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Abstract
Root system architecture plays a crucial role in nutrient and water absorption during rice production. Genetic 
improvement of the rice root system requires elucidating its genetic control. Genome-wide association studies 
(GWASs) have identified genomic regions responsible for rice root phenotypes. However, candidate gene 
prioritization around the peak region often suffers from low statistical power and resolution. Transcriptomics 
enables other statistical mappings, such as transcriptome-wide association study (TWAS) and expression GWAS 
(eGWAS), which improve candidate gene identification by leveraging the natural variation of the expression 
profiles. To explore the genes responsible for root phenotypes, we conducted GWAS, TWAS, and eGWAS for 12 root 
phenotypes in 57 rice accessions using 427,751 single nucleotide polymorphisms (SNPs) and the expression profiles 
of 16,901 genes expressed in the roots. The GWAS identified three significant peaks, of which the most significant 
peak responsible for seven root phenotypes (crown root length, crown root surface area, number of crown root 
tips, lateral root length, lateral root surface area, lateral root volume, and number of lateral root tips) was detected 
at 6,199,732 bp on chromosome 8. In the most significant GWAS peak region, OsENT1 was prioritized as the most 
plausible candidate gene because its expression profile was strongly negatively correlated with the seven root 
phenotypes. In addition to OsENT1, OsEXPA31, OsSPL14, OsDEP1, and OsDEC1 were identified as candidate genes 
responsible for root phenotypes using TWAS. Furthermore, a cis-eGWAS peak SNP was detected for OsDjA6, which 
showed the eighth strongest association with lateral root volume in the TWAS. The cis-eGWAS peak SNP for OsDjA6 
was in strong linkage disequilibrium (LD) with a GWAS peak SNP on the same chromosome for lateral root volume 
and in perfect LD with another SNP variant in a putative cis-element at the 518 bp upstream of the gene. These 
candidate genes provide new insights into the molecular breeding of root system architecture.
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Introduction
Rice (Oryza sativa) is an indispensable staple crop for 
sustainable food production in many Asian countries 
(Muthayya et al. 2014). Since roots play a crucial role in 
absorbing nutrients and water from the soil, root sys-
tem architecture needs to be optimized to improve the 
yield, particularly in unfavorable environments (Gowda 
et al. 2011; Ahmadi et al. 2014). To genetically improve 
the root system architecture, the causal genes for root-
related phenotypes should be identified and character-
ized. Although mutant analysis has identified several 
root-related genes in rice (Mai et al. 2014; Meng et al. 
2019), statistical mapping is also a powerful approach 
for discovering beneficial alleles. Quantitative trait loci 
(QTL) mapping leverages natural variations to discover 
beneficial genes or alleles for molecular breeding, typi-
cally using a biparental population developed from two 
accessions with distinct traits. Some QTL for root phe-
notypes such as root growth angle, root thickness, and 
root length have been identified (Uga et al. 2011, 2012; 
Kitomi et al. 2015; Lou et al. 2015; Li et al. 2015), and two 
of them have been cloned (Uga et al. 2013; Kitomi et al. 
2020). Although the genes and alleles identified in these 
studies have enhanced the molecular breeding of root 
phenotypes, the QTL mapping requires labor-intensive 
and time-consuming crossing, phenotyping, and geno-
typing, starting with biparental population development 
and ending with map-based cloning.

A genome-wide association study (GWAS) can iden-
tify genomic regions for the phenotype of interest using 
a diversity panel sequenced and genotyped for single 
nucleotide polymorphisms (SNPs) or insertion/dele-
tion variants (indels), which is less laborious and time-
consuming than creating a biparental population for 
QTL mapping. Beginning with pioneering studies using 
approximately 200 rice accessions with approximately 
30,000 markers for root phenotypes measured in hydro-
ponic cultivation systems (Clark et al. 2013; Courtois et 
al. 2013), GWAS have been conducted for various root 
phenotypes under different conditions and at different 
growth stages (Biscarini et al. 2016; Phung et al. 2016; 
Bettembourg et al. 2017; Wang et al. 2018a; Zhao et al. 
2018, 2021a, b; To et al. 2019; Xu et al. 2020; Zhang et al. 
2020; Anandan et al. 2022; Teramoto et al. 2022; Xiang 
et al. 2022; Hanlon et al. 2023). However, it is difficult to 
identify small-effect loci for root phenotypes based only 
on GWAS because the sample size is often limited as the 
evaluation of root phenotypes requires digging up the 
root from the soil, which has extremely low throughput.

The transcriptome, an intermediate phenotype that 
reflects complex genetic responses to the ambient envi-
ronment, as well as genetic variation among accessions, 
presents a new opportunity to reveal the genetic control 
of terminal and/or fitness-related phenotypes (Kremling 

et al. 2018, 2019; Groen et al. 2020, 2022). Using the 
same statistical model as the GWAS, we can statisti-
cally test the association between the expression profile 
of each gene and the phenotypic value (transcriptome-
wide association study, TWAS). TWAS has an advantage 
over GWAS in terms of statistical resolution for identi-
fying candidate genes because linkage disequilibrium 
(LD) does not affect expression profile (Kremling et al. 
2019; Li et al. 2021a). Owing to affordable RNA-seq tech-
nologies, TWAS has become a popular statistical map-
ping approach for various crop species such as maize 
(Hirsch et al. 2014; Lin et al. 2017; Kremling et al. 2019; 
Hershberger et al. 2022; Wu et al. 2022), sorghum (Fer-
guson et al. 2021; Pignon et al. 2021), soybean (Li et al. 
2021a), rapeseed (Harper et al. 2012; Lu et al. 2014; Tang 
et al. 2021), and rice (Zhang et al. 2018; Liu et al. 2022). 
Although most studies have focused on the phenotype 
and expression profiles quantified in shoots or seeds, the 
TWAS has also been applied to rice root phenotypes. 
Lou et al. (2017) performed TWAS using 40,122 tran-
scripts quantified in the roots of 37 rice accessions and 
identified several genes related to energy metabolism, 
production, and consumption that shape the deep or 
shallow root system architecture. In addition to TWAS, 
differential expression and gene ontology (GO) enrich-
ment analyses have been applied to root transcriptome 
data to elucidate the molecular mechanisms of rice root 
system architecture (Takehisa et al. 2012; Kawakatsu et 
al. 2021). The results of these studies encourage using 
transcriptome data to accelerate candidate gene searches 
responsible for root phenotypes.

The expression profile of the candidate genes from 
the TWAS can further be statistically associated with 
genome-wide DNA polymorphisms, which helps us 
combine the GWAS and TWAS results. Considering the 
expression profile as the response variable of GWAS or 
QTL mapping, it is possible to identify a genomic region 
that regulates the expression profile of the gene of inter-
est. This statistical mapping is called expression GWAS 
(eGWAS) or expression QTL (eQTL) mapping, and has 
been used to reveal the genomic basis of transcriptome 
variations in rice (Wang et al. 2010, 2014a; Horiuchi et al. 
2015; Kuroha et al. 2017; Campbell et al. 2020; Kashima 
et al. 2021; Liu et al. 2022). Significant variants in eGWAS 
can be classified into cis or trans-effects according to the 
physical and/or genetic distance to the gene tested in the 
eGWAS (Wittkopp et al. 2004; Kliebenstein 2009). Inter-
estingly, the cis-effects tend to be stronger than the trans-
effects in several species, such as rice (Wang et al. 2010, 
2014a; Liu et al. 2022), maize (Wang et al. 2018c), and let-
tuce (Zhang et al. 2017). Several studies have integrated 
eGWAS with GWAS and TWAS to explore candidate 
variants for the phenotype of interest by investigating the 
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colocalization (overlap) between GWAS and cis-eGWAS 
peaks (Liu et al. 2022; Wu et al. 2022).

Taken together, comprehensive statistical mapping 
using both genome and transcriptome data is a promis-
ing approach for identifying candidate genes responsi-
ble for root phenotypes. As a compact set to efficiently 
investigate the high genetic diversity of rice, the World 
Rice Core Collection (WRC) was developed and recently 
resequenced (Kojima et al. 2005; Tanaka et al. 2020). Our 
previous study quantified the expression profiles and 
root phenotypes of 57 accessions of the WRC, show-
ing subpopulation-specific stress response mechanisms 
(Kawakatsu et al. 2021). In this study, we applied GWAS 
and TWAS to the 12 root phenotypes in these 57 rice 
accessions to identify novel candidate genes responsible 
for the natural variation of root system architecture in 
rice using the available genome, transcriptome, and root 
phenotype datasets from previous studies (Tanaka et al. 
2020; Kawakatsu et al. 2021). Furthermore, eGWAS was 
applied to the candidate genes from the TWAS, and the 
eGWAS and GWAS peaks were compared to identify a 
variant related to the expression profile of the candidate 
genes responsible for root phenotypes. We identified 
six candidate genes responsible for the root phenotypes 
using three statistical mappings.

Materials and Methods
Plant Materials and Field Trial for Phenotyping and 
Sampling
All statistical analyses were performed on the phenotypic 
values quantified by Kawakatsu et al. (2021) without any 
additional mathematical calculations (such as no trans-
formation was applied for any phenotype). Therefore, we 
provide a brief overview of plant materials, field experi-
ments, and phenotyping methods.

In total, three replicates of 57 accessions from the 
WRC (Kojima et al. 2005) were evaluated in an upland 
field at the Institute of Crop Science (National Agricul-
ture and Food Research Organization, Ibaraki, Japan; 
36.0289 °N, 140.0997 °E) from June 5 to August 1, 2018. 
The ratio of deep rooting (RDR) was quantified using 
plastic mesh baskets by calculating the ratio of the num-
ber of crown roots penetrating the lower part of the mesh 
(53°–90° to the horizontal) to the total number of crown 
roots penetrating the entire mesh (Uga et al. 2009). 
Using the WINRIZO Pro 2017a software (Regent Instru-
ments, Quebec, Canada), root length (RL), root surface 
area (RSA), root volume (RV), root diameter (RD), and 
the number of root tips (NRT) for both crown roots 
(> 0.2  mm diameter roots, represented by ‘_C’ suffix in 
the abbreviation) and lateral roots (< 0.2  mm diameter 
roots, represented by ‘_L’ suffix in the abbreviation) were 
measured from the root samples collected from the soil 
using the backhoe-assisted monolith method (Teramoto 

et al., 2019). Additionally, root dry weight (RDW) of sam-
ples dried at 80 °C for three days was measured. Further 
details of the field experiments and measurement meth-
ods are described in Kawakatsu et al. (2021) and Tera-
moto et al. (2019).

Transcriptome Data Processing
Total RNA was extracted from the crown roots of three 
plants per accession from the same field experiment 
using the HighGI method (Yoshino et al. 2020), and equal 
amounts of three RNA samples extracted from the same 
accession were pooled before RNA-seq library prepara-
tion. RNA-seq libraries were sequenced on a single lane 
of S4 flow cells with paired-end 150-bp and unique dual 
index reads using Illumina NovaSeq6000 at Macrogen, 
Japan. Reads were mapped to the IRGSP-1.0 genome 
assembly and MSU7 gene models using STAR aligner 
(Dobin et al. 2013). Uniquely mapped read counts were 
quantified using featureCounts version 1.6.4 (Liao et al. 
2014). This pipeline yielded a read count matrix of 55,986 
genes for 61 accessions. Further details of RNA extrac-
tion, sequencing, read mapping, and read quantification 
methods have been described previously (Kawakatsu et 
al. 2021).

From the read count matrix, fragments per kilobase 
of exon per million read (FPKM) values were calculated 
based on the trimmed mean of M value normalization in 
the {edgeR} package version 3.38.1 (Robinson et al. 2010). 
As reported previously (Kawakatsu et al. 2021), the 
log2(FPKM + 1) value was calculated and defined as the 
expression profile. We defined the gene as not expressed 
if the expression profile was lower than 1. After calcu-
lating the expression profiles, four non-WRC lines were 
excluded from the dataset. Finally, we excluded 39,085 
genes not expressed in more than 50% WRC accessions. 
This generated an expression profile matrix of 16,901 
genes for the 57 WRC accessions.

Genotype Data Processing
The WRC accessions were sequenced as described pre-
viously (Tanaka et al. 2020). The paired-end reads were 
mapped against Os-Nipponbare-Reference-IRGSP-1.0 
(Kawahara et al. 2013) pseudomolecules using the bwa 
mem (Li and Durbin 2009), and the duplicates were 
removed using Picard MarkDuplicates (http://broadin-
stitute.github.io/picard/). Using the GATK Best Practices 
for germline SNP/indel discovery (Van del Auwera et al. 
2013), 2,805,329 SNPs and 357,639 indels were obtained 
from all 69 WRC accessions after variant calling and fil-
tering as described by Tanaka et al. (2020). In this study, 
indels were removed from the association analyses for 
simplicity.

Considering the small sample size (n = 57) for the 
GWAS, the statistical power to identify an association 

http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
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between allelic and phenotypic variations was expected 
to be low, particularly for SNPs with low minor allele 
frequency (MAF). Therefore, we applied stringent MAF-
based filtering to the 57 accessions to retain SNPs with 
MAF > 10% using VCFtools version 0.1.16 (Danecek et 
al. 2011), which removed 526,700 SNPs and retained 
2,278,629 SNPs. We applied an LD-based SNP prun-
ing method using PLINK version 1.9 (Purcell et al. 2007; 
Chang et al. 2015) to remove highly collinear SNPs (pair-
wise LD; r2 > 0.99) within 100 kb by setting the step size 
of the sliding window to 100 variants. This pipeline gen-
erated a SNP genotype dataset comprising 427,751 SNPs 
for 57 WRC accessions.

GWAS
GWAS analyzes the strength of the statistical relation-
ship between SNPs and phenotypic values to identify 
the phenotype-associated genomic regions. GWAS was 
performed for each root phenotype using 427,751 SNPs 
in the 57 WRC accessions based on the mixed linear 
model using the GWAS function in the {rrBLUP} package 
(Endelman 2011). The genomic relationship matrix was 
calculated on the same SNP set using VanRaden’s first 
formula (VanRaden 2008) using the A.mat function in 
the {rrBLUP} package. As the 57 accessions were divided 
into four or six subpopulations in Kawakatsu et al. (2021), 
we calculated the Bayesian information criterion (BIC) 
for the following three inclusion or exclusion models of 
the subpopulation as fixed covariates: (i) without subpop-
ulation; (ii) with four subpopulations of admixed (n = 7), 
aus (n = 19), indica (n = 21), and japonica (n = 10); and 
(iii) with six subpopulations by dividing the 10 japonica 
accessions into admixed-japonica (n = 3), temperate-
japonica (n = 3), and tropical- japonica (n = 4). The BIC 
value in the mixed model was computed based on the 
likelihood described by Kang et al. (2008), implemented 
in our in-house R script. The model with the lowest BIC 
value was selected as the optimal statistical model for 
each phenotype (Additional File 1: Table S1). Manhat-
tan and quantile-quantile (QQ) plots were drawn by the 
{qqman} package (Turner 2018), and the false discovery 
rate-adjusted (FDR-adjusted) P-values were calculated by 
the p.adjust function using the “fdr” option.

To define the peak loci, we considered the physical dis-
tance and LD among the significant SNPs for each root 
phenotype. First, SNPs with FDR-adjusted P-value < 0.10 
were defined to be significantly associated with the phe-
notype. Then, all significant SNP pairs within 100  kb 
showing pairwise LD (r2) > 0.50 were merged as a single 
peak locus, assuming that those SNPs were likely to be in 
LD with the same causal variant.

LD analyses were performed at both the regional 
and genome-wide scales to define a reasonable 
genomic region to search for a plausible candidate gene 

responsible for each GWAS peak. First, the r2 statistic 
was calculated for all SNP pairs within 500 kb of the peak 
SNP and visualized as a heatmap using the {LDheatmap} 
package (Shin et al. 2006). We also calculated genome-
wide LD decay using the default method of PopLDdecay 
software (Zhang et al. 2019) on all 57 WRC accessions 
and each subpopulation. The LD-pruned 427,751 SNPs 
were used for the former regional LD analysis because 
showing too many SNPs in a heatmap is computation-
ally difficult; meanwhile, the 526,700 SNPs before apply-
ing LD-pruning (after the MAF-based filtering on the 57 
WRC accessions) were used for genome-wide LD decay 
analysis. According to the results of the LD diagnoses, 
the search interval for the candidate gene in the GWAS 
was set to ± 250 kb from the peak SNP (details are shown 
in the Results section). We used RAP-DB (Sakai et al. 
2013) to obtain annotation information (version: IRGSP-
1.0, 2022-09-01) for the genes in the search interval.

To further prioritize the candidate genes from the 
search interval, we tested the statistical dependence 
between the expression profile of the candidate genes in 
root samples and the genotype of the GWAS peak SNP 
using an analysis of variance (ANOVA). For each GWAS 
peak locus, the expression profile of each gene in the 
± 250 kb searching interval was used as the response vari-
able if the gene was expressed in the root. The number 
of alternative alleles of the GWAS peak SNP (coded as a 
numerical variable assuming an additive effect) and sub-
population (coded as a four-class factor variable: japon-
ica, indica, aus, or admixed) were included in the model 
as explanatory variables without considering the interac-
tion between the two variables.

TWAS and GO Enrichment Analysis
TWAS is expected to complement the candidate gene 
search in GWAS by testing the statistical relationship 
between expression profiles and phenotypic values. We 
performed the TWAS using a method similar to that 
used in previous studies (Kremling et al. 2019; Hersh-
berger et al. 2022; Wu et al. 2022). First, the probabilis-
tic estimation of the expression residuals (PEER; Stegle 
et al. 2012) analysis was applied to the matrix of the 
expression profiles of the 16,901 genes for the 57 WRC 
accessions to reduce the hidden variation caused by 
experimental confounders. The number of factors in the 
PEER analysis was set to five based on the visual identi-
fication of the “elbow” in the diagnosis plot of the factor 
relevance (Additional File 2: Figure S1). The statistical 
model for each root phenotype in the TWAS was identi-
cal to the BIC-based optimal model used in the GWAS, 
by replacing the SNP genotype matrix with the matrix of 
the residual values from the PEER statistical model. The 
“P3D” option was set to TRUE in the GWAS function, 
as the P-values were inflated in the TWAS result if the 



Page 5 of 17Wei et al. Rice           (2023) 16:55 

“P3D” option was set to FALSE (Additional File 2: Figure 
S2). To identify candidate genes from the TWAS, we first 
applied the same significance threshold as in the GWAS 
(FDR-adjusted P-value < 0.10). Furthermore, we investi-
gated the annotation and literature of all genes included 
in the top 10 strongest associations for each phenotype 
so as not to miss associations that did not pass our signif-
icance threshold but were stronger than the others. Addi-
tionally, the Pearson’s correlation coefficient between the 
expression profile and phenotypic value was calculated 
for the top 10 genes using all WRC accessions, as well as 
for each subpopulation.

Since the root system architecture is assumed to be a 
complex phenotype controlled by many genes, we applied 
GO enrichment analysis to discover the biological pro-
cesses strongly related to the genetic variation of the root 
phenotypes in the WRC panel. For each phenotype, we 
first extracted the MSU IDs of genes with the top 1% pos-
itive and negative associations. As the top 1% associations 
for NRT, RL, RSA, and RV highly overlapped, particularly 
within the four phenotypes measured at the same part of 
the root, we took union of the top 1% genes responsible 
for these four crown and lateral root phenotypes (RS_C 
and RS_L, respectively; RS stands for root size) (details 
are shown in the Results section). Gene enrichment for 
the GO term related to a biological process was tested 
for the top 1% gene sets using the enricher function in 
the {clusterProfiler} package with its default parameters 
(Yu et al. 2012; Wu et al. 2021), with the 16,901 genes 
expressed in roots as the reference set. The GO for each 
transcript was obtained from RAP-DB (“IRGSP-1.0_rep-
resentative_annotation_2022-09-01.tsv”). To use the 
ontology data assigned to each transcript in RAP-DB, 
MSU-ID was converted to RAP-ID based on the ID con-
verter file in RAP-DB (“RAP-MSU_2022-09-01.txt”). If 
MSU-ID and RAP-ID did not have a one-to-one corre-
spondence, the gene was removed from the enrichment 
analysis. For each converted RAP-ID, the GO terms were 
obtained from all potential transcript IDs.

eGWAS for the Candidate Genes in TWAS
To connect the results from TWAS and GWAS, we per-
formed eGWAS for genes possessing the top 10 stron-
gest associations with at least one root phenotype in the 
TWAS. The statistical method for the eGWAS, includ-
ing BIC-based model selection, was identical to that 
used for the GWAS; however, the expression profile 
was considered as the response variable of the mixed 
model. If there was at least one significant (FDR-adjusted 
P-value < 0.10) SNP within 250 kb of the gene position in 
the eGWAS, the most significant SNP was defined as the 
cis-eGWAS peak SNP for the gene. As we did not detect 
any significant trans-eGWAS SNPs for any tested gene, 
we explained the method used to compare the GWAS 

and eGWAS results when a cis-eGWAS peak SNP was 
detected. We calculated the physical distance (bp) and 
pairwise LD (r2) between the cis-eGWAS peak SNP and 
the SNP with the lowest P-value on the same chromo-
some in the GWAS for each relevant phenotype with 
which the gene possessed the top 10 associations in the 
TWAS. If the two SNPs were closer than 250 kb and their 
pairwise LD was > 0.50, we considered the gene to have 
an overlapping peak between the eGWAS and GWAS. 
An overview of the analysis pipeline is provided in Addi-
tional File 2 (Figure S3).

For the genes eventually selected as overlapping candi-
dates among the GWAS, TWAS, and eGWAS, SNPs and 
indels from 2 kb upstream to the end of the gene region 
defined by the MSU7 gene model were extracted from 
the polymorphic genotype dataset of 2,805,329 SNPs and 
357,639 indels (Tanaka et al. 2020) to identify a potential 
cis-variant for the candidate genes. The SnpEff annota-
tions of the extracted variants were investigated in the 
TASKE + database (Cingolani et al. 2012; Kumagai et al. 
2019). The PLACE database (Higo et al. 1999) visualized 
in the JBrowse of RAP-DB (Sakai et al. 2013) was also 
explored to determine whether any of the upstream vari-
ants disrupt a promoter motif.

Results
GWAS Identified Three Genomic Regions Responsible for 
Root Phenotypes
To identify the candidate genes responsible for diverse 
root phenotypes, we conducted a GWAS for the 12 root 
phenotypes in 57 WRC accessions using 427,751 SNPs. 
Three peak SNPs with 10% FDR responsible for 7 out of 
the 12 phenotypes, causing 10 significant associations 
between SNPs and phenotypes, were detected (Table  1; 
Fig. 1; Additional File 2: Figure S4). The most significant 
peak SNP for seven root phenotypes (RL_C, RSA_C, 
NRT_C, RL_L, RSA_L, RV_L, and NRT_L) was identified 
at 6,199,732 bp on chromosome 8, with the highest − logP 
value (− logP = 8.07) for RL_C. The second peak SNP 
found at 20,665,890  bp on the same chromosome was 
significantly associated only with RSA_C (− logP = 5.90; 
FDR-adjusted P-value = 0.09). The third peak SNP at 
17,902,506  bp on chromosome 11 was significantly 
associated with RSA_L (− logP = 6.27; FDR-adjusted 
P-value = 0.06) and RV_L (− logP = 6.50; FDR-adjusted 
P-value = 0.06; Fig.  1B). No significant associations 
were identified with the remaining five root phenotypes 
(RV_C, RDR, RDW, RD_C, and RD_L; Additional File 2: 
Figure S4).

We analyzed both regional and genome-wide LD pat-
terns to determine reasonable genomic intervals for 
screening the candidate gene(s) responsible for GWAS 
peaks. The pairwise LD (r2) within 500  kb around 
the peak SNP did not show any obvious LD blocks 
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(Additional File 2: Figure S5), likely because of the high 
genetic diversity and small sample size of the WRC panel. 
When the r2 values between the peak SNP and oth-
ers were visualized on a regional Manhattan plot, most 
of the SNPs in high and moderately high LD (r2 > 0.80 
and > 0.60, respectively) with the peak SNPs were 
located within 60 and 250  kb of the peak SNP, respec-
tively (Additional File 2: Figure S6). Additionally, the 
genome-wide LD decay was calculated, and the mean r2 
value decreased to 0.23 in the entire WRC panel when 
the distance between SNPs was approximately 250  kb 
(Additional File 2: Figure S7). Based on the results of LD 
analyses, the search region for candidate genes was set to 

± 250 kb from each peak SNP. A total of 70 (for the peak 
at 6,199,732  bp on chromosome 8), 61 (for the peak at 
20,665,890 bp on chromosome 8), and 68 (for the peak at 
17,902,506 on chromosome 11) MSU loci were detected 
within 250 kb of the peak SNP (Additional File 1: Table 
S2–S4).

We further investigated candidate genes in the search 
region by leveraging their expression profiles in the root. 
An ANOVA between allelic variation and the expression 
profile of candidate genes expressed in the roots was con-
ducted (Additional File 1: Table S2–S4), which revealed 
that the allelic variation of the most significant peak SNP 
was the most strongly related (P = 1.43 × 10− 13) to the 

Table 1 Summary of the 10 significant associations detected in GWAS
Chromosome Peak SNP position (bp) Phenotype Phenotype abbreviation −logP FDR-adjusted P-value
8 6,199,732 Crown root length RL_C 8.07 0.004

8 6,199,732 Crown root surface area RSA_C 7.38 0.014

8 6,199,732 The number of crown root tips NRT_C 7.82 0.006

8 6,199,732 Lateral root length RL_L 7.05 0.038

8 6,199,732 Lateral root volume RV_L 7.32 0.020

8 6,199,732 The number of lateral root tips NRT_L 6.85 0.061

8 6,199,732 Lateral root surface area RSA_L 7.23 0.025

8 20,665,890 Crown root surface area RSA_C 5.90 0.090

11 17,902,506 Lateral root surface area RSA_L 6.27 0.056

11 17,902,506 Lateral root volume RV_L 6.50 0.055
GWAS; genome-wide association study, FDR; false discovery rate

Fig. 1 Manhattan and quantile-quantile plot for (A) RSA_C and (B) RSA_L. In total of three peak SNPs were identified for seven root phenotypes, including 
the two phenotypes shown as representative results in this figure. The blue horizontal line in the Manhattan plot represents the 10% FDR cutoff
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expression profile of OsENT1 gene (LOC_Os08g10450), 
which is located from 6,142,125 to 6,144,418 bp (approxi-
mately 55  kb from the GWAS peak SNP) and encodes 
an equilibrative nucleoside transporter (Fig.  2C). WRC 
accessions with the alternative allele (thymine) at this 
peak SNP showed longer RL_C and lower OsENT1 
expression profile than those with the Nipponbare refer-
ence type (adenine) in all subpopulations (Fig. 2A and B). 
Moreover, OsENT1 expression profiles and RL_C pheno-
typic values were strongly negatively correlated (r = − 0.67; 
Fig. 2D). These results suggest that OsENT1 is the most 
plausible candidate gene among the 70 candidates in 
the ± 250  kb region of the most significant GWAS peak 
responsible for seven root phenotypes including RL_C.

Except for the most significant peak SNP, the ANOVA 
did not find any other candidate genes with strong signif-
icance and an interpretable annotation. The top ANOVA 
hit gene for the second peak SNP was LOC_Os08g33440 
(P = 2.35 × 10− 6), which putatively encodes a protein simi-
lar to dihydrolipoamide S-acetyltransferase. Besides, 
OsMADS23 (LOC_Os08g33488, P = 3.00 × 10− 3), which 
encodes a stress-responsive MADS-box transcription 
factor and functions as a positive regulator in response 

to osmotic stress by regulating ABA biosynthesis (Li et al. 
2021b), was one of the 12 significant (P < 0.05) genes for 
the second peak SNP. The top ANOVA hit gene for the 
third peak SNP was LOC_Os11g31110 (P = 2.42 × 10− 3), 
which was annotated as a conserved hypothetical protein.

TWAS Suggested Five Novel Associations Responsible for 
Root Phenotypes
TWAS can extend GWAS-based candidate gene search 
by testing the statistical association between phenotypic 
values and expression profiles instead of the SNP geno-
type. We applied TWAS for the 12 root phenotypes on 
the 16,901 genes expressed in the root and identified 
six significant statistical associations under the thresh-
old of FDR-adjusted P-value < 0.10 for four root pheno-
types: three genes (LOC_Os01g04630, LOC_Os03g31480, 
and LOC_Os03g02750) for RD_C, one gene (LOC_
Os02g54580) for RV_C and RDW, and one gene (LOC_
Os12g32536) for RD_L. Among the five genes, only 
LOC_Os03g31480 (OsEXPA31) and LOC_Os03g02750 
(OsSub25) had a gene symbol in RAP-DB (Additional File 
1; Table S5).

Fig. 2 Relationship between OsENT1 and the GWAS peak SNP at 6,119,732 bp on chromosome 8. We searched for the most plausible candidate gene for 
the GWAS peak SNP at 6,119,732 based on the root transcriptome data. The WRC accessions with the alternative allele (thymine) at the GWAS peak SNP 
had (A) longer crown root length and (B) lower OsENT1 gene expression profile than those with the reference allele (adenine), respectively. (C) Histogram 
of the − logP values of the candidate genes around the peak SNP based on the ANOVA. (D) Scatter plot between OsENT1 gene expression profile and 
crown root length. The horizontal bars in the violin plots represent median value
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In addition to these significant associations, we focused 
on the genes with the top 10 strongest associations for 
each phenotype to identify other candidate genes. Since 
some genes were repeatedly detected in the top 10 asso-
ciations for multiple phenotypes, 70 unique genes were 
involved in the 120 gene–phenotype associations (Addi-
tional File 1; Table S6). Candidate genes were screened 
based on their annotation information and correlation 
with the associated phenotype. We found that 31/70 
genes had at least one gene symbol in RAP-DB, and 24/31 
genes showed a moderate or strong correlation (absolute 
Pearson’s correlation > 0.50) with at least one phenotype 
in the 57 WRC accessions. Based on previous studies of 
these 24 genes, we selected five candidate genes possibly 
associated with root phenotypes (Table 2).

OsENT1 was one of the five candidates responsible for 
NRT_L, which was also a candidate gene according to the 
GWAS. The other candidate genes according to TWAS 
(OsEXPA31, OsSPL14, OsDEP1, and OsDEC1) were not 
candidate genes according to the GWAS, but listed as 
promising candidates according to the results of previ-
ous studies. The first candidate gene, OsEXPA31, had the 
strongest association with RD_C and was one of the six 
significant (FDR-adjusted P-value < 0.10) candidate genes 
according to TWAS. Although OsEXPA31 has not been 
functionally characterized, other α-expansin genes have 
been characterized for their involvement in root pheno-
types, such as primary root length or root hair elonga-
tion (Ma et al. 2013; Wang et al. 2014b; Che et al. 2016; 
Yu et al. 2011). The second candidate gene OsSPL14 was 
positively associated with RD_C in the WRC accessions 
(r = 0.76; −logP = 4.32) as well as in each subpopulation 
(r = 0.70–0.87), which was consistent with the results of a 
recent mutant-line-based study reporting that the crown 
roots thickened after increasing OsSPL14 expression 
in the roots (Song et al. 2022). The third candidate gene 
OsDEP1 has pleiotropic effects, including primary root 
elongation under limited phosphorus conditions (Sun 
et al. 2014; Zhang et al. 2015; Wang et al. 2021), and the 
positive association between OsDEP1 and RDR (r = 0.54; 
−logP = 4.08) found in this study implies an uninves-
tigated function of the gene for the root architecture. 
Lastly, OsDEC1 was negatively associated with RL_C 
(r = − 0.64 in the 57 WRC accessions), which seems to be 
in line with the negative effect of OsDEC1 on internode 
elongation (Gómez-Ariza et al. 2019; Nagai et al. 2020).

The GO Enrichment Analysis Highlighted Two Biological 
Processes Responsible for RD_C
If a biological process is related to a root phenotype, the 
genes involved in that biological process tend to show 
a strong association with the phenotype in the TWAS. 
Thus, we applied GO enrichment analysis to the genes 
with the top 1% positive and negative associations Ta
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detected in TWAS to identify the biological processes 
related to the genetic variation of root phenotypes 
(Additional File 2; Figure S3). When the top 1% posi-
tive or negative associations were compared among the 
12 root phenotypes, they highly overlapped among the 
four root-size-related phenotypes (RL, RSA, RV, and 
NRT) for both crown and lateral roots (Additional File 2; 
Figure S8). The average overlap rate was 69.5%, ranging 
from 31.4% (53/169 genes overlapped between the top 
1% negative associations for RL_C and RV_C) to 94.1% 
(159/169 genes overlapped between the top 1% positive 
associations for RL_L and RSA_L). Therefore, we merged 
the top 1% associations for the four root size-related phe-
notypes (RS_C and RS_L for crown and lateral roots, 
respectively) for enrichment analysis to simplify inter-
pretation. After combining the top 1% associations for 
the four phenotypes, 303 and 227 genes were positively 
associated with RS_C and RS_L, respectively, while 320 
and 233 genes were negatively associated with RS_C and 
RS_L, respectively.

GO enrichment analysis identified 11 biological pro-
cesses involved in the five root phenotypes (Table  3). 
While only one biological process related to RS_C, RS_L, 
and RDR, four biological processes related to RD_C 
and RD_L. Particularly, the top 1% genes negatively 
associated with RD_C were enriched in two explicable 
biological processes (GO:0009664 and GO:0006979). 
GO:0009664 was annotated to “plant-type cell wall orga-
nization” and assigned to five genes encoding α-expansin: 
OsEXPA3 (LOC_Os05g19570), OsEXPA9 (LOC_
Os01g14660), OsEXPA18 (LOC_Os03g06040), OsEXPA19 
(LOC_Os03g06050), and OsEXPA31 (LOC_Os03g31480). 
This enrichment is consistent with the known role of 
expansins in root growth by mediating cell wall loosen-
ing (Zhang et al. 2021). GO:0006979 was annotated to 
“response to oxidative stress” and assigned to six genes 
encoding peroxidases: OsPOD (LOC_Os01g19020), 
OsPRX42 (LOC_Os03g25280), OsPRX43 (LOC_
Os03g25300), OsPRX54 (LOC_Os04g34630), OsPRX68 
(LOC_Os05g04450), and OsPRX102 (LOC_Os07g31610). 
Although peroxidases are involved in several physiologi-
cal processes throughout the plant life cycle, one of their 
major roles is cell wall modification and loosening by 
regulating the reactive oxygen species level (Passardi et 
al. 2004). Collectively, our GO enrichment results imply a 
potential physiological function of expansins and peroxi-
dases in root diameter by regulating cell wall loosening.

eGWAS Discovered Two Overlaps between GWAS and 
TWAS
We applied eGWAS to the 70 candidate genes in the 
TWAS (Additional File 1; Table S6) to identify a strong 
cis- or trans-effect variant of the candidate gene, which 
enabled us to connect the results from the TWAS and 

GWAS (Additional File 2; Figure S3). None of the 70 
TWAS candidate genes tested in the eGWAS showed a 
significant trans-eGWAS peak SNP, probably because 
of the smaller sizes of the trans-effects than that of the 
cis-effects (Wang et al. 2010, 2014a; Liu et al. 2022). Sig-
nificant cis-eGWAS peaks were identified for six of the 
70 TWAS candidate genes, which comprised 10 gene–
phenotype associations (Additional File 1: Table S7). 
Two combinations (OsENT1 responsible for NRT_L and 
OsDjA6 responsible for RV_L) were eventually identified 
as common associations detected in all three statistical 
mapping methods (Fig. 3; Additional File 1: Table S7).

As expected from the GWAS and TWAS results, one of 
the two common associations was that between OsENT1 
and NRT_L. The eGWAS peak SNP was detected 
approximately 9  kb upstream of OsENT1 with a highly 
significant signal (− logP = 14.97) and was located within 
50  kb of the GWAS peak SNP responsible for NRT_L 
(Fig. 3A). We found that 30 of the 43 variants located 2 kb 
upstream of the end of the OsENT1 region showed high 
LD (r2 > 0.90) with the eGWAS peak SNP (Additional 
File 1: Table S8). In particular, a SNP variant at a putative 
splicing site (7 bp downstream from the first exon) was in 
almost perfect LD with the eGWAS peak SNP (r2 = 0.96) 
and showed a visible relationship with OsENT1 expres-
sion profile as well as with NRT_L phenotypic values 
(Additional File 2: Figure S9). Altogether, our results sug-
gest that OsENT1 is the most promising candidate gene 
responsible for NRT_L, although further experimental 
validation is required as the pairwise LD between the 
eGWAS and GWAS peak SNPs was moderate (r2 = 0.56).

The other common association was observed between 
OsDjA6 (LOC_Os04g46390) and RV_L (Fig.  3B). Five 
equally significant cis-eGWAS peak SNPs were detected 
for OsDjA6 from 27,425,399 to 27,820,992  bp on chro-
mosome 4, covering the region of this gene (Additional 
File 1: Table S7). When the GWAS results for RV_L were 
compared with the eGWAS results, the most significant 
GWAS peak SNP at 27,719,033 bp (200 kb downstream 
of OsDjA6 but between the two eGWAS peak SNPs at 
27,625,119 and 27,725,503  bp) on chromosome 4 was 
in high LD with eGWAS peak SNPs (r2 = 0.97). More-
over, 24 polymorphic variants were present from 2  kb 
upstream to the end of the OsDjA6 gene region in the 
57 WRC accessions, of which nine variants showed high 
LD (r2 > 0.90) with both eGWAS and GWAS peak SNPs 
(Additional File 1: Table S9). Among these high-LD vari-
ants, two were in an exon but expected to be synonymous 
variants, three were in an intron, and four were upstream 
of OsDjA6. We then investigated the four upstream high-
LD variants using the PLACE database (Higo et al. 1999) 
visualized in the JBrowse of RAP-DB, and discovered a 
SNP variant from adenine (reference allele) to guanine 
(alternative allele) at 27,504,969 bp (518 bp upstream of 
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the representative MSU7 gene model of OsDjA6) located 
in a TATA box-like motif, whereas the other three were 
not located in any putative promoter motif. This SNP 
exhibited the same segregation pattern to the eGWAS 
peak SNP in the 57 WRC accessions: eight indica acces-
sions (WRC03, WRC05, WRC07, WRC10, WRC12, 
WRC13, WRC16, and WRC19) had alternative alleles, 
whereas the remaining 49 accessions had reference alleles 
(Additional File 1: Table S10). These eight indica acces-
sions showed a low OsDjA6 expression profile, probably 
because of TATA-like motif mutation, which may explain 
their higher RV_L values than that of the other 13 indica 
accessions (Additional File 2: Figure S10). Thus, this cis-
variant in the putative promoter motif is the most plau-
sible source of the negative relationship between OsDjA6 
expression profiles and RV_L in indica subpopulation. 
Collectively, all GWAS, TWAS, and eGWAS supported 
the association between OsDjA6 and RV_L.

Discussion
To optimize the root system architecture in rice through 
molecular breeding, statistical mapping is a promising 
approach for identifying the candidate genes by leverag-
ing the natural variation in root phenotypes. Thus, we 
used GWAS, TWAS, and eGWAS to explore the candi-
date genes related to the natural variation of the 12 root 

phenotypes using the genotypes of 424,888 SNPs and 
the expression profiles of 16,901 genes in 57 rice acces-
sions. Our comprehensive statistical analyses identified 
OsENT1, OsEXPA31, OsDEC1, OsSPL14, OsDEP1, and 
OsDjA6 as the candidate genes for root phenotypes. 
Furthermore, four significant genes (LOC_Os01g04630, 
LOC_Os03g02750, LOC_Os02g54580, and LOC_
Os12g32536) and two weakly significant (FDR-adjusted 
P-value between 5% and 10%) genomic regions associ-
ated with at least one root phenotype were identified 
using TWAS and GWAS, respectively. In addition, GO 
enrichment analysis highlighted the importance of genes 
related to cell wall organization and response to oxidative 
stress in the natural variation in RD_C. While the sample 
size (n = 57) was limited to detect small-effect genes or 
loci, our statistical analyses dissected the genetic control 
of root phenotypes in a diverse panel and identified the 
candidate genes for molecular breeding and functional 
genomics of root system architecture.

All statistical analyses suggested that OsENT1 is a can-
didate gene responsible for NRT_L. Both GWAS and 
eGWAS identified a significant peak in proximity to this 
gene, with the sixth strongest association for NRT_L in 
TWAS, and there was a SNP variant at a putative splicing 
site showing a high LD with the cis-eGWAS peak SNP. 
Based on the RiceXPro database (Sato et al. 2011b, 2013), 

Fig. 3 Two overlaps between the eGWAS and GWAS peaks. The chromosome-level Manhattan plots were visualized for the (A) eGWAS for OsENT1 and 
GWAS for NRT_L on chromosome 8 and (B) eGWAS for OsDjA6 and GWAS for RV_L on chromosome 4. The most significant GWAS SNP on the illustrated 
chromosome was highlighted in larger red dot than the other SNPs. Similarly, the eGWAS peak SNP was highlighted in larger cyan dot than the other SNPs
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OsENT1 (RiceXPro accession ID: AK059439) expression 
profiles in roots, particularly in the root elongation zone 
(RXP_5002; Takehisa et al. 2013), were stronger than 
that in other organs (RiceXPro dataset ID: RXP_0001; 
Sato et al. 2011a) and exhibited a positive response to 
cytokinins in both roots (RXP_1005) and the shoots 
(RXP_1010). Four genes (OsENT1–4) encoding potential 
equilibrative nucleoside transporters have been identi-
fied in rice. Although the function of OsENT1 in rice is 
not well understood, an expression analysis in yeast cells 
suggested that OsENT2 plays a role as a cytokinin trans-
porter (Hirose et al. 2005). Additionally, two equilibrative 
nucleoside transporter homolog genes in Arabidopsis, 
AtENT3 and AtENT8, are involved in nucleoside-type 
cytokinin transport (Sun et al. 2005). While OsENT1 did 
not show ability to transport nucleoside-type cytokinins, 
its amino acid sequence was the most homologous (45%) 
with that of AtENT8 (Hirose et al. 2005). Cytokinins con-
trol the cell differentiation rate in the root meristem and, 
therefore, control root meristem size, crown root, and 
lateral root formation (Beemster and Baskin 2000; Dello 
Ioio et al. 2007; Laplaze et al. 2007; Neogy et al. 2021). 
Thus, we hypothesized that OsENT1 may participate in 
cytokinin transport, thus affecting root phenotypes.

TWAS and GO enrichment analyses revealed that 
five α-expansin genes (OsEXPA3, OsEXPA9, OsEXPA18, 
OsEXPA19, and OsEXPA31) were negatively associated 
with RD_C, of which OsEXPA31 showed the strongest 
association and a strong negative correlation with RD_C 
(r = − 0.69) in the 57 WRC accessions. The expansin pro-
teins, discovered by McQueen-Mason et al. (1992), are a 
class of cell-wall-loosening proteins that play important 
roles in mediating plant growth and development (Cos-
grove et al. 2002). Although OsEXPA31 has not yet been 
functionally characterized, the relationships between 
other OsEXPAs and root morphology have been inves-
tigated in rice. OsEXPA8 positively regulates primary 
root length and the number of lateral roots by mediating 
cell wall loosening (Ma et al. 2013; Wang et al. 2014b). 
OsEXPA10 is required for root cell elongation (Che et 
al. 2016). OsEXPA17 and OsEXPA30 are root hair-spe-
cific genes that play crucial roles in root hair elonga-
tion (Yu et al. 2011). Interestingly, the protein sequence 
of OsEXPA31 is largely different from the four above 
expansins (He et al. 2015), implying a potential functional 
divergence of OsEXPA31. Therefore, our results suggest 
an undiscovered role of OsEXPA31 for crown root diam-
eter by regulating cell wall structure.

Most genes with the strongest association with root 
phenotypes in the TWAS were uncharacterized in rice, 
whereas three candidate genes had been reported to 
affect aboveground phenotypes. For instance, OsDEC1, 
which decelerates internode elongation, was nega-
tively associated with RL_C in our study (r = − 0.64; 

Gómez-Ariza et al. 2019; Nagai et al. 2020). The well-
known yield-related gene, OsSPL14 showed the fifth 
strongest association with RD_C in the TWAS. Several 
studies have demonstrated that OsSPL14 optimizes rice 
plant architecture and improves abiotic stress toler-
ance (Miura et al. 2010; Jiao et al. 2010; Zhu et al. 2022). 
OsSPL14 also confers root elongation by modulat-
ing PIN2 and PIN10b (auxin efflux carriers) transcrip-
tion under low nitrogen supply (Wang et al. 2022). In a 
recent study, the crown root diameter was enlarged in 
OsSPL14-promoter-mutant plants that highly expressed 
this gene specifically in roots (Song et al. 2022), which 
is consistent with our association detected in TWAS. 
Another yield-related gene, OsDEP1, which is positively 
regulated by OsSPL14 (Lu et al. 2013), was associated 
with RDR in the WRC57 accessions. OsDEP1 was first 
reported to mediate panicle morphology and contribute 
to grain number improvement (Zhou et al. 2009; Huang 
et al. 2009), and further studies have demonstrated that it 
regulates nitrogen use efficiency and drought adaptation 
(Sun et al. 2014; Zhang et al. 2015). In addition, OsDEP1 
modulates root elongation for phosphorus uptake in rice 
(Wang et al. 2021). Considering the multiple functions of 
OsDEP1 in plant growth and development (Trusov et al. 
2007; Wang et al. 2006; Xu et al. 2016), OsDEP1 may have 
undiscovered pleiotropic roles in other crucial growth 
processes in rice. Our results imply that yield-related 
genes such as OsSPL14 and OsDEP1 improve yield by 
modulating both shoot and root phenotypes.

Our comprehensive GWAS, TWAS, and eGWAS 
analyses identified a negative association between the 
expression profile of OsDjA6 and RV_L. OsDjA6 was 
characterized as a negative regulator of rice immunity 
to the blast fungus by regulating the genes involved in 
salicylic acid pathway, including the transcription fac-
tor OsWRKY45 (Zhong et al. 2018). Considering the 
complex OsWRKY45 regulatory mechanism in balanc-
ing plant growth and immune responses (Shimono et al. 
2007; Wang et al. 2018b; Ichimaru et al. 2022), the associ-
ation between OsDjA6 and RV_L may imply an unknown 
pleiotropic function of OsDjA6 by negatively regulating 
OsWRKY45.

Our results highlight the advantage of transcriptomics 
for candidate gene search, as none of the six candi-
date genes (OsENT1, OsEXPA31, OsSPL14, OsDEP1, 
OsDEC1, and OsDjA6) could be identified without tran-
scriptome data. Although OsENT1 was detected within 
± 250 kb region from the GWAS peak SNP, it was impos-
sible to shed light on its involvement without testing the 
statistical relationship between the expression profile and 
phenotypic value. Similarly, TWAS and eGWAS revealed 
a weak association of GWAS around the cis-regulatory 
region of OsDjA6. Although a GWAS can identify a 
genomic region associated with phenotypic variations, 
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resolving the GWAS peak to a single candidate gene is 
often difficult. In contrast, the gene-level associations 
from the TWAS enabled us to discover novel associations 
of genes previously characterized for a shoot phenotype, 
such as OsSPL14, OsDEP1, and OsDEC1, with the root 
phenotypes.

Conclusion
Association mapping analyses based on both transcrip-
tome and genome data from the 57 WRC accessions 
revealed six associations between the genes and root phe-
notype: OsENT1 was associated with NRT_L, OsEXPA31 
and OsSPL14 with RD_C, OsDEP1 with RDR, OsDEC1 
with RL_C, and OsDjA6 with RV_L. These genes are 
promising targets for molecular breeding and functional 
genomics to understand the complex genetic control of 
root system architecture in rice.
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