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Abstract 

Genetic improvement is crucial for ensuring food security globally. Indeed, plant breeding has contributed signifi‑
cantly to increasing the productivity of major crops, including rice, over the last century. Evaluating the efficiency 
of breeding strategies necessitates a quantification of this progress. One approach involves assessing the genetic 
gain achieved through breeding programs based on quantitative traits. This study aims to provide a theoretical 
understanding of genetic gain, summarize the major results of genetic gain studies in rice breeding, and suggest 
ways of improving breeding program strategies and future studies on genetic gain. To achieve this, we present 
the concept of genetic gain and the essential aspects of its estimation. We also provide an extensive literature review 
of genetic gain studies in rice (Oryza sativa L.) breeding programs to understand the advances made to date. We 
reviewed 29 studies conducted between 1999 and 2023, covering different regions, traits, periods, and estimation 
methods. The genetic gain for grain yield, in particular, showed significant variation, ranging from 1.5 to 167.6 kg/ha/
year, with a mean value of 36.3 kg/ha/year. This translated into a rate of genetic gain for grain yield ranging from 0.1% 
to over 3.0%. The impact of multi‑trait selection on grain yield was clarified by studies that reported genetic gains 
for other traits, such as plant height, days to flowering, and grain quality. These findings reveal that while breeding 
programs have achieved significant gains, further improvements are necessary to meet the growing demand for rice. 
We also highlight the limitations of these studies, which hinder accurate estimations of genetic gain. In conclusion, 
we offer suggestions for improving the estimation of genetic gain based on quantitative genetic principles and com‑
puter simulations to optimize rice breeding strategies.

Keywords Genetic gain, Response to selection, Breeder’s equation, Rice, Breeding program

Introduction
Plant breeding is the science of improving the genet-
ics of cultivated plants to develop new varieties with 
desired combinations of traits to meet the needs of users. 
Breeding programs make use of crosses, evaluations, and 

strategies of selection in pools of germplasm with inter-
esting attributes to achieve this goal (Acquaah 2009; 
Allard 1999). However, not only do breeding programs 
have agronomic (biotic and abiotic stress resistance, fer-
tilization, and pest management), biological (genetics, 
physiology), economic (target markets, user needs), and 
statistical components (Luckett and Halloran 2017), but 
they also have increased in complexity over time, with 
the discovery and integration of molecular tools increas-
ing the precision and efficiency (marker-assisted selec-
tion, QTL introgression, and, more recently, genomic 
selection) of the selection process (Cobb et  al. 2018; 
Crossa et  al. 2017; Siddiq and Vemireddy 2021). This 
complex process involves the investment of considerable 
resources, and it often takes a long time to develop and 
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deliver the final product (about 8 to 10 years for an elite 
line in conventional programs) in the form of a released 
variety (Gallais 2011). However, resources and budg-
ets are often limited in public plant breeding programs, 
particularly in low- and middle-income countries. It is, 
therefore, important to monitor the efficiency and sus-
tainability of the program implemented to achieve the 
targeted objectives.

The efficiency of a plant breeding program can be eval-
uated based on several indicators that may be applied in 
one or more subcomponents of the breeding program: 
design (market segmentation, product profiling), engi-
neering (population improvement and product develop-
ment), and delivery (product commercialization, variety 
renewal) (Cobb et  al. 2019; Covarrubias-Pazaran 2020). 
Ceccarelli, (2015) described three main methods for 
measuring the efficiency of plant breeding programs, 
one for each component of the breeding program. Effi-
ciency may be evaluated: (i) by calculating the ratio of the 
number of varieties adopted by farmers to the number of 
crosses made at the beginning of a given breeding cycle; 
(ii) by calculating the ratio of the benefits generated by a 
new variety to the cost associated with its development; 
or (iii) by assessing the response to selection over a given 
period. The efficiency of a plant breeding program for 
developing high-yielding cultivars, leading to the release 
of at least one variety and its adoption by farmers, can 
be improved by crossing stringently selected parents 
(Huehn 2005; Witcombe et al. 2013). This indicator based 
on the adoption of varieties is widely used in the evalu-
ation of plant breeding efficiency in the public sector, 
but it remains an inaccurate indicator of performance 
because only the benefits generated by variety adoption 
are captured, whereas non-adopted varieties may play an 
important role as future parents (Ceccarelli 2015). Unlike 
the first two indicators, the assessment of response to 
selection (also called genetic gain) is not widely used as a 
performance indicator in breeding programs or by stake-
holders. Genetic gain nevertheless remains a robust indi-
cator, including all three main components of a breeding 
cycle: crossing – evaluation – selection (Ceccarelli 2015; 
Cobb et  al. 2019; Dudley 1997; Huehn 2005). In addi-
tion, other sub-indicators of performance, such as the 
maintenance of a suitable level of genetic diversity during 
breeding cycles, parent recycling time, crossing strategy, 
and selection method, are also incorporated into the for-
mulation of genetic gain. However, several traits of inter-
est (e.g., yield, earliness, resistance to abiotic stresses, 
milling quality) in breeding programs are quantitative 
traits. Assuming that such traits are under the control of 
a large number of genes, each with a small effect associ-
ated with a large environmental influence (Baker 1984; 
Falconer 1981), significant genetic gain can be achieved 

only after several cycles of recurrent selection (Rutkoski 
2019a). Increases in production in farmers’ fields can be 
attributed to a combination of genetically improved cul-
tivars (genetic component) and optimized crop manage-
ment systems (agronomic or non-genetic component). 
A good performance indicator should, therefore, quan-
tify the contribution of each of these components. Sev-
eral studies aiming to quantify genetic and non-genetic 
contributions to crop production improvement for dif-
ferent cereals have reported that a large proportion of 
the increase in productivity was due to genetic efforts 
(Kumar et al. 2021; Laidig et al. 2014; Mackay et al. 2011; 
Piepho et al. 2014).

Efforts to improve yield and other agronomic traits of 
interest have been crucial since the Green Revolution. 
For rice (Oryza sativa L.), the start of modern breeding 
is generally traced back to the development of IR8 (Peng 
and Khushg 2003), a variety that helped address some of 
the challenges associated with food security. Rice is one 
of the most cultivated cereals worldwide, and it consti-
tutes the staple food for more than half of the human 
population. Rice cultivation is a strategic element for 
food security and social stability, particularly in low and 
middle-income countries (GRiSP 2013). In 2021, global 
rice production was estimated at more than 787 million 
tons of paddy rice (FAO 2022), with about 90% of total 
production in Asia. Indeed, the genetic improvement 
in rice breeding has played a key role in achieving this 
level of production over the last five decades through 
the development and release of more productive varie-
ties (Khush 2008; Mackill 2018; Mackill and Khush 2018; 
Xie and Zhang 2018). These varieties, adapted to differ-
ent growing conditions, have enabled farmers to achieve 
high levels of production. However, despite this break-
through, rice production faces many challenges due to 
decreases in the amount of arable land available for rice 
cultivation (Chauhan et  al. 2017; Nguyen and Ferrero 
2006) due to urbanization, soil erosion, salinity and acid-
ity, and the impact of climate change, due to heat stress, 
drought, flooding, and water scarcity (Kim et  al. 2013; 
Oort and Zwart 2018; Y. Xu et al. 2021). Moreover, a stag-
nation of grain yields has been observed lately in several 
rice-growing countries (Fischer and Edmeades 2010; Ray 
et al. 2012), and the rates of genetic gain in grain yield by 
rice breeding programs are considered too low to meet 
the increasing demand of rice. We need to increase rice 
production by at least 50% to feed the growing popula-
tion (Ray et al. 2013). These challenges in rice cultivation 
highlight the need to increase the rate of genetic gain for 
important traits by developing high-yielding genotypes 
and designing efficient breeding strategies to continue 
the increase in grain yield gain (Cobb et al. 2019; Ding-
kuhn et al. 2015; Siddiq and Vemireddy 2021).
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Our objectives here are: i) to provide the reader with 
a theoretical understanding of the genetic gain concept, 
facilitating identification of the principal factors affect-
ing its estimation in the context of a breeding program; 
ii) to summarize the major results and conclusions of 
genetic gain studies in rice breeding over the last six dec-
ades, together with the limitations of these studies; and 
iii) to suggest ways of improving the estimation of genetic 
gain in breeding programs and for future studies. The 
first part of this study focuses on the principles and the-
oretical foundations of genetic gain and presents meth-
ods for its estimation in breeding programs. The second 
part provides an in-depth review of studies on the real-
ized genetic gain in rice, mostly for grain yield and other 
traits of economic importance. Finally, we describe ways 
to improve genetic gain with tools to optimize breeding 
strategies.

Genetic Gain
Genetic gain is a concept that may appear simple. How-
ever, its estimation within a breeding program remains 
complex, and its implementation can be complicated. 
It is, therefore, important to understand its theoretical 
basis to improve evaluations of its implications for crop 
breeding programs. In this section, we provide readers 
with a definition of genetic gain and a description of the 
principal methods used for its estimation.

Definition of Genetic Gain
Selection leads to many changes in the genetic proper-
ties of a population, the most important for the breeder 
being the change in the average performance of the 
population. This change is referred to as the response to 
selection, denoted as R . The response to selection, or the 
genetic gain from selection, is the difference between the 
average performance (phenotypic, estimated breeding 
value or index) of the progeny of selected individuals ( µo ) 
and that of the initial population ( µp ) before selection 
(Falconer 1981): R = µo − µp . In other words, it can be 
described as the expected or realized intergenerational 
change in the average phenotypic value or genetic value 
of a population over at least one cycle of selection for a 
single trait or multiple economically important traits 
combined into an index in a relatively closed population 
(Rutkoski 2019a). Genetic gain is achieved by using only 
the best individuals with performances above a specific 
threshold for breeding. For the prediction of the genetic 
gain achieved over one or several breeding cycles, a rela-
tionship is established between the performances of the 
selected parents and their offspring (Fig.  1). The aver-
age performance of offspring can be predicted from that 
of their parents by linear regression with the following 
equation: µo = βOPµp where βOP is the parent–offspring 

regression coefficient. In the quantitative genetics model, 
βOP is equal to the narrow-sense heritability (h2 ) of the 
trait if selection is applied to both parents or half the 
heritability ( 1

2
h
2
) if selection is applied only to one of the 

parents. The difference between the average performance 
of the selected parents ( µs ) and the average for the whole 
population ( µp ) is known as the selection differential, 
denoted S = µs − µp . If we center R and S on µp they 
become the mean deviation of the offspring from the 
population mean and the mean phenotypic value of the 
selected parents, respectively, both expressed as a devia-
tion from the population mean. Finally, the equation for 
the response to selection, commonly known as the breed-
er’s equation, becomes: R = h2S where h2 is the heritabil-
ity of the target traits and S is the selection differential. 
Given the relationships between the components of a 
breeding scheme, other formulas can be derived from the 
classical breeder’s equation. S can be expressed as a func-
tion of the intensity of selection ( i ), which depends on 
the percentage of individuals selected and is defined as 
i = S

σP
 where σP is the square root of the phenotypic vari-

ance. Thus, R = ihσa . Genetic gain may also be expressed 
per unit time, in which case it is described as the rate of 
genetic gain ( �G ), the most widely used equation for 
expressing genetic gains: �G =

ihσa
L  , where L is the num-

ber of years required to complete one breeding cycle. The 
main direct application of these equations is in predicting 
the response to selection (Baker 1984; Falconer 1981).

Expected and Realized Genetic Gain
Expected genetic gain is defined as the predicted change 
in mean phenotypic value that would be caused by a 
change in the genetic value of the population under a 
given breeding strategy (Rutkoski 2019a). Basically, it is 
an a priori estimate of the genetic gain from a breeding 
scheme. It can be estimated from the breeder’s equation 
provided that parameters such as heritability, genetic var-
iance, and selection intensity are known (Covarrubias-
Pazaran 2020; Falconer 1981). However, under the real 
conditions of a large-scale breeding program, it is difficult 
to meet this assumption to obtain an accurate estimate 
of the expected gain (it is assumed that the parameters 
of the equation remain constant over cycles). In reality, 
selection intensity varies over cycles, and genetic vari-
ance tends to decrease over time (Bouffier et  al. 2008; 
Briggs and Goldman 2006; Bulmer 1971, 1976; Dudley 
2007). It is, therefore, difficult to estimate the expected 
gain over multiple breeding cycles accurately. Neverthe-
less, several plant breeding programs use the expected 
gain as a metric for comparing different breeding strat-
egies (Abidine Fellahi et  al. 2020; Heffner et  al. 2010; 
Helms and Hammond 2006). Analyses can be conducted 
with deterministic simulation models to guide choices in 
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the design of breeding strategies, such as the number of 
crosses, cycle duration, or the intensity of selection at dif-
ferent stages (Atlin and Econopouly 2021).

Realized genetic gain is defined as the change in 
average population performance observed over at least 
one cycle of selection. Realized genetic gain can be 
estimated by a linear regression analysis of the aver-
age performance of populations from each selection 
cycle over the total number of cycles or years (Eber-
hart 1964; Rutkoski 2019a). The linear regression coef-
ficient thus represents the rate of realized genetic gain 
per breeding cycle or year. When measuring realized 
genetic gain, it is commonly presented in two ways: 
absolute gain, which is measured in phenotypic units 
per cycle or year, and relative gain, which is expressed 

as a percentage compared to a baseline. In plant breed-
ing, several methods for estimating realized genetic 
gain, with different response variables for the regres-
sion, have been described. Realized gain over a given 
period is estimated with experimental data of two 
main types: era studies or historical studies (Covarru-
bias-Pazaran 2020). In era studies, released varieties 
(or advanced lines) representing the breeding effort 
over a period of time are evaluated in the same envi-
ronments in specific experiments. These varieties, 
released over the years, are assumed to represent the 
improvements in germplasm in each breeding cycle. 
For historical studies, data generated over the years by 
the breeding program or by the variety release system 
are compiled. Such data may be derived from various 

Fig. 1 Distributions of phenotypic values of the base population, the selected individuals, and their offspring. μp: mean of the parental generation, 
μs: mean of selected individuals, S: selection differential, μo mean of the offspring generation, R: genetic gain
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sources (early or advanced trials, variety registration, 
or on-farm trials), leading to the use of different ana-
lytical approaches (Laidig et  al. 2014; Mackay et  al. 
2011; Rutkoski 2019a). The use of historical pheno-
typic data or phenotypic data from era trials can pro-
vide accurate estimates of the true rate of realized 
genetic gain, provided that two important character-
istics of the datasets are carefully considered: con-
nectivity between experiments/trials and TPE (target 
population of environments) coverage (Covarrubias-
Pazaran 2020; Rutkoski 2019b). Connectivity is defined 
as the degree of overlap between different cohorts in 
the same year; it can be used to dissociate the environ-
mental effect (year or location) from the genetic effect. 
Data connectivity differs between data sources. The 
connectivity of data from era studies is good, by defi-
nition, as the whole panel is evaluated simultaneously 
(Fig.  2A). By contrast, connectivity is generally much 
lower for historical data, mostly due to the lack of con-
nectivity between the germplasm pools evaluated in 
each cohort. However, connectivity in such data can 
be improved by adopting a good check strategy on tri-
als or incorporating a relationship matrix (based on 
pedigree or markers) into the analysis. The TPE is the 
target set of environments; it can be used to capture 
genotype x environment (GxE) interactions. TPE cov-
erage is generally low in era studies because trials are 
often performed at a single site (often an experimental 
station). The TPE coverage of historical data depends 
on the type of trial. It is low for early trials, moderate 
for advanced trials, and high for variety registration 
and on-farm trials (Table 1, Fig. 2B).

Statistical Models
Assuming that the genetic trend resulting from selec-
tion is linear during consecutive early cycles of selection 
(Eberhart 1964; Hallauer et al. 2010; Rutkoski 2019a), the 
realized genetic gain for a quantitative heritable trait can 
be estimated with the following regression model:

where Yi is the observed population performance for a 
selection cycle; µ0 is the estimated average performance 
of the initial population; β is the linear regression coef-
ficient representing the rate of genetic gain per unit of 
phenotypic value per cycle (or per year); xi corresponds 
to the selection cycle and εi to deviations from the regres-
sion model. If a large number of breeding cycles are per-
formed, and gene frequencies are very low in the initial 
population, a non-linear trend can be expected, and, in 
such cases, the simple linear model described above 
should be extended by including quadratic and cubic 
terms (Eberhart 1964). More accurate estimates of the 
model parameters ( µ0;β; εi ) can be obtained by includ-
ing in the model other factors (fixed and random effects), 
as a function of the data and experimental design used 
(Table 2).

The average phenotype collected directly based on the 
evaluated genotypes, or genetic means estimated from 
these phenotypes can be used as the response variable in 
the regression model for the genetic trend over time. The 
regression slope corresponding to the realized genetic 
gain can be estimated in different ways. In general, a con-
comitant estimation of the slope is performed in a single 
model with a fixed regression term, in a single-step process 

Yi = µ0 + βxi + εi

Fig. 2 Graphical representation of the level of connectivity between entries and target population of environments (TPE) coverage associated 
with each type of data and stage of evaluation. A: Connectivity levels of historical studies and era studies driven by control strategy. For connectivity 
between years, the intensity of the green color reflects the number of common controls between trials, the higher the intensity, the greater 
the connectivity. For TPE coverage, the gray boxes represent the proportion of environments (year and/or location) covered by the trials conducted 
in each type of study. B: Genetic material used in each stage of evaluation for historical studies and era studies, with their level of connectivity 
and TPE coverage
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(Fig.  3). The regression coefficient can also be estimated 
separately by fitting several mixed models before the 
regression model. This two-step approach makes it possi-
ble to estimate the adjusted genetic means, which can then 
be used as the response variable in the regression model 
for the estimation of the rate of genetic gain (Fig. 3). The 
adjusted means may be estimated from the following linear 
mixed model:

where Yijk is the observed phenotypic value of genotype i 
in year j and at location k ; gi is the effect of the ith geno-
type; yj is the random effect of the jth year; lk is a random 
effect of the kth location; y : ljk is the random effect of 
the interaction between year and location; g : yij is a ran-
dom effect of the interaction between genotype and year; 
g : lik is a random effect of the interaction between geno-
type and location, and εijk is the random residual error 
of the model. Genotype effects may be considered to be 
fixed for fitting a best linear unbiased estimator (BLUE) 
or random for BLUP (best linear unbiased predictor). A 
relationship matrix can be incorporated with the ran-
dom genotype effects to obtain estimated breeding values 
(EBVs).

Furthermore, as the observed trend is a result of both 
genetic effects due to breeding efforts and non-genetic 
effects due to the improvement of agricultural prac-
tices, models have been developed to separate these two 
components. Piepho et  al. (2014) proposed a two-step 
method for estimating the genetic gain captured by the 
first year of testing for lines and the non-genetic gain 
captured by the calendar year:

Yijk = µ+ gi + yj + lk + y : ljk + g : lik + g : yij + εijk

where Yijk is the mean yield of the i th genotype at the 
j th location in the k th year, µ is the overall mean, Gi is 
the main effect of the i th genotype, Lj is the main effect 
of the j th location, Ak is the main effect of the k th year, 
(LA)jk is the j th location × kth year interaction effect, 
(GL)ij is the i th genotype × jth location interaction effect, 
(GY )ik is the i th genotype × kth year interaction effect, 
(GLA)ijk is the interaction of the i th genotype with the 
j th location in the k th year and εijk is the residual term. 
With the exception of µ , Gi and Ak , all effects are assumed 
to be random and independently distributed, with a con-
stant variance. The regression term for the rate of genetic 
gain is as follows:

where β is a fixed regression coefficient for the genetic 
trend; ri is the first testing of genotypes and Hi is the 
random deviation from the genetic trend line, with 
Hi ∼ (0, σ 2

H ) . The non-genetic trend is:

where γ is a fixed regression coefficient for the non-
genetic trend, tk is the continuous covariate for the calen-
dar year and Zk is the random residuals for the agronomic 
trend with Zk ∼ (0, σ 2

Z).

Uses of the Term Genetic Gain
The terms "genetic gain" or "response to selection" are 
often used inaccurately to describe the genetic part of 
a trait’s evolution over time, whatever the source of the 
material. However, this trend is not always the result of 
selection cycles of a specific breeding program within a 

Yijk =µ+ Gi + Lj + Ak + (LA)jk + (GL)ij

+ (GA)ik + (GLA)ijk + εijk

Gi = βri +Hi

Ak = γ tk + Zk

Table 1 Type of genetic gains that can be estimated by a breeding program, sources of datasets and the characteristics of each type 
of population used in terms of connectivity and TPE coverage. Modified from Covarrubias‑Pazaran (2020)

a Connectivity: The degree of overlap of different cohorts in the same year
b TPE: Target population of environments. The better the coverage of TPE, the more accurate the estimates of genetic and breeding value we can obtain

Method Data required Type of material Factors to be considered Connectivitya/TPEb coverage

Expected Any trial information Any generation material The heritability used will have an important effect 
on the under‑ or overestimation of the metric

Low after first selection cycle

Realized Era trial information Early material 1) TPE coverage is low (usually a few locations & 
a couple of years). 2) Connectivity between entries 
is maximal (cohorts evaluated at the same time). 3) 
Sample can overestimate the metric

High/Low

Advanced material

Released varieties

On‑farm

Historical trial information Early material 1) TPE coverage can be low (early), intermedi‑
ate (advanced) or high (varieties). 2) Connectivity 
between entries depends on controls and the use 
of methods such as EBV. 3) Sample can overestimate 
the metric

Variable/Low

Advanced material Variable/intermediate

Released varieties Variable/High

On‑farm Variable/High
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relatively closed population (Rutkoski 2019a). Some stud-
ies use a very broad definition of genetic gain, sometimes 
referring to the evolution over time of the phenotypic 
characteristics of advanced lines or widely cultivated 
varieties resulting from different breeding programs. In 
this case, the trend observed does not reflect the perfor-
mance of a breeding program but rather the contribution 

of genetic improvement to the progress made, whether in 
yield or another trait. Therefore, analyzing historical data 
from national or regional official variety trials (de la Vega 
et  al. 2007; Feng et  al. 2017; Laidig et  al. 2014; Mackay 
et  al. 2011; Muralidharan et  al. 1996, 2002, 2019, 2022; 
L. Xu et  al. 2020) or comparing popular varieties from 
several institutes from different periods (Liu et al. 2021; 

Table 2 Summary of linear mixed models and linear regression models frequently used for the estimation of realized rate of genetic 
gain in plant breeding programs

a Random variables that are independent and identically distributed (iid), assumed to be normal
b Estimated breeding value. In the EBV method, the first model is used to estimate breeding value and the second model is used to estimate genetic gain (simple 
linear regression coefficient)

Method Model Effects References

Era trial yi = µ+ βri + εi Phenotypic value (y)
Regression coefficient (β)
Year of release (r)

Duvick (2005), Hallauer et al. (2010), Rutkoski (2019b)

EBVb yijk = µ+ gi + di + lk + εijk
gi = µ+ βri + εi

Phenotypic value (y)
Genotype effect (g)a

Location (L)
Year (d)
Regression coefficient (β)
Breeding cycle (r)

Garrick (2010), Rutkoski (2019b)

Variety registra‑
tion trial

yijk = µ+ gi + βri + dj + γ ti + lk + hjk + xij + zik + εijkPhenotypic value (y)
Genotype (g)a

Location (l)a

Year (d)a

Regression coefficients for genetic 
and non‑genetic trends ( βetγ)
G x Location (z)a

G x Year (x)a

Location x Year (h)a

Laidig et al. (2014), Piepho et al. (2014), Rutkoski (2019b)

Fig. 3 Two methods for estimating realized genetic gain using regression models: one‑step and two‑step. In the model, the numerical variables 
are in bold, and the factors are in normal font. The different class colors define the class of factors. Blue represents variables set as fixed effects 
in the model, red represents variables set as random effects, and green represents variables that may be set as random or fixed effects depending 
on whether one is expecting to estimate the BLUEs or BLUPs
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Meng et al. 2021, 2022; Xiao et al. 2012; Yadav et al. 2021; 
Zeleke et al. 2021; Zhu et al. 2016) does not necessarily 
reflect the genetic gain achieved by a breeding program 
or provide any indication of the performance a breeding 
program. A more accurate term to describe the impact 
of selection on a given trait at different levels, which may 
involve materials from various breeding programs, is 
genetic improvement or genetic progress. In this study, 
we focused on genetic gain as an indicator of breeding 
program performance. Studies on genetic progress are 
mentioned for comparison purposes.

Realized Genetic Gain for Major Traits in Rice
Increasing numbers of studies in recent years have esti-
mated the genetic gain from rice breeding programs. The 
key challenges facing breeding programs are evaluating 
the efficiency of the strategy used to optimize resource 
allocation, improving the rate of genetic gain, and devel-
oping high-yielding varieties. Most studies on genetic 
gain in rice have focused on grain yield. However, other 
traits have been studied, albeit to a lesser extent: plant 
height, days to flowering, grain quality, yield compo-
nents, disease resistance, and physiological traits. In this 
section, we provide a detailed overview of the literature 
and present the genetic gain achieved by rice breeding 
programs over the last six decades.

General Overview
We reviewed 29 studies on genetic gains in rice, pub-
lished between 1999 and 2023, with a large number of 
the studies published recently (Fig.  4A). These studies 
covered a wide range of traits of interest. Grain yield 
was, inevitably, the most studied trait: 15 of the 29 stud-
ies focused on grain yield only, ten assessed grain yield 
in combination with other traits (mainly plant height and 
days to flowering), and four studies analyzed traits other 
than grain yield, mostly related to grain quality (Fig. 4A, 
Table 3). The studies covered diverse ecosystems, includ-
ing irrigated, rainfed upland and lowland, drought-prone, 
and salinity-prone environments, with a majority focused 
on irrigated ecosystems (Table 3). Most studies (27) con-
sidered a single ecosystem, but some compared the real-
ized genetic gains between different ecosystems (Khanna 
et  al. 2022; Kumar et  al. 2021). The studies considered 
also covered different rice-growing regions worldwide, 
with considerable variability in the number of studies 
carried out per country or region (Fig.  4B). Brazil was 
the country with the largest number of studies (17), fol-
lowed by the Philippines (5), then the United States (3), 
and Bangladesh (3). Fewer than three studies represented 
other countries or regions. The studies used different 
data types: historical data from a breeding program for 
22 and era data for seven studies. None of the studies 

used both data types. The numbers of genotypes and tri-
als also varied considerably between studies (Fig.  4C). 
Indeed, the number of genotypes evaluated ranged from 
six (Peng et al. 2000) to 15,286 (Juma et al. 2021), with a 
sharp contrast between era and historical studies. Most 
era studies were based on fewer than 50 genotypes. Only 
one era study included substantially more genotypes, 284 
in total (Cruz et  al. 2021). Conversely, historical stud-
ies used larger sets of genotypes to estimate the rate of 
genetic gain. The number of trials was also greater on 
average in studies based on historical data. For era stud-
ies, the number of trials ranged from one (Peng et  al. 
2000) to four (Cruz et al. 2021; Souza et al. 2007; Streck 
et  al. 2018a; Venkatanagappa et  al. 2021), whereas for 
historical studies, it ranged from five (Pinson et al. 2012) 
to 603 (Breseghello et  al. 2011). As expected, the mate-
rial evaluated was also more diverse in historical stud-
ies, including early material, advanced lines, and released 
varieties (Fig. 4D). The periods assessed in these studies 
also varied widely, ranging from 3 to 55  years, with the 
shortest periods generally corresponding to historical 
studies (19 years on average) and the longest periods cor-
responding to era studies (40 years on average, Fig. 4C). 
More detailed information about the 29 studies, includ-
ing the estimates of genetic gain, is provided in Addi-
tional file 1: Tables S1 and S2.

Concentrating exclusively on studies which focus on 
grain yield (Table 3), 25 studies reported genetic gain for 
grain yield: five studies were based on era data (Peng et al. 
2000; Samonte et al. 2016; Souza et al. 2007; Tabien et al. 
2008; Venkatanagappa et  al. 2021), and 20 were based 
on historical data. For the era studies, population size 
ranged from six (Peng et al. 2000) to 44 genotypes (Ven-
katanagappa et  al. 2021). In most era studies, the set of 
genotypes evaluated consisted of released varieties. How-
ever, to increase the accuracy of the evaluation, breeding 
lines or external cultivars were sometimes included in the 
era panel, as control genotypes (Peng et al. 2000; Tabien 
et  al. 2008). More than half the era studies were con-
ducted exclusively on experiment stations with a maxi-
mum of two sites (Peng et  al. 2000; Tabien et  al. 2008; 
Venkatanagappa et al. 2021). The replication of trials over 
time (years or crop seasons) varied from a single trial 
(Peng et  al. 2000) to four trial fields (Souza et  al. 2007; 
Venkatanagappa et al. 2021).

Twenty of the 25 studies focusing on yield used his-
torical data. Most studies (60%) focused on the irrigated 
ecosystem, with fewer dealing with rainfed, upland, salin-
ity-prone, or drought-prone environments. The histori-
cal studies included populations of 62 (Breseghello et al. 
1999) to 15,286 (Juma et  al. 2021) genotypes. Fifteen 
studies used advanced lines but also included released 
varieties as control genotypes to increase the connectivity 
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between the various trials. Four studies used early mate-
rials to evaluate the performance of recurrent selection 
and its ability to generate successful lines (Barros et  al. 
2018; Morais Júnior et  al. 2015, 2017; Pereira de Castro 
et  al. 2023). The historical trials were conducted mostly 
on-station, in standard growing conditions, and most 
were multi-environment trials. The time window covered 

by the historical studies ranged from 4 to 55 years, with 
13 of the 20 studies covering periods of 10 to 20 years.

Important Findings
Large Genetic Gains Can be Achieved for Grain Yield
The estimates of the genetic gain achieved in the 25 stud-
ies on grain yield were highly variable (Table 4), ranging 
from 1.5 kg/ha/year (Khanna et al. 2023) to a maximum 

Fig. 4 Summary of the literature on genetic gain in rice. Panel (A) shows the number of studies published each year. Panel (B) indicates 
the distribution by country of the studies (LAC: Latin America and the Caribbean). Panel (C) details the number of genotypes, the number of trials, 
and the period used for the various estimates of the rate of genetic gain. In grey are the historical studies, and in red are the era studies. Panel 
(D) indicates the distribution of types of material between era and historical studies. More information on the studies summarized in this figure 
is available in Tables S1 and S2
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of 167.6  kg/ha/year (Silva Júnior et  al. 2021) over all 
ecosystems. This wide variation is the consequence of 
several interacting factors: the type of study (era vs. his-
torical trials), the genetic material (advanced vs. early-
stage material), the period studied, the statistical model, 
and agronomic management. This makes it difficult to 
identify the determinants of larger genetic gains directly 
from these studies. However, a few interesting points can 
be highlighted. First, the upper limits for these estimates 
demonstrate the potential of rice breeding programs to 
achieve large genetic gains for yield in different ecosys-
tems. Indeed, a rate of genetic gain exceeding 1.5% was 
reported in studies in all the major ecosystems. Second, 
these studies focused on “short” periods (i.e., less than 
20  years), which are more relevant for the monitoring 
of breeding programs as the estimates reflect breeding 
decisions. The authors tried to increase the accuracy 
of estimates of genetic gain by splitting the genotypes 
into maturity groups or by region of origin or breeding 
phase, as the numbers of datasets analyzed in histori-
cal studies were large (from 10 to more than 500). This 
analytical approach provides a better assessment of the 
program’s performance as a function of its breeding 
objectives. Third, the four studies based on the evalua-
tion of early material were among those in which genetic 
gain was greatest (Barros et al. 2018; Morais Júnior et al. 
2015, 2017; Pereira de Castro et  al. 2023). For example, 
for a recurrent selection scheme based on the recycling 
of  S1:2 families (Morais Júnior et al. 2017), the mean gain 
over three breeding cycles was 153  kg/ha/year (1.98%). 
These results provide support for the notion that shorter 

breeding cycles contribute to a higher rate of genetic 
gain.

A slowing of Genetic Gain for Yield in Recent Years?
Most of the studies concluded that yield had progressed 
significantly over a long period, but a closer look at 
the different phases of the breeding programs high-
lighted a mixed trend in genetic gain for grain yield. 
For example, a stagnation in the rate of genetic gain 
was observed recently for the IRRI irrigated rice pro-
gram (Juma et  al. 2021; Venkatanagappa et  al. 2021). 
Peng et  al. (2000) evaluated varieties originated from 
the program (between 1966 and 1995) and found an 

Table 3 Set of studies on genetic gain in rice described in this article

a Some studies reported estimates of genetic gain for several ecosystems

Study type Ecosystem Traits No. of  studiesa References

Historical Irrigated Grain yield 10 Biswas et al. (2023), Breseghello et al. (1999), DoVale et al. 
(2012), Juma et al. (2021), Khanna et al. (2022), Kumar et al. 
(2021), Rahman et al. (2023), Rangel et al. (2000), Silva 
Júnior et al. (2021), Soares et al. (2005)

Grain yield, days to flowering, plant height 4 da Costa et al. (2021), dos Reis et al. (2015), Morais Júnior 
et al. (2017), Streck et al. (2018b)

Grain quality 1 Pinson et al. (2012)

Upland Grain yield, days to flowering, plant height 4 Barros et al. (2018), Breseghello et al. (2011), Morais Júnior 
et al. (2015), Pereira de Castro et al. (2023)

Disease resistance 1 Alves et al. (2020)

Grain yield 1 Soares et al. (1999)

Drought prone Grain yield 2 Khanna et al. (2022), Kumar et al. (2021)

Salinity prone Grain yield 1 Khanna et al. (2023)

Era Irrigated Grain yield 3 Peng et al. (2000), Samonte et al. (2016), Venkatanagappa 
et al. (2021)

Grain quality 2 Cruz et al. (2021), Streck et al. (2018a)

Grain yield, days to flowering, plant height 1 Tabien et al. (2008)

Upland Grain yield, days to flowering, plant height 1 Souza et al. (2007)

Table 4 Rate of realized genetic gain for grain yield for each 
ecosystem according to the type of study (era or historical). More 
detailed information on the studies summarized here is provided 
in supplemental file 1: Table S1

a Calculated values

Study type Ecosystem No. of 
estimated 
values

Genetic gain (kg/ha/
year)

Meana Min Max

Historical Irrigated 23 40.3 6.7 167.6

Upland 7 47.3 19.1 78.8

Salinity prone 4 5.9 1.5 14.0

Drought prone 3 12.9 2.3 27.0

Era Irrigated 7 43.4 17.4 81.0

Upland 2 21.1 14.6 27.6
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annual gain of 75 to 81  kg/ha/year, equivalent to an 
annual increase of 1%. Using an era study including 
more recent material from the same program (1966 
– 2016), Venkatanagappa et  al. (2021) estimated the 
annual gain at 17.35  kg/ha/year to 20.23  kg/ha/year, 
corresponding to an annual gain of only 0.41% to 0.55%. 
Using historical data from the IRRI irrigated rice pro-
gram, Juma et  al. (2021) observed a similar slowing of 
the rate of genetic gain for yield. Indeed, the estimate 
was 8.75 kg/ha/year (0.23%) for the period 1964–2014, 
with the last ten years presenting a plateau. Using his-
torical data from India, Kumar et al. (2021) reported a 
decrease in the performance of advanced material dur-
ing the last two years of their study in irrigated and 
severe stress conditions. A similar trend was observed 
for the irrigated rice breeding program in Minas Ger-
ais, Brazil. According to da Costa et al. (2021), a decel-
eration in genetic gain for yield was observed, with 
values decreasing from 88.66 kg/ha/year between 1993 
– 1999 to 22.69 kg/ha/year between 2010 – 2019. This 
corresponds to annual rates of gain of 1.62% and 0.42%, 
respectively. Also, in Brazil, Breseghello et  al. (2021) 
reported a non-significant trend towards a slowing of 
the rate of genetic gain from 1982 to 2021. Several fac-
tors can contribute to a slowing of the rate of genetic 
gain for yield. Indeed, breeding programs evolve, with 
changes to the breeding objectives or to the popula-
tion, with the introduction of new material. These fac-
tors may greatly affect the realized genetic gain. This 
situation is illustrated by the new plant-type approach 
developed at IRRI during the early 1990s (Peng et  al. 
1994, 2004). Productivity was lower in the first gen-
eration than in improved varieties (Peng et  al. 2008), 
but the second generation was more successful, with 
better characteristics, including a higher grain yield. 
More generally, changes in market needs or the occur-
rence of major diseases or abiotic stresses can lead to 
changes in breeding objectives. A study by Breseghello 
et  al. (2011) suggested that blast susceptibility played 
an important role in limiting the development of high-
yielding genotypes due to the avoidance of crosses 
between high-yielding but blast-susceptible genotypes. 
There may have been a significant trade-off between 
the intensification of selection pressure for grain qual-
ity-related traits (milling, appearance, cooking, and 
nutritional qualities) over the last four decades and the 
realized genetic gain in grain yield (Barros et al. 2018; 
Breseghello et  al. 2011; Silva Júnior et  al. 2021; Streck 
et al. 2018b). This slowdown of the rate of genetic gain 
cannot be generalized to all studies. Indeed, some stud-
ies reported a steady increase in genetic gain for grain 
yield (Khanna et al. 2022; Pereira de Castro et al. 2023; 
Samonte et al. 2016; Streck et al. 2018b). This highlights 

the importance of long-term evaluation of genetic gain 
in relation to breeding strategies.

Other Traits Also Play an Important Role
Genetic gain for other agronomically important traits 
and the effects of these traits on grain yield gain are 
increasingly being studied to ensure continual long-term 
genetic gain in grain yield. Indeed, breeding decisions are 
not exclusively based on grain yield but also depend on 
several other important agronomic traits. Efforts are now 
being made in rice breeding programs to understand the 
impact of breeding decisions on these traits, particularly 
as relates to grain yield, through dissection of the driv-
ers of genetic gain in grain yield, with the aim of better 
guiding the improvement of other traits to ensure greater 
gains in grain yield. Additional file  1: Table  S2 summa-
rizes the information for the studies reporting genetic 
gain for traits other than yield.

Plant Height Yield potential is related to plant height, 
as shorter plants are less likely to suffer lodging and yield 
loss. The genetic improvement of rice has resulted in a 
significant decrease in plant height since the beginning 
of the Green Revolution. This decrease has been achieved 
mostly through the use of dwarfing genes (Liu et al. 2018; 
Peng and Khushg 2003; Siddiq and Vemireddy 2021), and 
has led to the design of a new plant architecture, with a 
transition from traditional tall varieties with moderate 
productivity (about 2 t  ha−1) to highly productive semi-
dwarf varieties (potential yield of 9 to 11 t  ha−1). Most 
studies focusing on genetic gain in plant height reported 
a reduction in this trait (Barros et  al. 2018; Breseghello 
et al. 2011; da Costa et al. 2021; Morais Júnior et al. 2015; 
Pereira de Castro et  al. 2023; Souza et  al. 2007; Streck 
et al. 2018b; Tabien et al. 2008). For example, Tabien et al. 
(2008) reported the most important decrease with up to 
-1.29 cm  yr−1 for their varieties released for irrigated eco-
systems between 1944 and 1992. In upland ecosystem, 
Souza et  al. (2007) found that early-maturing material 
decreased in height by -0.49  cm   yr−1 and late-maturing 
material by -0.71 cm  yr−1 over 50 years. This represented a 
decrease of 29 cm in the early-maturing group and 42 cm 
in the late-maturing group. Using historical data from 
the upland rice breeding program in Brazil, Breseghello 
et  al. (2011) estimated an annual decrease in height of 
13 cm over 25 years (-0.52 cm  yr−1). Similarly, Streck et al. 
(2018b) estimated that plant height decreased by 14 cm 
between 1972 and 2016 (-0.32 cm   yr−1). For the studies 
based on early-generation evaluation, a reduction of plant 
height was also observed even after few cycles of breeding: 
-0.63 cm  yr−1 (Pereira de Castro et al. 2023), -0.43 cm  yr−1 
(Morais Júnior et  al. 2015), -0.11  cm   yr−1 (Barros et  al. 
2018). These estimates of genetic gain for plant height 
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are important to consider for the long-term objectives 
of a breeding program. Indeed, some studies have found 
negative correlations between plant height and grain yield 
(Breseghello et al. 2011; Morais Júnior et al. 2015; Pereira 
de Castro et  al. 2023). This can lead to a limitation in 
genetic gain for yield. While there is no limit to the objec-
tive of increasing grain yield, rice breeding programs do 
not aim for a continuous reduction in plant height. Rice 
breeding programs are, therefore, now trying to maintain 
an optimum plant height, with trade-offs for productivity 
and lodging resistance.

Flowering Time Depending on the ecosystem, agrocli-
matic conditions, and cropping system, farmers target 
an optimal maturity period. This is why days to flowering 
(or days to heading) has been a key breeding target for 
several decades. Breeding programs designed to improve 
materials for a wide area typically have multiple maturity 
groups for a given ecosystem, and several studies have 
reported the genetic gain for grain yield according to the 
groups of maturity (Soares et al. 1999; Souza et al. 2007). 
For more intensive irrigated or rainfed systems, different 
advantages have been associated with an earlier flower-
ing date. Indeed, the selection of early-maturing cultivars 
has made it possible to obtain at least two growing sea-
sons per year and to decrease the costs and exposure of 
crops to biotic and abiotic stresses, such as insects, patho-
gens, drought, and typhoons (Atlin and Econopouly 2021; 
Tabien et  al. 2008; Vergara et  al. 1966). In this context, 
Peng et  al. (2000) estimated that the total duration of 
growth for cultivars released between 1974 and 1983 was 
ten days shorter than that for cultivars released before this 
period. Regarding the evaluation of genetic gain for days 
to flowering, several breeding programs have reported the 
genetic trend for this trait in order to evaluate the impact 
of breeding decisions. In an assessment of rice breeding in 
Texas, Tabien et al. (2008) found that the number of days 
to heading over 48  years (1944 to 1992) had decreased 
by 0.21 to 0.24  days per year. A similar gain was esti-
mated in Brazil between 1984 and 2009, with a decrease 
of 0.25  days per year (Breseghello et  al. 2011). Another 
study in Brazil (Streck et  al. 2018b) estimated that time 
to heading decreased by 0.21 days per year between 1972 
and 2016. More recently, it has been noticed that this trait 
has become stable as the breeding population’s average 
maturity reaches the optimum (Breseghello et al. 2011; da 
Costa et al. 2021; Morais Júnior et al. 2015; Streck et al. 
2018b).

Grain Quality The improvement of rice grain quality 
has become an important breeding target in almost all 
rice breeding programs since the early 1980s. Rice grain 
quality has four main components: milling (e.g. milled 

rice rate, head rice recovery), appearance (e.g. chalkiness, 
grain length-to-width ratio), cooking quality (e.g. amyl-
ose content and gelatinization temperature), and nutri-
tional qualities (e.g. protein content, zinc content) (Cruz 
et al. 2021; Streck et al. 2018a). The grain quality of the 
first high-yielding varieties developed early in the Green 
Revolution was poor (low head rice recovery, high per-
centage of chalky grain, and high amylose content), lead-
ing to efforts being made in different rice programs to 
improve the appearance, cooking, and eating qualities of 
rice varieties (Khush and Virk 2005; Mackill and Khush 
2018). Despite the importance of these traits, very few 
breeding programs have evaluated genetic gains in grain 
quality. For cooking and eating quality traits, no signifi-
cant increase in amylose content (0.007%) or gelatiniza-
tion temperature (0.025) was observed from 1999 to 2015 
in Latin America and the Caribbean (Cruz et  al. 2021). 
However, significant genetic gain has been reported for 
appearance quality. In Brazil during the period 1972 – 
2016, smaller decreases in the percentage of chalky grain 
and chalkiness area were estimated with annual gains of 
-0.03% and -0.14%, respectively (Streck et  al. 2018a). In 
addition to these assessments of the genetic gain for grain 
quality related traits, other studies on the genetic progress 
have been reported on a national scale. In a study in China 
from nationally released varieties from 1990 to 2020, 
Zhou et al. (2021) reported a significant decrease in amyl-
ose content of 0.31% per year and an increase in gelatini-
zation temperature expressed as an alkali-spreading value 
of 0.12 per year but no significant genetic progress has 
been estimated for protein content. A significant decrease 
of 3.15%  yr−1 in the percentage of chalky grain, associated 
with a slight decrease of 0.52%  yr−1 in the chalkiness area, 
has been estimated. In another example in China, Feng 
et al. (2017) showed contrasted results in terms of genetic 
progress for grain quality traits over the period 2000 – 
2014. For the hybrids, significant progress was made for 
the degree of chalkiness, but no improvement in head 
rice rate was reported. The authors concluded that more 
efforts are needed to improve grain quality in the future.

Statistical Methods Have a Strong Influence
The various studies made use of a wide range of statis-
tical approaches, mostly based on linear regression with 
one-step or two-step mixed model analysis (Additional 
file 1: Tables S1 and S2). However, only Silva Júnior et al. 
(2021) used two different methods, identified as the Ven-
kosky and Breseghello methods, on the same dataset. 
This study analyzed data from value for cultivation and 
use trials conducted in Minas Gerais over a period of 
23 years. The estimated gains in the three municipalities, 
calculated by the Venkovsky method, were 53.1  kg/ha/
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year, 8.68  kg/ha/year, and 6.65  kg/ha/year, correspond-
ing to gains of 1.46%, 0.14%, and 0.11%, respectively. By 
contrast, Breseghello’s method based on linear regression 
gave higher absolute gain values. Gains were estimated 
at 167.62  kg/ha/year, 57.88  kg/ha/year and 93.93  kg/ha/
year, corresponding to 0.23%, 0.04% and 0.10%, respec-
tively. This large difference between these two methods 
of estimation highlights the important contribution of 
the method to the variability of genetic gain. In a simula-
tion study, Rutkoski, (2019b) evaluated five methods for 
estimating realized genetic gain based on their precision, 
efficiency, correlation between true annual mean breed-
ing values and predicted annual mean breeding values, 
and absolute difference between the true and estimated 
realized genetic gain (error). Significant differences were 
found between methods. Estimated rates of realized 
genetic gain ranged from 0.19 to 0.32 in genetic stand-
ard deviation units. The error of the various methods was 
also highly variable and was considered an important fac-
tor when comparing the efficiency of different methods 
because error indicates how close the estimates are to 
the true values of realized genetic gain. Based on these 
evaluation criteria, the best methods for the accurate 
estimation of genetic gain were the estimated breeding 
value, control population, and era trial method. The EBV 
method was best in terms of performance, feasibility, 
and cost, but it requires the application of a good control 
strategy in trials and the keeping of complete pedigree 
records right from the start of the breeding program. 
However, no single analytical method is suitable for all 
situations. The selection of a statistical method should 
be guided by resources and the structure of the available 
breeding program data (Covarrubias-Pazaran 2020; Rut-
koski 2019a).

Current Limitations
Thus, as shown above, the literature on genetic gain 
in rice is rich. Despite this diversity, certain aspects of 
genetic gain assessment by rice breeding programs have 
received little attention. Below, we present the elements 
that we consider potentially important for obtaining 
more accurate estimates of genetic gain and facilitating 
comparisons between studies.

Benchmark for Comparing Gains (Absolute vs. Relative Gain)
Genetic gain is often reported in terms of phenotypic 
units per cycle or year (absolute) or as a percentage rela-
tive to a baseline. The rate of genetic gain per year is 
considered the best estimate for comparing breeding 
strategies, which may differ in terms of the number of 
years per cycle (Hallauer et al. 2010). However, this rela-
tive gain depends strongly on the baseline and, therefore, 
on the estimation method. Indeed, as highlighted here, 

authors use different baselines to calculate the relative 
genetic gain and do not even specify the baseline used in 
some cases (dos Reis et al. 2015; Tabien et al. 2008). Rela-
tive genetic gain, as a percentage, is generally estimated 
as the ratio of the slope to the intercept, with the inter-
cept corresponding to the start of the breeding program 
(Breseghello et al. 2011; da Costa et al. 2021; Silva Júnior 
et al. 2021). However, in some cases, it is estimated rela-
tive to the performance of the first variety released (Peng 
et  al. 2000). Caution is required when drawing conclu-
sions about the results for relative genetic gain because 
the results of the calculation depend strongly on the base-
line used. The use of more recent varieties as a baseline 
results in lower relative genetic gain values than the use 
of older varieties (Ahrends et  al. 2018). The benchmark 
issue also arises in studies providing multiple estimates 
of gain by ecosystem, population type, or year. Inverse 
trends are often observed for absolute and relative gain 
values (Kumar et  al. 2021; Peng et  al. 2000; Venkatana-
gappa et al. 2021), clearly demonstrating the difficulty of 
selecting an appropriate genetic gain reference for com-
parison between studies. We, therefore, recommend that 
readers pay attention to this limitation when trying to 
compare studies. This is a key aspect for improving the 
accuracy of genetic gain comparisons in terms of perfor-
mance and for the potential optimization of rice breeding 
programs.

Connectivity Between Cycles or Years
The main limitation of using historical data to estimate 
the realized rate of genetic gain, whether for grain yield 
or other traits of interest, is the lack of connectivity 
between experiments. Most studies based on historical 
data incorporate controls into the evaluation process, but 
detailed information about the control strategy is often 
lacking. A variable control strategy, in which the controls 
are progressively replaced with newly released cultivars 
over time, is used in almost all historical studies. How-
ever, the frequency and intensity of control replacement 
are not specified in most studies (Breseghello et al. 2011; 
dos Reis et al. 2015; DoVale et al. 2012; Juma et al. 2021; 
Morais Júnior et al. 2015; Silva Júnior et al. 2021; Soares 
et al. 1999; Streck et al. 2018b). Conversely, a few authors 
have described well the connectivity of the historical data 
used through a variable control strategy (renewal fre-
quency of 10 years on average). On average, five controls 
(common cultivars) in each experiment were evaluated 
in consecutive years and eventually replaced by recently 
released cultivars and/or cultivars from other collabora-
tors’ programs (da Costa et al. 2021). Khanna et al. (2022) 
also highlighted the connectivity of their dataset through 
the use of long-term checks, the re-evaluation of superior 
genotypes in successive years, and the incorporation of 
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the relationship matrix based on pedigree into the model. 
This second strategy is almost never used to control for 
connectivity. Four of the 31 studies presented here used 
pedigree information to increase connectivity to obtain 
better estimates of genetic value (Biswas et al. 2023; Juma 
et  al. 2021; Khanna et  al. 2022, 2023). Connectivity is 
important for the accuracy of genetic gain estimates, and 
taking this factor into account can improve the separa-
tion of genetic and non-genetic effects (environment, 
agronomic practice, etc.).

Coverage of Target Environments
The number of environments covered by the study (sea-
sons, years, and/or locations) is also a key factor for 
obtaining relevant estimates. Coverage of the target envi-
ronments is greater with historical data, which are mostly 
obtained in multi-environment trials. Discussions about 
target environment coverage, therefore, arise principally 
in the context of era studies. Indeed, the use of a repli-
cated design for the evaluation of cultivars released over 
a period of time improves the monitoring of genotype-
by-environment interactions, thereby providing more 
accurate estimates. However, most of the era studies 
reviewed here covered a relatively small number of envi-
ronments. They were frequently performed at single-site 
stations over one to four cropping seasons (Peng et  al. 
2000; Souza et  al. 2007; Tabien et  al. 2008). Results for 
similar numbers of trials have been reported for other 
cereals (Duvick 1984; Hanif et al. 2022; Xiao et al. 2012; 
Yadav et  al. 2021). It is important to conduct era trials 
across a well-defined target population of environments 
(TPEs) over many years to obtain a more accurate eval-
uation of the genetic gain of varieties, but this is both 
resource- and labor-intensive, limiting the possibilities 
for such an approach, particularly in conditions in which 
research funds are limiting. This limitation decreases the 
attractiveness of this method relative to historical data, 
for which no such additional investment is required. 
Nevertheless, the TPE coverage of era trials can be 
improved by adapting one of the following strategy tri-
als, as demonstrated in other crop species. In sunflower, 
the genetic progress in oil yield was estimated from 122 
on-farm trials of commercial and near-commercial sun-
flower hybrids across 32 sites in central Argentina (de la 
Vega et  al. 2007). Moreover, on-farm trials should pro-
vide a more accurate assessment of genetic gain in farm-
ers’ fields because, to our knowledge, no studies have 
been performed to assess the on-farm genetic gain for 
rice grain.

Non‑genetic Trend Evaluation
Both the genetic improvement of newly released varie-
ties and agronomic practices (fertilizer, plant protection, 

tillage, weed control) may contribute to increases in 
grain yields. In experimental studies, the effect of the 
environment or, more generally, non-genetic effects may 
bias the estimation of the genetic effect. Most of the rice 
studies presented here addressed this issue implicitly by 
providing estimates of genetic gain incorporating the 
contributions of these major factors. Only two of the 
studies considered reported non-genetic trends explicitly 
(Kumar et  al. 2021; Rahman et  al. 2023). In their study, 
Kumar et  al. (2021) evaluated the proportion of grain 
yield increase due to genetic factors in a rainfed envi-
ronment prone to drought. Their findings indicated the 
yield increase was primarily due to genetic factors rather 
than non-genetic factors, regardless of the stress level. 
For Rahman et al. (2023), a large proportion of the gain 
in grain yield in Bangladesh over the last 50  years was 
due to non-genetic factors. Therefore, it is important to 
determine the genetic contribution of newly released 
varieties to the total yield trend, to gain a better appre-
ciation of the contribution of breeding to the improve-
ment of production. Several studies on cereals, such as 
wheat, maize, barley, oat, and on other crops (sugar beet, 
ryegrass, rapeseed, etc.) have dissected the genetic and 
environmental contributions to yield trends (Bornhofen 
et al. 2018; Laidig et al. 2014; Mackay et al. 2011; Piepho 
et  al. 2014; Schuster 1997). Some of these studies have 
pointed out the importance of considering the effect of 
diseases (the breakdown of disease resistance for older 
genotypes), which may bias the estimation of long-term 
genetic and non-genetic effects, potentially leading to 
an overestimation of genetic trends based on long-term 
yield trial data (Mackay et al. 2011; Piepho et al. 2014).

Sampling of Genetic Variance
The method for sampling the genotypes to be evaluated 
was not explicitly explained in most of the era studies. 
The set of genotypes used appeared to represent all the 
varieties developed by the program (provided that there 
is enough viable seed stock available). This would also 
explain the size of the era panels, which were relatively 
small (less than 50 genotypes for seven out of nine era 
studies) and spanning a period of up to 60 years of selec-
tion. The management and conservation of germplasm 
in public sector breeding programs is challenging. Nev-
ertheless, a few studies have described rationales for the 
sample of cultivars for evaluation. In the study by Peng 
et  al. (2000), the 12 genotypes evaluated in the era trial 
included 10 released cultivars selected on the basis of the 
cultivated area they occupied during different historical 
periods. The other two genotypes were control breeding 
lines included based on their high performance in yield 
trials. The rationale underlying the composition of the 
era panel was also reported in other genetic gain studies 
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in wheat and maize. Masuka et  al. (2017) used an era 
panel composed of maize hybrids selected on the basis 
of their superior performance in regional trials. The era 
panel may be selected based on the popularity of varie-
ties released by the breeding program. In this case, how-
ever, due to the lack of adaptation of certain varieties by 
farmers, the final panel may be too small for an accurate 
assessment of genetic gain. However, the sampling of the 
most advanced lines (including released varieties) of each 
cycle rather than just released varieties is recommended 
to increase the representativeness of the genetic material 
included in the program, thereby improving the accuracy 
of genetic gain estimates.

Rice Hybrids
There is a significant lack of assessment of genetic gain 
achieved by hybrid rice breeding programs. A single 
study on genetic gain incorporating hybrids was con-
ducted by Venkatanagappa et al. (2021). The study used 
five hybrid varieties in combination with 39 inbred vari-
eties, making it challenging to evaluate the impact of 
hybrids on genetic gain. Apart from this study, two other 
studies have reported the evaluation of genetic progress 
in hybrids. In India, Muralidharan et al. (2022), reported 
that the evolution of grain yield in F1 hybrids evaluated 
in irrigated ecosystems with four maturity groups did not 
show any significant progress over a period of 32  years 
of hybrid breeding. They concluded that F1 hybrids only 
resulted in a 10% increase in grain yield compared to 
inbred cultivars in less than 20% of the testing locations. 
According to a study by Zhu et al. (2016) in China, five 
hybrid varieties were evaluated in combination with nine 
inbred varieties from several companies. In this study, 
the hybrids were more recent compared to inbred varie-
ties, but the authors did not draw any conclusions on the 
contribution of the hybrids to the grain yield progress. It 
is, therefore, challenging to identify a pattern of genetic 
gain on grain yield or compare the genetic gains achieved 
in rice hybrid breeding due to the limited available data 
on the subject. In the upcoming years, there should be 
a greater effort in reporting the realized genetic gain on 
hybrids by the rice hybrid breeding programs to evaluate 
the impact of this technology.

Gain Per Unit Cost
The efficiency of plant breeding programs is usually eval-
uated by estimating the rate of genetic gain per unit of 
time. However, the breeders’ ability to maximize the rate 
of genetic gain is constrained by limited resources and 
time. Plant breeders must, therefore, take into account 
multiple constraints if they are to maximize genetic gain, 
and the ideal trade-off between genetic gain per unit 
cost and the maximal rate of genetic gain is not always 

obvious. Most of the studies reviewed here drew con-
clusions about the efficiency of their programs based on 
positive rates of genetic gain, but none actually consid-
ered costs in the analysis. This would not, in any case, be 
feasible for studies covering a very long period or com-
bining information from several programs. However, 
the integration of costs is relevant when the objective is 
to evaluate a specific breeding program or the impact 
of new breeding techniques (Barros et  al. 2018; Morais 
Júnior et al. 2017). For this reason, cost integration is cur-
rently performed mostly in simulation studies. Atlin and 
Econopouly (2021) showed that despite the increase in 
gain with population size and selection intensity, gains 
were optimal, in terms of the cost per unit gain, for rel-
atively small population sizes and moderate selection 
intensities. We advise readers to consider the cost per 
unit genetic gain when possible, as a means of assessing 
the efficiency of their programs or for comparing alterna-
tive breeding strategies, because higher rates of genetic 
gain may not necessarily be economically efficient.

Implications for Breeding
Recommendations for Increasing Genetic Gain
As indicated above, the rate of genetic gain varies consid-
erably between studies, and, with a mean value of 0.92%, 
there is room for improvement. Each breeding program 
has its specific features, but they are all based on the 
same main components. Rutkoski (2019a) presented the 
hierarchy of components required to achieve the targeted 
genetic gains (Fig. 5). Each component can be improved, 
ultimately increasing the rate of genetic gain for target 
traits. Below, we highlight the relevant breeding strategy 
elements in the context of rice breeding.

Clear Objectives
An absence of clear objectives (or ideotypes) was iden-
tified as a major driver of low genetic gain in the ini-
tial phases of establishment in several rice breeding 
programs (Breseghello et  al. 2011; da Costa et  al. 2021; 
Streck et  al. 2018b). The objectives of a breeding pro-
gram are usually defined by the breeders and not explic-
itly described. The reference ideotype is often defined 
based on the most popular variety in a given market. This 
approach has led to significant progress, but the corre-
spondence of the products of the program and the needs 
of farmers and end-users may be limited, due to changes 
in the context over time. The expectations of the sector 
(grain quality, earliness, etc.) may change, as may agro-
climatic conditions (pathogens, abiotic stress). This issue 
can be addressed, to achieve the desired level of genetic 
gain for the target traits, by developing a product concept 
based on the needs of the rice sector and translating it 
into breeding objectives. The product concept describes 
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the target attributes of the products (varieties) for a spe-
cific sector of the market on which breeding efforts are 
focused (Cobb et al. 2019). One effective way to use this 
information in breeding programs involves defining an 
index of selection with appropriate economic weights, 
because target traits may differ in terms of their genetic 
variance, heritability or economic importance (Hazel 
et al. 1994).

Data Management
The selection of the best candidates is based essentially 
on pedigree information and data collected during the 
phenotyping stages. Phenotyping represents a large part 
of the investment in breeding programs, and ensuring 
the quality and traceability of the pedigree and pheno-
typic data is challenging in all breeding programs. Data 
management systems have been developed to assist 
breeders with these tasks. However, few public breeding 
programs currently use these tools, despite the crucial 
nature of data quality for breeding processes, because 
errors and data loss decrease selection accuracy, thereby 
also decreasing genetic gain (Rutkoski 2019a). The use of 
tools for digitized data collection, and for the manage-
ment and sharing of breeding data is essential, to ensure 
high data quality, selection accuracy, and improvements 
in genetic gain (Breseghello et  al. 2021). Moreover, if 
well managed, historical datasets from breeding pro-
grams (phenotypic, genotypic, and pedigree data) can be 
repurposed to address other components of the breeding 

strategy. For example, data from several years of multi-
environment trials can be used to investigate genotype-
by-environment interactions, making it possible to 
improve the definition of the target populations of envi-
ronments (Breseghello et  al. 2021; Covarrubias-Pazaran 
2020). Historical data can also facilitate the implementa-
tion of genomic selection, as pedigree and marker data 
can initially be combined to improve prediction accuracy 
(Legarra et al. 2014).

Recurrent Selection Based on Elite Material
As a model species and a major crop, rice has been 
intensively investigated, to characterize its genetic diver-
sity (Wang et  al. 2018) and the genetic architecture of 
its agronomic traits (Miura et  al. 2011). Several dozen 
genes or QTLs with large effects on phenotype have 
been detected, particularly for biotic stress resistance. 
This fascination with QTLs has blurred the line between 
breeding and pre-breeding stages. Indeed, in relation to 
the concept of “breeding by design” (Peleman and van 
der Voort 2003), approaches have been developed to 
“exploit grain yield genes” in breeding programs (Saka-
moto and Matsuoka 2008; Xing and Zhang 2010). Even 
though yield components have been well characterized 
in rice, little progress has been made with this approach, 
as yield is a quantitative trait highly prone to genotype-
by-environment interactions. For the consistent improve-
ment of quantitative traits, such as yield, there needs to 
be a clear separation between pre-breeding and breeding. 

Fig. 5 Hierarchy of the components of a breeding program for achieving genetic gain. The elements at the base of the pyramid are 
the fundamental components on which the program is based to deliver genetic gain. The elements at the top of the pyramid are advanced 
components allowing optimization of the program (adapted from Rutkoski 2019a)
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Pre-breeding activities should focus on the introgres-
sion of favorable alleles into the elite germplasm. This 
enhancement of the germplasm may be performed 
through the deployment of QTLs/alleles/haplotypes in 
the elite gene pool or, in some cases, in the final prod-
uct, by introgression, without contaminating the elite 
gene pool with parents of lower breeding value (Cobb 
et  al. 2019). A good characterization of the elite germ-
plasm is therefore required to determine its variability 
and the frequency of the favorable alleles for the major 
genes. This has been done, for example, at IRRI, where 
elite lines representing the diversity of the breeding pro-
grams were selected based on breeding values for grain 
yield and characterized for resistance to major diseases 
or stresses (Juma et  al. 2021; Khanna et  al. 2022). Dur-
ing breeding activities, population improvement through 
recurrent selection should be implemented, to increase 
the frequency of favorable alleles for quantitative traits, 
to ensure long-term genetic gain. The effectiveness of 
closed recurrent selection strategies for achieving genetic 
gain, maintaining genetic variability, and increasing the 
potential for selection of superior lines was highlighted in 
Embrapa’s irrigated and upland rice breeding programs 
(Barros et al. 2018; Breseghello et al. 2009; Morais Júnior 
et al. 2015, 2017).

Shortening the Breeding Cycle
Reducing the time required to complete a breeding cycle 
(recycling advanced material as parents) is one of the 
most efficient methods for increasing the rate of genetic 
gain (Atlin and Econopouly 2021; Cobb et al. 2019). Sev-
eral techniques, such as off-season nurseries, early test-
ing, and rapid generation advances (RGA) have been used 
over the years to reduce breeding cycle length in rice 
breeding programs. Depending on the objective and con-
straints of the breeding program, one or more of these 
techniques can be used to reduce the length of the breed-
ing cycle. Typically, without optimization, the breed-
ing cycle lasts eight to 10 years. The integration of these 
techniques can significantly reduce that duration. For 
example with RGA, breeders have been able to reduce 
breeding cycle length by at least two years (Collard et al. 
2017, 2019; Lenaerts et  al. 2018; Tanaka et  al. 2016). 
When RGA is optimized, line fixation from F2 to F6 takes 
only one year. More recently, genomic selection (GS) 
has emerged as the most powerful tool yet for reducing 
cycle length. GS is based on the use of a model to predict 
genetic value from genome-wide marker loci, followed by 
selection based on the predicted values (Meuwissen et al. 
2001). With genomic selection, the breeding cycle may be 
reduced to almost a year, as the only requirement for pre-
dicting the performance of selection candidates is geno-
typing data. In rice, GS has been increasingly explored in 

breeding programs over the last decade, which has ren-
dered its application more efficient with respect to selec-
tion objectives (Bartholomé et al. 2022). As an advanced 
tool, genomic selection should be considered in breeding 
programs in which all the other components are already 
in place (Fig. 5).

Use of Computer Simulations for Optimizing Breeding 
Strategies
The performance of a breeding program or of the integra-
tion of new breeding techniques is commonly assessed by 
a posteriori estimation of the realized genetic gain. How-
ever, given the complexity of breeding schemes and the 
cost of implementing multiple experiments, computer 
simulations are increasingly used for rapid, cost-effective 
evaluations of a wide range of scenarios (Sun et al. 2011). 
Here, we discuss the use of genetic gain and the useful-
ness of computer simulation in the design and strategic 
optimization of breeding programs. Computer simula-
tion models are of two types: deterministic simulation 
and stochastic simulation models. Deterministic simula-
tion uses equations based on quantitative genetics princi-
ples to predict the response to selection from knowledge 
of population characteristics (selection intensity, her-
itability, selection accuracy). However, it is difficult to 
incorporate certain breeding operations, including cross-
ing design, generation advancement, use of new genet-
ics. Deterministic simulations are therefore complex to 
implement in plant breeding and are more approximate 
than stochastic stimulation. Few studies in plant breeding 
are based on deterministic simulation. One example is 
the development of deterministic modeling based on the 
breeder’s equation, including operating costs, to guide 
breeding pipeline design (Atlin and Econopouly 2021). 
Simulation results have shown that decreasing the length 
of the breeding cycle is a more cost-effective method of 
increasing genetic gain than increasing population size 
and selection intensity.

Stochastic simulations generate genotypic and phe-
notypic data for each simulated individual, which are 
then used in the traditional steps of a breeding program 
(crossing, evaluation and selection) (Li et al. 2012; Phocas 
2011). Simulation tools can be used in prospective stud-
ies: i) to evaluate the performance of breeding strate-
gies in the medium and long term; ii) to compare several 
strategies and to guide decisions; iii) to identify the most 
effective breeding strategies. As suggested by their name, 
stochastic simulations have a random component and 
several replicates are, therefore, required, ultimately 
resulting in long computation times (Li et  al. 2012; 
Phocas 2011). Stochastic simulation is also relatively 
simple but requires more computational resources to 
simulate more complex breeding programs. In rice, a few 
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studies have been performed with stochastic simulation, 
to evaluate the efficiency of breeding programs and to 
optimize these programs. With the objective of optimiz-
ing QTL introgression, (Platten and Fritsche-Neto 2022) 
compared three strategies for developing new recipients 
for QTL introgression (background recovery, selective 
sweep, and breeding values) in a short-term rice breed-
ing program through stochastic simulations performed 
with the AlphaSimR package (Gaynor et al. 2021). They 
showed that the breeding value strategy with 10 selected 
parents gave the best trade-off between a lower penalty 
for introducing new QTLs and the fixation of these QTLs 
at a reasonable speed over subsequent breeding cycles, 
based on the population mean performance. Rutkoski 
(2019b) conducted stochastic simulations of eight rice 
breeding scheme scenarios to compare the efficiency of 
five methods for estimating genetic gain in terms of error, 
precision, efficiency, and correlation between true breed-
ing values and predicted breeding values. In this study, 
the effects of trait heritability and breeding cycle length 
on realized genetic gain were also evaluated.

Studies on the optimization of breeding programs 
through computer simulation have been conducted 
in other cereal species, to increase the rate of genetic 
gain for yield. These studies have included comparisons 
between new selection strategies to identify the best 
strategy, evaluation of the efficiency of genomic selec-
tion for increasing the rate of genetic gain, and the use 
of new crossing methods, for example. Simulations have 
also been used to investigate various aspects in genomic 
selection (GS) optimization studies, including the robust-
ness of statistical models, comparisons of alternative GS 
breeding schemes and assessments of the impact of GS 
on long-term genetic gain and inbreeding, resource allo-
cation, training population structure, and the updating 
of models on the maximization of prediction accuracy 
and genetic gain (Bastiaansen et al. 2012; Daetwyler et al. 
2010; Lorenz 2013; Muleta et al. 2019; Müller et al. 2017). 
All these simulations can be adapted to rice, to optimize 
breeding programs and increase the rate of genetic gain 
for yield and other agronomic traits by making use of the 
development of ever more powerful, accessible and easy-
to-use simulation tools, and to simulate complex breed-
ing programs integrating biotechnologies (Gaynor et  al. 
2021; Liu et al. 2019; Pook et al. 2020).

Conclusion
The realized genetic gain achieved by a breeding program 
is a key indicator of its effectiveness. Increasing numbers 
of studies over the last decade have focused on genetic 
gain for grain yield and other important agronomic traits 
in rice breeding programs, highlighting the interest of 
rice breeders in monitoring the impact of the decisions 

more effectively. Genetic gain for grain yield varied con-
siderably between studies. Estimates are difficult to com-
pare directly between studies, due to differences in the 
estimation method, source of data, populations evalu-
ated or environmental factors. However, it is clear that 
significant rates of genetic gain can be achieved (greater 
than 1.5%). Based on a review of the various studies, we 
highlight the main points on which breeding programs 
should focus: i) defining clear breeding objectives based 
on a product concept, ii) use of a data management sys-
tem to reduce errors and increase the reuse of data, iii) 
clear separation of breeding and pre-breeding activities 
to focus on the improvement of elite germplasm and iv) 
achieving the right balance between cycle length and 
evaluation steps. The accuracy of genetic gain estimates 
was most commonly limited by the restricted use of pedi-
gree data, a lack of evaluation of non-genetic trends, or 
a lack of information regarding the statistical method 
used for estimation. Improving these elements in future 
studies should be straightforward, thereby facilitating 
comparisons.
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