), located in MQTL_GY8.4 interval, plays
a role in enhancing plant architecture and GY in rice.
This gene can be used for establishing perfect plant archi-
tecture and breeding rice varieties for high yield (Zhao
et al. 2015). OsNPF?7.2, located in MQTL_GY2.5 interval,
which codes for a nitrate transporter, plays a positive role
in regulating number of tillers and GY in rice (Wang et al.
2018). OsbHLHI107 is located in MQTL_GY2.6 inter-
val, and its homologs play important roles in regulating
grain size development and can be used for improving
GY in rice (Yang et al. 2018b). OsABCG18, detected in

Page 27 of 36

MQTL_GY8.2 interval, codes for an ABC transporter
and is involvedin controlling cytokinins transport into
shoots and GY in Rice. Enhanced cytokinins in the shoot
and increased GY were obtained by overexpression of
OsABCG18 (Zhao et al. 2019).

Among the 50 MQTLs identified for the grain yield
trait, a total of 22 MQTLs overlapped with 49 SNP peak
positions associated with yield-related traits based on
GWAS studies (Fig. 5, Additional file 10: Table S7). The
genes located both in QTL-overview and SNP peaks,
including OsSPO11-5, OsDRF1, FKFI, Os03g0197175,
0s03g0197200, 0s03g0305000, 0s03g0305050,
050320232800 and Os08g0170200 are considered as can-
didate genes for GY under drought stress.

MQTLs and Candidate Genes for Heading Date

Heading date, which is regulated by numerous environ-
mental signals and endogenous cues, plays a crucial role
in crop reproduction, yield, and regional adaptability
(Wei et al. 2020). Yield and drought tolerance are highly
correlated with HD (Xu et al. 2018). We identified 27
MQTLs for HD under drought conditions, with a maxi-
mum of 7 MQTLs on chromosome 3, and 4 MQTLs on
each of the chromosomes 1 and 6 (Table 3). The high-
est number of original QTLs (18 QTLs) was observed
for MQTL_HD3.5 on chromosome 3 (Table 3). In five
MQTLs including MQTL_HD3.5, MQTL_HD3.7,
MQTL_HD3.3, MQTL_HD3.1 and MQTL_HD12.2, the
CI was decreased to less than 1 ¢cM (Table 3). Out of the
27 identified MQTLs for the HD trait, 4 MQTLs over-
lapped with 6 SNP peak positions reported by GWAS
studies and one MQTL (MQTL_HD3.1) was recognized
as QTL-overview peaks overlapped with SNP peaks
reported by GWAS studies (Fig. 5, Additional file 10:
Table S7).

Some of the genes located in HD-related MQTLs are
discussed here. OsMFT, located in the MQTL_HD6.4
interval, increased drought tolerance in rice by interact-
ing with OsbZIP66 and OsMYB26, recognized as main
drought-related transcription factors, and regulating
their binding to drought-responsive genes (Chen et al.
2021). OsMFT1 suppressed Ehdl, FZB and SEPAL-
LATA-like genes, resulting in delayed heading date and
enhanced spikelets per panicle in rice (Song et al. 2018).
Ehd?2 gene, located in the MQTL10-1 interval, is involved
in adjusting flowering time in rice (Brambilla and For-
nara 2013). Ehd2 gene was also detected on a HD-related
MQTL on chromosome 10 under drought stress condi-
tions in rice by Khahani et al. 2021 (Khahani et al. 2021).

MQTLs and Candidate Genes for Plant Height
For the PH trait under drought stress in rice, 23 MQTLs
were obtained. Chromosome 1 with 7 MQTLs had the
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most number of MQTLs per chromosome, followed by
chromosomes 6 and 8 with 3 MQTLs per each chro-
mosome. The most stable MQTLs for PH were MQTL_
PH1.4, MQTL_PH1.2 and MQTL_PH1.7. MQTL_PH1.4
and MQTL_PH1.2 were considered as the most stable
MQTLs for PH, because of having the most number of
original QTLs with 10 and 11 original QTLs, respectively.
MQTL_PHI1.7 was identified as one of the most stable
MQTLs due to having CI<1 cM (Table 3).

Some of the genes located in PH-related MQTLs are
discussed here. Auxin is involved in regulating plant
height (Ma et al. 2016b). Amidase is engaged in the
metabolic pathway of indole acetic acid (IAA). The cru-
cial role of IAA phytohormone in cell division, differen-
tiation, elongation, root development and plant height
regulation has been reported (Petersson et al. 2009). In
a prior investigation, specific genes associated with the
auxin metabolic pathway, namely OsYUCCAI, OsY-
UCCAS8, WOX6, and OsRR2, were identified within the
genetic interval linked to MQTLs that are correlated with
root system architecture in rice. (Daryani et al. 2022). In
the current research, the same MQTLs and genes were
detected for PH trait. This means that the common
MQTLs and genes are involved in controlling both traits
of root system architecture and PH in rice. In this study,
YUCCAI, YUCCA6, YUCCA4, OsIAA20, OsIAA2I,
OsIAA2, IAA6 and OsRR33 were detected in the intervals
of MQTL_PH1.3, MQTL_PH7.1, MQTL_PH1.1, MQTL_
PH6.1, MQTL_PH6.2, MQTL_PH1.1, MQTL_PH1.4 and
MQTL_PHS8.2, respectively.

Another detected gene is OsFTLI, which locates in
MQTL_PHI1.1 interval. Pleiotropic effects of OsFTLI
on the total number of secondary rachides, grains num-
ber per panicle, plant height and flag leaf length have
been reported (Wang et al. 2020). OsbZIP49, detected in
MQTL_PHS6.3 interval, codes for a transcription factor
that is engaged in controlling tiller angle and plant archi-
tecture via IAA synthetase. Overexpression of OsbZIP49
in rice led to tiller-spreading phenotype, reduced plant
height and internode length (Ding et al. 2021).

Out of the 23 identified MQTLs for PH trait, seven
MQTLs overlapped with 14 SNP peak positions found by
GWAS studies. Two novel candidate genes for PH trait
under drought stress in rice, including Os01g0884500
and Os01g0885300 were located both in QTL-overview
and SNP peaks (Fig. 5, Additional file 10: Table S7).

MQTLs and Candidate Genes for Biomass Yield

Enhancing biomass in rice is a key breeding objective,
yet it poses challenges due to the intricacies involved and
labor-intensive nature of the trait phenotyping (Matsub-
ara et al. 2016). Twenty-nine MQTLs were detected for
BY. Chromosomes 1, 3, and 4 each contain four MQTLs,
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while chromosomes 2 and 6 each harbor three (Table 3).
The most stable MQTLs detected for BY under drought
stress included MQTL_BY6.1, MQTL_BY3.3, MQTL_
BY4.2 and MQTL_BY4.4, having the highest number
of original QTLs and two MQTLs of MQTL_BY1.2 and
MQTL_BY2.3, having CI of less than 1 ¢cM (Table 3).

OsOFP6, detected within the MQTL_BY2.2 interval,
is involved in regulating growth and development, and
responses to drought and cold stresses in rice. RNAi-
mediated knockdown of OsOFP6 led to semi-dwarf
plants with changed grain shape and shorter lateral roots.
In addition, slower water loss and less accumulation of
H202 were observed in OsOFP6 overexpressing plants
in comparison with RNAIi plants under drought stress,
indicating the role of OsOFP6 in both drought avoidance
and drought tolerance in rice. As well, a thicker second-
ary cell wall with enhanced lignin content was noticed
in OsOFP6 overexpressing plants in rice (Ma et al. 2017;
Sun et al. 2020). OsHk6 (OsCKT1), located within the
MQTL_BY2.2 interval, serves as a cytokinin receptor
and plays a role in regulating various biological pro-
cesses such as secondary metabolism, sucrose and starch
metabolism, chlorophyll synthesis and photosynthesis
(Ding et al. 2017). In addition, green pigmentation and
shoot induction were promoted in rice calli by ectopic
expression of OsHk6 (Choi et al. 2012). Two genes encod-
ing for glutamine synthetases, OsGSI;1 and OsGSI,
both located within MQTL_BY2.2 interval, are probably
engaged in drought tolerance in rice based on the previ-
ous studies. OsGSI;1 plays a key role in normal growth
and grain filling under water deficit conditions. Increased
physiological tolerance and agronomic performance were
obtained in rice plants co-overexpressing OsGSI;1 and
0OsGS2 isoforms under adverse abiotic stress conditions
(James et al. 2018; Tabuchi et al. 2005). OsBRII (D61,
OsBRKq1), detected within the MQTL_BY1.3 interval, is
engaged in several growth and developmental processes
like internode elongation, lamina joint bending and
skotomorphogenesis. Altogether, the kinase activity of
OsBRI1 is crucial for brassinosteroids to regulate normal
plant growth and development in rice (Zhao et al. 2013).
OsBRKgq1 has the potential to be utilized for increasing
yield through enhancing grain size in rice. Additionally,
OsBRKgl was found on chromosomel through a QTL
mapping analysis for 1000 kernel weight, kernel length,
and kernel width conducted on SNDH113 populations in
which grain sizes were diversely distributed (Park et al.
2021). Expression of rice OsARGOS (detected in MQTL_
BY4.3) in Arabidopsis resulted in enhancedcell division
and expansion and increased organ size. Considering the
role of OsARGOS in organ enlargement, it has the poten-
tial to be used for biomass enhancement through genetic
engineering (Wang et al. 2009).
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Ten MQTLs (Out of the 29 detected MQTLs for BY
trait) overlapped with 17 SNP peak positions discovered
by GWAS studies (Fig. 5, Additional file 10: Table S7).
Three candidate genes including OsBRXL2, DEKI
(ADLI) and Os06g0164300 were identified for PH trait
under drought in rice (Fig. 5, Additional file 10: Table S7)
that were located in SNP peak positions overlapped with
QTL-overview peaks MQTLs.

MQTLs and Candidate Genes for Canopy Temperature
Canopy temperature under stress conditions is a reli-
able predictor of GY performance (Melandri et al. 2020).
We identified two MQTLs for CT consisting of one
MQTL on chromosome 2 and another on chromosome
3 (Table 3).

MQTLs and Candidate Genes for Drought Response Index

Twenty-four MQTLs were identified for DRI using the
meta-analysis of QTLs. The highest count number of
DRI-associated MQTLs per chromosome was 3 and
related to chromosomes 2, 3, and 5 (Table 3). MQTL_
DRI1.1 was recognized as the most stable DRI-related
MQTL having the most number of original QTLs from
10 independent studies. GFI4c, located in MQTL_
DRI8.2, codes for a 14-3-3 protein. 14-3-3 proteins
play main roles in regulating primary metabolism and
transducing cellular signals (Ho et al. 2013). It has been
demonstrated that overexpression of GFI4c resulted
in increased drought tolerance in transgenic seedlings
of rice (Ho et al. 2013). Another gene that was found
in MQTL_DRI2.2 interval is OsDi19-4 (Dehydration-
induced 19 homolog 4). The OsDil9 codes for proteins
that are engaged in response to abiotic stresses. Wang
et al. 2014 indicated that overexpression of OsDi19-4 led
to increased drought tolerance in rice through increas-
ing ROS-scavenging activity (Wang et al. 2014). In addi-
tion, the expression of some ABA-responsive genes was
changed in rice plants overexpressing OsDil9-4 which
resulted in strong ABA-hypersensitive phenotypes
(Wang et al. 2016). OsDIS1, detected in MQTL_DRI3.2,
encodes a SINA-type E3 ligase. OsDISI plays a negative
role in drought stress tolerance via regulating transcrip-
tion of several stress-associated genes and probably via
regulating its interacting protein OsNek6 at posttransla-
tional level in rice (Ning et al. 2011). OsETOL1, located in
the MQTL_DRI3.1 interval, encodes a homolog of ETH-
YLENE OVERPRODUCER. Two allelic mutants of OsE-
TOL1I indicated enhanced tolerance to drought stress at
panicle development stage (Du et al. 2014). OsGRAS23,
detected in MQTL_DRI4.3 interval, codes for a stress-
responsive GRAS transcription factor. OsGRAS23 plays
a positive role in regulating drought tolerance in rice by
inducing several stress responsive genes (Xu et al. 2015).
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OsMTIa (a type 1 metallothionein), found in MQTL_
DRI12.2 interval, is engaged in zinc homeostasis and
drought tolerance in rice. Yang et al. 2009 indicated that
overexpression of OsMT1a resulted in increased drought
tolerance in rice via taking part in ROS scavenging path-
way directly and also through regulating the expression
of zinc finger transcription factors (Yang et al. 2009).
OsTFIL, detected in MQTL_DRIS8.1, encodes a home-
odomain-leucine zipper transcription factor. OsTFIL
plays a key role in regulating drought tolerance mecha-
nisms in rice. Up-regulation of drought-inducible genes
and the genes involved in stomatal movement and lignin
biosynthesis was observed in plants overexpressing
OsTFIL. Under drought stress, rice plants overexpress-
ing OsTFIL showed enhanced effective photosynthesis,
reduced water loss rate and increased drought tolerance
at the vegetative stage. Furthermore, enhanced drought
tolerance together with increased GY was observed in
the OsTFIL overexpressing plants than in non-transgenic
plants at the reproductive stage (Bang et al. 2019).

Out of the 24 identified MQTLs for DRI trait, four
MQTLs overlapped with 19 SNP peak positions discov-
ered through GWAS studies (Fig. 5, Additional file 10:
Table S7). Os03g0288800 and Os03g0286500 were identi-
fied as two novel candidate genes for DRI in rice that was
detected in SNP peak positions overlapped with QTL-
overview peaks.

MQTLs and Candidate Genes for Flag Leaf Size
Meta-analysis of QTLs resulted in the identification of 10
MQTLs for FLZ in rice. The most number of MQTLs per
chromosome was three MQTLs on chromosome3, fol-
lowed by two MQTLs on each of chromosomes 2 and 4
(Table 3). MQTL_FLZ1.1 was identified as the most sta-
ble MQTL for FLZ having the most number of original
QTLs from four independent studies.

Within the MQTL_FLZ1.1 interval, OsFBK1 (ORYZA
SATIVA F-BOX KELCH 1) was detected, which encodes
an E3 ligase subunit. It has been demonstrated that EP3
and OsFBK1, both are functional orthologues of Arabi-
dopsis F-box protein HAWAIIAN SKIRT, influence on
plant architecture, organ size, number and size of floral
organ, floral morphology, pollen viability, grain size, and
weight and affect transcript accumulation of microRNA
pathway genes and their targets (Borah and Khurana
2018). The most important mechanism engaged in envi-
ronmental responses and developmental processes in
plants is mitogen-activated protein kinase (MAPK) cas-
cade. OsMAPK2, located in MQTL_FLZ3.1 interval,
encodes Oryza sativa MAP kinase 2 gene. OsMAPK2
may be involved in the stress-signaling pathway and
panicle development in rice. OsMAPK2 plays a role in
plant tolerance to various biotic/abiotic stresses based
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on previous studies. Hur and Kim (2014) indicated that
overexpression of OsMAPK?2 affected root development
and led to increased tolerance to phosphate deficiency
in rice and Arabidopsis (Hur and Kim 2014). The other
discovered gene is a cytokinin receptor, called OsHk6
(OsCKT1I), detected in the MQTL_BY2.2 interval. OsHk6
is involved in cytokinin regulation of biological processes
like secondary metabolism, sucrose and starch metabo-
lism, chlorophyll synthesis and photosynthesis (Choi
etal. 2012).

MQTLs and Candidate Genes for Harvest Index
Meta-analysis of QTLs led to the identification of 10
MQTLs for HI. The highest number of MQTLs per chro-
mosome were three MQTLs on chromosome 6, followed
by 2 MQTLs on each of the chromosomes 1, 2, and 3
(Table 3). MQTL_HI3.2 having the most number of origi-
nal QTLs from 12 independent studies and MQTL_HI2.2
having CI<1 c¢cM was recognized as the most stable
MQTLs for the HI under drought stress (Table 3). Out
of the 10 detected MQTLs for HI trait, one MQTL over-
lapped with SNP peak positions discovered in GWAS
studies (Fig. 5, Additional file 10: Table S7).

OsNAC6, OsRPK1, OsZFP, OsCOlla, OsPP15, OsKASI,
OsETOLI and OsMSRMK?2 detected in the intervals of
MQTL HI1.2, MQTL HI1.1l, MQTL HI1.2, MQTL_
HI1.2, MQTL_HI1.2, MQTL_HI6.2, MQTL_HI3.2 and
MQTL_HI3.2, respectively, were recognized as potential
candidate genes for HI under drought stress conditions.

The transcription factor of OsNAC6 up-regulates the
expression of the genes involved in several drought tol-
erance pathways such as genes engaged in membrane
modification, nicotianamine biosynthesis, glutathione
translocation, 3’-phophoadenosine 5’-phosphosulfate
accumulation and glycosylation. Altogether, molecular
drought tolerance mechanisms are arranged by OsNACE,
indicating its potential to be used for developing high-
yielding crops under drought stress conditions (Lee et al.
2017). The OsRPKI gene, encoding a Ca*-independent
Ser/Thr kinase, was induced by auxin, ABA, cold and
drought stresses. Knockdown of OsRPK1 led to enhanced
growth, plant height and tiller number in transgenic rice
plants. Furthermore, polar auxin transport and develop-
ment of root are negatively regulated by OsRPK1 in rice
(Zou et al. 2014). OsZFP encodes a C2HC-type zinc fin-
ger protein that plays a role in regulating the develop-
ment of lateral roots through IAA pathways (Cui et al.
2017). The F-box protein OsCOI! is involved in drought
tolerance in rice through participating in the signaling
module of OsbHLH148-0OsJAZ-OsCOII (Seo et al. 2011).
OsPP15 (OsPP2C09), encoding a clade A type 2C protein
phosphatase, had a positive effect on plant growth but
negatively regulated drought tolerance via ABA signaling.
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On the other hand, OsPP2C09 interacts with DREB TFs
and activates DRE-containing promoters. So, drought
response regulon is positively regulated by OsPP2C09,
leading to the activation of an ABA-independent signal-
ing pathway. Altogether, OsPP2C09 is involved in both
ABA-dependent and independent abiotic stress signaling
pathways as a bifunctional regulator (Chen et al. 2014;
Min et al. 2021). OsKASI encodes B-ketoacyl-[acyl carrier
protein] synthase I. OsKASI deficiency led to decreased
fertility and a considerable change in the composition
and contents of fatty acids in roots and seeds. It was
demonstrated that the involvement of OsKASI in fatty
acid synthesis is of great importance for rice root devel-
opment (Ding et al. 2015). OsETOL1 codes for a homolog
of ETHYLENE OVERPRODUCER. Two allelic mutants
of OsETOLI indicated enhanced tolerance to drought
stress during panicle development stage (Du et al. 2014).
Diverse biotic/abiotic stresses resulted in changes in the
expression of OsMSRMK?2, indicating its role in defense/
stress response pathways of rice (Agrawal et al. 2002).

MQTLs and Candidate Genes for Panicle Number

We identified 25 MQTLs for the PN trait using MQTL
analysis. The highest number of MQTLs per chromo-
some was four MQTLs on each of the chromosomes
2 and 4 (Table 3). MQTL_PN4.4 was recognized as the
most stable MQTL for PN having the highest number of
original QTLs from 11 independent studies.

hbd2, IAA6, OsAHL1, OsC3HI10, OsCNX, OsMOGS,
OsTSD2, SAPK2, OsCKX9, SRS1/DEP2, OsLHTI1 and
SAPK?2 located in the intervals of MQTL_PN2.3, MQTL_
PN1.2, MQTL_PN8.2, MQTL_PN1.2, MQTL_PN4.2,
MQTL_PN1.3, MQTL_PN2.4, MQTL_PN7.1, MQTL_
PN5.2, MQTL_PN7.1, MQTL_PN8.2 and MQTL_PN7.1,
respectively, were detected as potential candidate genes
for PN under drought stress conditions.

OsCKX9, located in MQTL_PN5.2 interval, encodes
cytokinin oxidase 9. Significant enhancements in tiller
number and reduction in plant height and panicle size
were observed in both OsCKX9 mutants and OsCKX9-
overexpressing plants, proposing that OsCKX9 home-
ostasis is of great importance for regulating shoot
architecture in rice (Duan et al. 2019). SRS1/DEP2 (The
Small and Round Seedl/Dense and Erect Panicle2) is
engaged in regulating seed size and panicle length in rice
(Abe et al. 2010).

OsLHT1 (MQTL_PNB8.2) plays key roles in the trans-
location of amino acids from vegetative to reproductive
organs for GY and quality of nutrition and functionality.
The amino acid transporter of OsLHTI exhibits a broad
substrate specificity and a tendency for neutral and acidic
amino acids, and disturbance of OsLHT1 function notice-
ably repressed rice growth and fertility. Loss-of-function
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of OsLHT1 in two oslhtl mutants, produced through
CRISPR/Cas9 genome-editing technology, led to inhibi-
tion of root and shoot growth and significant reduction
of grain yield in rice (Guo et al. 2020). SAPK2 codes for
a Serine/threonine-protein kinase and contributes to rice
yield by controlling nitrogen metabolic processes under
water deficit conditions in the reproductive stage (Lou
et al. 2020).

Out of the 25 identified MQTLs for PN trait, 14
MQTLs overlapped with 23 SNP peak positions dis-
covered by GWAS studies (Fig. 5, Additional file 10:
Table S7). Three novel candidate genes for PN trait under
drought stress conditions in rice include Os01g0915350
and 0s02g0752200, 0s02g0752250 (Fig. 5, Additional
file 10: Table S7) that were detected in SNP peak posi-
tions overlapped with QTL-overview peaks MQTLs.

MQTLs and Candidate Genes for Spikelet Fertility

We identified 13 MQTLs for SF trait using MQTL analy-
sis. The highest number of MQTLs per chromosome was
two MQTLs on each of the chromosomes 4, 5, 6, 8 and 9
(Table 3). MQTL_SF4.2 having the most number of origi-
nal QTLs from 10 independent studies and MQTL_SF2.1
having CI<1.17 cM were recognized as the most stable
MQTLs for SF trait under drought stress. Out of the 13
identified MQTLs for SF trait, one MQTL overlapped
with one SNP peak position detected by GWAS studies
(Fig. 5, Additional file 10: Table S7).

Gibberellic acid (GA) plays an important role in devel-
opment of floral organs and GA signaling has a key
function in spikelet fertility. OsGIDI, detected in MQTL_
SF5.1, acts as soluble GA receptor and binds directly to
the biologically active GA. Then, OsGID1 interacts with
SLR1, a DELLA protein that supress GA signalling. This
results in degradation of SLR1 and consequently, permit-
ting GA signaling pathway (Kwon and Paek 2016; Uegu-
chi-Tanaka et al. 2005). Moreover, OsMFT1, detected in
MQTL_SF6.2, play an important role in GA biosynthe-
sis and ABA signaling (Lu et al. 2023) and has a main
regulatory function under drought stress in rice (Chen
et al. 2021). It is also reported that panicle branching
and spikelets per panicle in rice is enhanced by OsMFT1
through suppressing a subfamily of MADS-box genes
and SEPALLATA-like genes, respectively (Song et al
2018).

Breeding MQTLs

Thirteen MQTLs were identified as "Breeding MQTLs"
meeting the following criteria: having more than 10 initial
QTLs, a confidence interval (CI) of less than 1 ¢cM, and
an average proportion of phenotypic variance explained
(PVE) by the original QTLs exceeding 10. These MQTLs
are specifically identified as MQTL2-8, MQTL1-12,
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MQTLS8-9, MQTL9-4, MQTL1-5, MQTL12-4, MQTL3-
5, MQTL6-3, MQTL1-6, MQTL12-2, MQTLI1-11,
MQTL3-6, and MQTLS8-4 (Table 5, Fig. 3).

Conclusion

Meta-analysis of yield and drought tolerance associ-
ated traits under drought stress conditions led to the
discovery of 213 MQTLs, among which 17 MQTLs had
a genetic distance of less than 1 ¢cM and accounted for
an average phenotypic variance of 20.29%. Notably, 63
MQTLs (out of 213 MQTLs) coincided with SNP posi-
tions identified by GWAS for yield components and
DT-related traits under drought stress in rice. Moreo-
ver, 19 genes precisely situated at the SNP peak posi-
tions and QTL-overview peaks were nominated as
candidate genes for subsequent functional analysis.
These genes were involved in GY (OsSPO11-5, OsDRFI,
FKFI1, 0Os03g0197175, 0Os03g0197200, 0Os03g0305000,
0503g0305050, 0s03g0232800 and Os08g0170200), plant
height (0s01g0884500 and Os01g0885300), Biomass yield
(OsBRXL2, DEK1 (ADLI) and Os06g0164300), drought
response index (Os03g0288800 and Os03g0286500) and
panicle number (Os01g0915350, Os02g0752200, and
0s502¢0752250) under drought stress. On the other hand,
the inclusive meta-analysis of QTLs for all the yield-asso-
ciated traits together led to identification of 13 MQTLs
having suitable features to be used as "breeding MQTLs".
Finally, integrating the results of MQTL-analysis for yield
and DT-associated traits (distinct and combined analy-
sis of traits), GWAS studies, and transcriptome data,
resulted in finding 82 candidate genes involved in DT and
yield maintenance under drought stress. The promising
candidate genes and breeding MQTLs discovered in the
current research are valuable sources for genetic engi-
neering and molecular breeding for drought tolerance in
rice.

Abbreviations

QTLs Quantitative trait loci

GWAS  Genome-wide association studies
LOD Logarithm of the odds

DT Drought tolerance

GY Grain yield

cl Confidence interval

YLD Yield-associated traits
GW Grain weight

HD Heading date

PH Plant height

™ Tiller number

Supplementary Information

The online version contains supplementary material available at https://doi.
org/10.1186/512284-024-00684-1.

Additional file 1: Fig. S1. Venn diagram showing the common genes
among the drought responsive genes identified based on the RNA-seq
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and microarray experiments, and the genes placed within the areas of the
213 identified MQTLs for the distinct traits and the genes placed inside
the locations of those MQTLs with Cl< 1 cM. Supplementary table S11
includes the detailed information.

Additional file 2: Fig. S2. QTL-overview index of yield and DT-associated
traits on the consensus genetic map of rice. A total of 1087 initial QTLs
from 76 independent studies were used for the analysis. Green and

red horizontal lines show the average index (real QTLs) and high-value
threshold (QTL hotspot), respectively. The position of the 49 "QTL hotspot”
areas are indicated by upper labels. a; QTL-overview index for all the
studied traits, b; QTL-overview index for BY, ¢; QTL-overview index for CP, d;
QTL-overview index for DRI, e; QTL-overview index for FLZ, f; QTL-overview
index for GY, g; QTL-overview index for HD, h; QTL-overview index for HI, i;
QTL-overview index for PH, j; QTL-overview index for PN, k; QTL-overview
index for SF.

Additional file 3: Fig. S3. The Venn diagram showing the common genes
among the genes located in significant SNPs based on GWAS studies, the
DEGs (based on RNA-seq and microarray experiments), and the genes
placed within the areas of the 213 identified MQTLs for the distinct traits
and the genes placed inside the locations of those MQTLs with CI< 1 cM.
Supplementary table S12 includes the detailed information.

Additional file 4: Table S1. Classification of the studied traits.

Additional file 5: Table S2. The high-density consensus genetic map
comprises 6970 markers.

Additional file 6: Table S3. The genes located in the detected MQTLs
regions for each distinct trait.

Additional file 7: Supplementary Table S4. The genes located in the
detected MQTLs regions through inclusive MQTL analysis.

Additional file 8: Supplementary Table S5. The list of RNA-seq and
microarray studies used to identify drought-responsive genes in rice.

Additional file 9: Supplementary Table S6. Drought responsive genes
located in the identified MQTL regions.

Additional file 10: Supplementary Table S7. The MQTLs overlapped
with the significant SNPs in reported rice GWAS studies for yield and DT-
associated traits under drought stress conditions in rice.

Additional file 11: Supplementary Table S8. The collected QTL data for
performing meta-analysis of QTLs in the current research.

Additional file 12: Supplementary Table S9. The identified MQTLs that
were associated with more than one trait.

Additional file 13: Supplementary Table $10. The drought responsive
genes identified in rice based on the related RNA-seq and microarray
experiments (Supplemental Table 5).

Additional file 14: Supplementary Table S11. The common genes
between the drought responsive genes (based on the RNA-seq and
microarray experiments) and the genes located in the areas of the 213
identified MQTLs for distinct traits and the genes placed inside the loca-
tions of those MQTLs with Cl< 1 cM together with their expression levels.

Additional file 15: Supplementary Table S12. The common genes
among the DEGs (based on RNA-seq and microarray experiments), the
genes located in significant SNPs based on GWAS studies, the genes
placed within the areas of the 213 identified MQTLs for the distinct traits,
and the genes placed inside the locations of those MQTLs with CI< 1 cM
together with their expression levels.

Additional file 16: Supplementary Table S13. Common genes among
the DEGs (based on the related RNA-seq and microarray experiments), the
genes located in the MQTL regions detected by inclusive MQTL analysis
(96 MQTL), the genes placed within the MQTL areas identified for the
distinct traits (213 MQTLs) and the genes located in significant SNPs based
on GWAS studies.
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