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Abstract 

Root hairs are extensions of epidermal cells on the root tips that increase the root contract surface area with the soil. 
For polar tip growth, newly synthesized proteins and other materials must be incorporated into the tips of root 
hairs. Here, we report the characterization of PRX102, a root hair preferential endoplasmic reticulum peroxidase. 
During root hair growth, PRX102 has a polar localization pattern within the tip regions of root hairs but it loses this 
polarity after growth termination. Moreover, PRX102 participates in root hair outgrowth by regulating dense cyto‑
plasmic streaming toward the tip. This role is distinct from those of other peroxidases playing roles in the root hairs 
and regulating reactive oxygen species homeostasis. RNA‑seq analysis using prx102 root hairs revealed that 87 genes 
including glutathione S-transferase were downregulated. Our results therefore suggest a new function of peroxidase 
as a player in the delivery of substances to the tips of growing root hairs.
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Background
Root hairs are extensions of specific root epidermal cells 
that engage in tip growth. Root hairs play pivotal roles 
in nutrients and water uptake from the rhizosphere, and 
function as the site of interactions between roots and 
soil microorganisms (Dazzo et al. 1984; Gilroy and Jones 
2000; Leavitt 1904). Root hair development is a geneti-
cally controlled process but is also flexibly modulated by 
environmental conditions (Bates and Lynch 2000; Datta 
et al. 2011; Kwasniewski et al. 2013; Ma et al. 2001; Mul-
ler and Schmidt 2004). Plants fine-tune root hair devel-
opment to facilitate adaption to various environments, 
including low phosphate and potassium availability (Giri 
et  al. 2018; Kumar et  al. 2020; Verma et  al. 2018; Yang 
et al. 2020a).

In Arabidopsis, epidermal cell fates are determined 
by cell position. A root hair arises from epidermal cell 
above the junction of two cortical cells, while non-hair 
cell is located over a single cortex cell, creating the 
separated longitudinal files of root hairs and non-hair 
cells (Marzec et al. 2014). MYB-bHLH-WD40 complex 
is involved in the fate decisions in Arabidopsis root 
epidermis (Wei and Li 2018). Root hairs are shorter 
than non-hair cells throughout their development, 
from the division zone to the maturation zone (Scheres 
et al. 2002). While in rice, any cells on the root epider-
mis can produce root hairs, but only some develop into 
root hair cells (Salazar-Henao et  al. 2016). Further-
more, the factors determining root epidermal cell fate 
remain unknown. Root hairs are shorter than non-hair 
cells at the maturation zone, which is due to by slow 
expansion of trichoblasts after hairs initiation (Marzec 
et  al. 2014; Scheres et  al. 2002). Unlike fate determi-
nation, root hair tip growth is well conserved between 
Arabidopsis and rice. RHD6-LIKE (RSL) transcription 
factors, which are key regulators of root hair growth, 
control reactive oxygen species (ROS) production and 
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promote root hair elongation in both Arabidopsis and 
rice (Mangano et al. 2017; Moon et al. 2019; Kim et al. 
2017).

ROS also play essential roles during root hair devel-
opment. RHD2, RHT5 and OsNOX3 encode NADPH 
oxidase in Arabidopsis, maize and rice, respectively, 
where they are involved in production of apoplas-
tic superoxide ion  (O2−) (Foreman et  al. 2003; Mon-
shausen et  al. 2007; Nestler et  al. 2014; Wang et  al. 
2018). In rhd2, rht5, and osnox3 mutants, tip focused 
ROS accumulation was not detected and the length 
of root hairs was reduced, indicating that ROS drives 
root hair elongation (Foreman et al. 2003; Monshausen 
et  al. 2007; Nestler et  al. 2014; Wang et  al. 2018). In 
cells,  O2− is rapidly converted into hydrogen peroxide 
 (H2O2), either spontaneously or by superoxide dis-
mutase (Zhao et  al. 2016). However, apoplastic  H2O2 
can be generated by many enzymes, including oxalate 
oxidase, diamine oxidase, and Class III peroxidases 
(Caliskan and Cuming 1998; Federico and Angelini 
1986; Elstner and Heupel 1976; Dunand et  al. 2007). 
Apoplastic  H2O2 plays another role as a second mes-
senger; it can move into the cytoplasm via aquaporin 
or can be sensed by specific receptor like kinases (Wu 
et al. 2020; Bienert and Chaumont 2014). Finally, apo-
plastic  H2O2 is detoxified via both antioxidants and 
enzymatic reactions (Podgorska et  al. 2017; Wu et  al. 
2020; Bienert and Chaumont 2014).

Plants have two kind of peroxidases: Class I and Class 
III (Welinder 1992). Class I peroxidases are intracel-
lular proteins while Class III peroxidases are secreted 
into the extracellular space or are transported into the 
vacuole (Yang et al. 2020b; Shigeoka et al. 2002). Class 
III peroxidases exist as a multi-gene family of enzymes 
that are involved in diverse plant functions, includ-
ing defense, lignification, and auxin catabolism (Cosio 
et al. 2009). Class III peroxidases execute two opposite 
roles in the ROS pool, reducing  H2O2 or producing 
hydroxyl radicals  (OH−) (Marjamaa et  al. 2009; Raggi 
et  al. 2015; Kidwai et  al. 2020). In root hairs, PRX01, 
PRX44, PRX73, PRX62, and PRX69 trigger root hair 
growth via regulation of ROS homeostasis and solu-
bilization of cell wall extensins (Pacheco et  al. 2022; 
Marzol et al. 2022).

In this paper, we identify a peroxidase gene, PRX102, 
that is preferentially expressed in root hairs, where it 
regulates root hair tip growth. PRX102 also partici-
pates in root hair outgrowth by regulating the dense 
cytoplasmic streaming toward the tip, and not by dra-
matic regulation of the ROS pool. In this study, we 
suggest a new function of peroxidase related to deliv-
ery of substances to the tip of the growing root hair.

Results
PRX102 Exhibited Root Hairs‑Defective Phenotype
In a previous study, we performed a genome-wide anal-
ysis of root hair-preferential genes in rice (Moon et  al. 
2018). To identify the key genes responsible for root hair 
development, we generated mutant lines for four known 
root hair-preferential genes using the CRISPR/Cas9 sys-
tem (Additional file 1: Table S1). Using sequencing analy-
sis, we selected a homozygotic mutant for each gene and 
observed the morphology of root hairs five days after 
germination (DAG). Using this screening, we identified a 
root hair defective mutant possessing a mutation within 
PEROXIDASE102 (PRX102, LOC_Os07g31610), a gene 
coding a protein comprised of three exons (Fig. 1A).

To check whether mutations within PRX102 were 
responsible for the root hair defective phenotype, we 
analyzed PRX102 sequences from T1 lines edited using 
a CRISPR/Cas9 gene editing protocol. We identified 
three homozygotic mutants with small deletions or one 
base insertions within PRX102 and called them prx102-
1 to prx102-3 (Fig.  1B). To confirm the mutant pheno-
type, additional alleles of PRX102 were generated using 
another CRISPR/Cas9 construct; we obtained three 
monoallelic mutants (i.e., prx102-4 to prx102-6) (Fig. 1A 
and C). Root hairs from prx102 are shorter and thicker 
than those of the wild type (WT) (Fig. 1D–I). Next, for 
quantitative analysis we measured root hair lengths 1 cm 
from the apex. Root hair length was reduced by 80% and 
79% in the prx102-1 and prx102-4 mutants relative to the 
WT. Moreover, root hair thickness was increased by 2.9 
fold with respect to the WT in prx102-1 and prx102-4 
(Fig.  1J and K). Taken together, these data indicate that 
PRX102 plays an essential role in root hair tip growth in 
rice.

PRX102 is Preferentially Expressed in Trichoblasts and Root 
Hairs
Next, we performed quantitative RT-PCR to validate 
the root hair-preferential expression pattern of PRX102. 
Whereas PRX102 was abundantly expressed in root 
hairs, it was seldom detected in other organs (i.e., roots, 
shoots, mature leaves, young panicles, and developing 
seeds) (Fig. 2A). Along longitudinal axis of root, the root 
divided four regions: meristematic zone, transition zone, 
elongation zone, and maturation zone (Fig. 2B). The divi-
sion zone consists of cells which divide as an undiffer-
entiated form. After division in the meristematic zone, 
cells enter the transition zone where they undergo physi-
ological changes to prepare for rapid elongation (Ver-
belen et al. 2006). Cells elongate rapidly in the elongation 
zone, but growth rates decrease to zero at the maturation 
zone (Fig.  2B) (Dolan and Davies 2004). To know exact 
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expression pattern of PRX102 in planta, we generated 
transgenic plants harboring PRX102 promoter::PRX102–
GFP vector. GFP signals were strongly detected in root 
hairs of maturation zone and trichoblasts of elongation 
zone (Fig. 2C–F). PRX102-GFP especially accumulated at 
the tips of root hairs and bulging region of trichoblasts 
(Fig.  2C– F). GFP signals were first detected in tricho-
blasts at the transition zone of the root before epidermal 
elongation (Fig. 2G and H) (Lavrekha et al. 2017).

PRX102 Exhibits Polarized Localization During Root Hair 
Growth
In the transition zone, PRX102 is expressed in tricho-
blasts and is distributed in more abundance at the exter-
nal region of root epidermal cells (Fig. 3A and B). After 
bulge formation in elongation zone, PRX102 becomes 
more polarly distributed toward the root hair initiation 
site (Fig. 3C and D). The GFP signal was mainly detected 
in root hair tips during root hair growth, but polarity was 
lost following termination of growth (Fig.  3E–H). Since 
most reported Class III peroxidases function in the apo-
plastic region or the cell walls of root hairs, we checked 
whether PRX102 is exported from cells. After plasmoly-
sis using 500  mM mannitol, we observed that GFP sig-
nals remained within cells, indicating that PRX102 is not 
transported outside cells (Fig. 3I and J).

Next, to determine the exact location of PRX102 within 
cells, we conducted tobacco infiltration experiments. 
Moreover, since PRX102 appeared to be localized to the 
endoplasmic reticulum (ER) or trans-Golgi network in 
root cells, Agrobacteria harboring the RFP–PRX102 plas-
mid were co-transformed with Agrobacteria harboring 
GFP–HDEL (an ER marker), or mannosidase I–GFP (a 
Golgi marker), respectively (Berson et al. 2014; Sun et al. 
2020). We observed that the RFP signal matched the ER 
marker (Fig.  3K–M). The enlarged image in the yellow 
box indicates that the signal of RFP-PRX102 completely 
overlaps that of the ER marker (Fig.  3K–M). However, 
when Agrobacteria harboring the RFP–PRX102 plasmid 
were co-transformed with Agrobacteria harboring with 
Golgi markers, the signals did not completely overlap 
(Fig.  3N–P). From images completely overlapping with 
ER markers, we infer that PRX102 is localized to the ER. 
On the other hand, we detected control GFP signals in 
both the cytosol and nucleus (Fig. 3Q).

RNA‑seq Analysis of prx102 and WT Root Hairs Identifies 
Candidate Genes Involved in Root Hair Development
To identify genes influenced by PRX102, we per-
formed an RNA-seq analysis of root hairs from WT and 
prx102. In total, 87 genes were identified as downregu-
lated genes using the following criteria: P value ≤ 0.05, 

Fig. 1 Phenotypic analysis of prx102 using gene‑editing mutants. Shown are: A, Schematic representation of the PRX102 gene, including target 
regions for the construction of CRISPR/Cas9 vectors (Red bar). B and C, Mutated sequence analysis of target regions within the first exon of PRX102. 
Black letters indicate sequences of target regions in the WT, and red letters indicate missed or added sequences of target regions in prx102. Mutant 
phenotypes of PRX102: WT (D and G), prx102-1 (E and H), and prx102-4 (F and I). Also shown are: root hair length (J) and width (K) measured at 1 cm 
from the apex of WT and prx102 plants (n =  > 100 root hairs). Scale bars in D–F = 1 mm; Scale bars in G–I = 30 µm
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Fig. 2 Expression pattern analysis of PRX102. Shown are: A, RT‑qPCR analysis of PRX102 in various tissues of rice plants. B, Longitudinal view of rice 
roots. Four distinct regions with different growth activities are represented as meristematic zone, transition zone, elongation zone, and maturation 
zone. Red boxes indicate the position of root shown in C–H. C–H, Fluorescent images from transgenic plants carrying the pPRX102::PRX102–GFP 
cassette. Photos were taken of the maturation zone (C and D), the elongation zone (E and F), and the transition zone of roots (G and H). GFP signals 
were detected in root hairs (white arrow heads, C and D) and trichoblasts (red arrow heads, E–H). PRX102–GFP accumulated at tips of growing root 
hairs (C and D) and bulge of trichoblasts (E and F) (white arrows). Fluorescent images (C, E, and G) and blight‑field merged images (D, F, and H). 
Scale bars in C and D = 100 µm; scale bars in E–H = 20 µm

Fig. 3 Localization analysis of PRX102. Shown are: A–H, Subcellular localization of PRX102 in transgenic plants carrying the pPRX102::PRX102–GFP 
cassette. Photos were taken at the transition zone (A and B), the elongation zone (C and D), and the maturation zone of the root (E–H). GFP images 
in root hairs at fast growing stage (E and F) and growth termination stage (G and H). Arrows indicate accumulated GFP signal at trichoblasts root 
hairs. I and J, Localization of PRX102 after plasmolysis using 500 mM mannitol. Fluorescent images (A, C, E, G, and I) and blight‑field merged images 
(B, D, F, H, and J). RFP–PRX102 (K and N), ER marker (L), Golgi marker (O) and merged image (M and P) in leaf epidermal cells from Nicotiana 
benthamiana. Large yellow boxes at bottom left corner of K–P are the magnification of small yellow boxes in each image. White and red 
arrowheads mark overlapping signals and non‑overlapping signals, respectively. Also shown are cells expressing 35S::GFP as control (Q). Scale 
bars = 20 μm (A–H), 10 μm (I–J), and 50 μm (K–Q)
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FPKM value ≥ 4, and downregulation of at least 1.2 
log2 (Additional file  1: Table  S2). We then performed 
GO enrichment analysis of the biological process cat-
egory using ShinyGO (http:// bioin forma tics. sdsta 
te. edu/ go/) (Ge et  al. 2020). We found that the glu-
tathione metabolic process GO term was significantly 
enriched among downregulated genes in prx102, exhib-
iting 18.6-fold enrichment (Table  1). Three glutathione 
S-transferases and one glutathione synthase were iden-
tified as involved in glutathione metabolic processes. 
We therefore confirmed the reduced expression of the 

three glutathione S-transferases via RT-qPCR analysis 
(Fig.  4). Consistent with the RNA-seq analysis results, 
three glutathione S-transferase genes (LOC_Os01g72130, 
LOC_Os03g17470, and LOC_Os10g34020) were down-
regulated by more than two-fold in the root hairs from 
prx102, compared to wild type.

PRX102 is Not a Major Regulator of the ROS Pool in Root 
Hair
Peroxidases catalyze substrate oxidation by hydrogen 
peroxide or an organic peroxide (Passardi et  al. 2004). 
Using a fluorescent hydrogen peroxide indicator (i.e., 
Peroxy Orange 1), we checked whether ROS levels were 
altered in the root hairs of prx102 relative to the WT. We 
did not detect significant differences in signal intensity 
between the root hair of prx102 and the WT (Additional 
file 2: Fig. S1) (Passardi et al. 2004; Gayomba and Muday 
2020). This result indicates that PRX102 does not play a 
significant role in maintaining the ROS pool in root hair.

Thin Cytoplasm Fluid is Observed in Tip of Root Hairs 
in prx102
The tip region of a growing root hair is filled with dense 
cytoplasm that contains many secretory vesicles origi-
nating from the ER. To determine why prx102 root hairs 
were short, we stained roots using ER-Tracker™ Red. 
Unfortunately, ER staining caused ER aggregation in rice 
root hairs under our experimental conditions (Additional 
file 2: Fig. S2).

Table 1 Analysis of significantly enriched Gene Ontology terms 
of genes downregulated in prx102 root hairs relative to the WT

Total number of GO terms in the rice genome is 35,671 and the number of GO 
terms associated with the genes downregulated in prx102 is 85
a Selected GO Slim terms annotated in the rice genome
b The number of selected GO Slim terms in queried genes downregulated in 
prx102
c Relative ratio of observed to expected number of genes for a selected GO Slim 
term

GO name Ref 
 numbera

Query 
 numberb

Fold 
 enrichmentc

Genes

Glutathione 
metabolic

96 4 18.6 LOC_
Os01g72130
LOC_
Os03g17470
LOC_
Os10g34020
LOC_
Os12g16200

Fig. 4 Real‑time RT‑qPCR analysis of three glutathione S-transferase genes found to be downregulated in the prx102 mutant. Shown are the relative 
expression levels of LOC_Os01g72130, LOC_Os03g17470, and LOC_Os10g34020 in WT and prx102 root hairs. Error bars represent means ± SE (N = 3 
replicates, root hairs sampled from more than 1000 seedlings)

http://bioinformatics.sdstate.edu/go/
http://bioinformatics.sdstate.edu/go/
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Next, we examined root hair morphologies carefully 
under a light microscope. In the WT, reverse fountain-
like cytoplasm streaming was observed in root hair tips 
during polar growth, thereby exhibiting a tip-concen-
trated cytoplasmic distribution (Fig. 5A and B; Additional 
file 3: Video S1 and S2). At the mature stage, the density 
of the cytoplasm in the tip region was reduced (Fig. 5C; 
Additional file  3: Video S3). By monitoring GFP signals 
in transgenic plant having PRX102 promoter::PRX102–
GFP, we found PRX102 moves along with cytoplasmic 
streaming (Video S4). We also observed cytoplasmic 
streaming in prx102 (Video S5-S8). But a clear difference 
was found in the density of the cytoplasm between WT 
and prx102. In prx102, the layer of compact cytoplasm 
was thinner than in the WT at the tip growth stage, indi-
cating that PRX102 is involved in the tip-concentrated 
cytoplasmic distribution in root hairs (Fig. 5D–G; Addi-
tional file  3: Video S5-S8). Because the thickness of the 
dense cytoplasm at the tip is continuously changed along 
to the cytoplasmic streaming, ten pictures were taken at 
three-second intervals for quantitative analysis. We used 
a picture with thinnest cytoplasm to measure thickness 
(Fig.  5H). Although the thicknesses of the cytoplasm at 

tip were not measured uniformly in the wild type owing 
to continuous movement of the cytoplasm, thickness of 
the dense cytoplasm was reduced in prx102.

Discussion
Glutathione Metabolic Processes are Downregulated 
in prx102
We observed that the prx102 mutant exhibited short 
root hairs and a reduction in the dense cytoplasm of 
the root hair tip. We then performed and RNA-seq 
analysis to obtain more information regarding the role 
of PRX102 during root hair development. Functional 
analysis of the results of this RNA-seq analysis revealed 
that GO terms related to glutathione metabolic pro-
cess were significantly enriched among genes that were 
downregulated in prx102. Among these genes, three 
glutathione S-transferases and one glutathione syn-
thase were identified as involved in glutathione meta-
bolic process. Glutathione is a tripeptide composed 
of cysteine, glutamic acid, and glycine. Although glu-
tathione functions as a major antioxidant, it also plays 
other biological roles. Previous studies of AtGSTF2 
and TgGST2 suggest that glutathione S-transferase 

Fig. 5 Dense cytoplasm in the tips of growing root hairs. A–C, Tip‑concentrated dense cytoplasm in WT root hairs following initiation of polar 
growth (A), active growth stage (B), and termination of growth (C). Rare cytoplasm in the tips of root hairs from prx102-1 (D and E) and prx102-4 
(F and G) after initiation of polar growth (D and F) and at the active growth stage (E and G). The white bar indicates regions of dense cytoplasm. 
Bars = 10 µm. H, The thickness of dense cytoplasm in tip of root hairs of WT and prx102 plants. For measurement, a picture with thinnest cytoplasm 
was selected from ten photos taken at three‑second intervals (n = 22 root hairs)
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plays a role in root hair development or vesicle trans-
fer (Mang et al. 2004; Li et al. 2021). Moreover, ethylene 
is known to promote root hair growth and AtGSTF2 
has been identified as an ethylene-induced glutathione 
S-transferase (Mang et  al. 2004). Although the func-
tion of AtGSTF2 remains unknown, it is known to be 
expressed during root epidermis formation in Arabi-
dopsis (Mang et  al. 2004). TgGST2 from Toxoplasma 
gondii is known to be involved in secretory vesicle traf-
ficking and fusion, and a knockout mutant was found 
to show significantly reduced invasion capacity (Li et al. 
2021).

PRX102 Participates in Root Hair Tip Growth
PRX102 is a Class III peroxidase and its knockout mutant 
exhibits a short root hair phenotype. In total, the rice 
genome encodes at least 138 Class III peroxidase genes, 
of which more than thirteen are preferentially expressed 
in root hairs (Moon et  al. 2018). Furthermore, several 
Class III peroxidases participate in tip growth in root 
hairs, where they regulate ROS homeostasis and the solu-
bilization of cell wall extensins (Pacheco et al. 2022; Mar-
zol et al. 2022).

During tip growth, newly synthesized proteins and 
other material are transported and incorporated into 
the tips of root hairs (Moon et al. 2022; Weng et al. 2023; 
Lombardo and Lamattina 2012). ER contributes driv-
ing force for cytoplasmic streaming which assists in 
delivering materials to growing tip (Liu et  al. 2017). ER 
is concentrated in the dense cytoplasm of the subapical 
region of growing root hairs (Sieberer et  al. 2002; Sun 
et al. 2020). A reduction in the dense cytoplasmic area at 
the tips of root hairs in prx102 may therefore be due to 
a malfunction of the ER. In prx102, dense cytoplasm is 
restricted, and this may cause scarcity of material at the 
tips of the root hairs, which would eventually inhibit root 
hair growth.

RHD3, an ER-localized dynamin-like Atlastin GTPase, 
is known to be important in ER organization during root 
hair tip growth (Chen et al. 2011; Sun et al. 2020). Using 
an rhd3 associated GFP marker, Qi et al. (2016) revealed 
that alteration of the ER structure causes a defect in 
root hair growth. In this study, we were able to explain 
the function of PRX102 by monitoring organelles in the 
root hairs of prx102. However, staining of the ER did not 
reveal the native ER structure due to aggregation. To fur-
ther characterize the function of PRX102, future studies 
should express organellar fluorescence markers in the 
prx102 background. Taken together, the data from this 
study suggests that peroxidase may play a new function 
related to the delivery of substances to the tips of grow-
ing root hairs.

Methods
Vector Construction and Rice Transformation
Mutants for four root hair-preferential genes were 
generated using CRISPR/Cas9 gene editing. To do 
so, 20-bp target sites were selected using CRISPR-
direct and were then inserted into a pRGEB32 vector 
(AddGene plasmid ID: 63,142) (Naito et al. 2015). The 
primer sequences used for the construction of CRISPR/
Cas9 vectors are listed in Additional file  1: Table  S3. 
Next, using Agrobacterium-mediated transformation, 
we obtained transgenic plants. DNA was then extracted 
from transgenic plants and PCR was performed using 
gene specific primers (Additional file  1: Table  S3). To 
verify the mutations were present, the PCR products 
were then sequenced (Macrogen, Seoul, Korea).

The promoter region and full-length cDNAs of 
PRX102 were amplified by PCR and assembled into the 
binary vector P1(Additional file 1: Table S3). Transgenic 
rice plants were then generated through stable trans-
formation via Agrobacterium-mediated cocultivation.

Morphological Analysis
To measure the length and width of root hairs, we pho-
tographed root sections at 1  cm from apex of seminal 
roots at 5 DAG using a BX61 microscope (Olympus, 
Tokyo, Japan). NIH ImageJ (National Institute of Men-
tal Health, Bethesda, Maryland, USA) was then used 
to quantitatively measure root hair length and width 
(Tajima and Kato 2013).

Localization of PRX102
GFP signals were detected in the roots of transgenic 
plants expressing PRX102–GFP under control of the 
native promoter using a laser-scanning confocal micro-
scope (Nanoscope Systems, Daejeon, Korea). For plas-
molysis, roots were immersed in 500 mM mannitol.

Next, the full-length PRX102 gene was amplified and 
fused with pH7RWG2. Agrobacteria harboring the 
RFP–PRX102 plasmid were then infiltrated with Agro-
bacterium harboring GFP–HDEL (an ER marker), or 
mannosidase I–GFP (a Golgi marker), respectively, to 
leaves of Nicotiana benthamiana. Fluorescent signals 
were then detected 72 h after infiltration under a laser-
scanning confocal microscope (Nanoscope Systems, 
Daejeon, Korea).

H2O2 Staining
Peroxy Orange 1 staining was used to visualize  H2O2. 
To do so, Peroxy Orange 1 was first dissolved in DMSO 
to produce a 500 μM stock. Roots were then immersed 
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in 20 μM Peroxy Orange 1 for 15 min in the dark after 
which they were washed in distilled water three times.

RNA Sequencing Analysis
To identify genes that were downregulated in the prx102 
mutant relative to the control, we performed an RNA-seq 
analysis. To do so we first isolated root hairs from seminal 
roots (Moon et al. 2018). Three biological replicates were 
prepared from both WT and prx102 roots, respectively. 
Total RNA was then extracted with TRIzol and puri-
fied using a RNeasy Plant mini kit. RNA-seq was then 
performed by Macrogen Inc. on an Illumina platform. 
Trimmomatic version 0.39 was used to filter out adap-
tor sequences and low-quality bases (Bolger et al 2014). 
Cleaned reads were then mapped to the MSU7 rice refer-
ence genome (RGAP, http:// rice. plantbiology.msu.edu/) 
using the HiSat2 version 2.2.1 aligner (Kim et  al 2019), 
after which alignments were sorted using SAMTools ver-
sion 1.10 (Li et al. 2009). The number of reads mapped to 
each gene was counted using featureCounts version 2.0.0 
(Liao et al. 2014). Raw read counts were then normalized 
using the DESeq2 version 1.38.3 package implemented 
in R (Love et  al. 2014). Differentially expressed genes 
were then identified if they met the following criteria: 
FPKM of WT root hair ≥ 4, log2 fold change ≤  − 1.2; and 
p-value ≤ 0.05 (Additional file 1: Table S2).

Conclusion
We have identified a root hair-preferential endoplasmic 
reticulum peroxidase, PRX102. During root hair growth, 
PRX102 localizes polarly within the tip regions of root 
hairs. Root hairs in prx102 mutants are shorter and 
thicker compared to those in the wild type, primarily due 
to restricted dense cytoplasm rather than disruptions in 
ROS homeostasis. RNA-seq analysis of prx102 root hairs 
revealed that 87 genes, including glutathione S-trans-
ferase, were downregulated. Our results suggest a novel 
role for peroxidase as a regulator of dense cytoplasmic 
streaming toward the tip.
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