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Abstract 

The multi-environment genomic selection enables plant breeders to select varieties resilient to diverse environ-
ments or particularly adapted to specific environments, which holds a great potential to be used in rice breeding. To 
realize the multi-environment genomic selection, a robust training set with multi-environment phenotypic data is of 
necessity. Considering the huge potential of genomic prediction enhanced sparse phenotyping on the cost saving of 
multi-environment trials (MET), the establishment of a multi-environment training set could also benefit from it. Opti-
mizing the genomic prediction methods is also crucial to enhance the multi-environment genomic selection. Using 
haplotype-based genomic prediction models is able to capture local epistatic effects which could be conserved and 
accumulated across generations much like additive effects thereby benefitting breeding. However, previous studies 
often used fixed length haplotypes composed by a few adjacent molecular markers disregarding the linkage disequi-
librium (LD) which is of essential role in determining the haplotype length. In our study, based on three rice popula-
tions with different sizes and compositions, we investigated the usefulness and effectiveness of multi-environment 
training sets with varying phenotyping intensities and different haplotype-based genomic prediction models based 
on LD-derived haplotype blocks for two agronomic traits, i.e., days to heading (DTH) and plant height (PH). Results 
showed that phenotyping merely 30% records in multi-environment training set is able to provide a comparable 
prediction accuracy to high phenotyping intensities; the local epistatic effects are much likely existent in DTH; divid-
ing the LD-derived haplotype blocks into small segments with two or three single nucleotide polymorphisms (SNPs) 
helps to maintain the predictive ability of haplotype-based models in large populations; modelling the covariances 
between environments improves genomic prediction accuracy. Our study provides means to improve the efficiency 
of multi-environment genomic selection in rice.
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Background
Rice is a staple crop feeding more than half of the human 
population (Londo et al. 2006; Muthayya et al. 2014). Sus-
taining and improving the selection gain of yield as well 
as other pivotal traits critical to human health to meet 
the huge demand of people in the future is an arduous 
task for rice breeders. Conventional plant breeding based 
solely on phenotypic selection is not capable enough 
to meet the request. Contrastingly, genomics-assisted 
breeding has shown its great potential in improving the 
efficiency of plant breeding (Crossa et al. 2017; Endelman 
et al. 2014; Xu et al. 2021). In the early stages of breed-
ing programs, using genomic selection, a representative 
genomics-assisted breeding approach, is able to improve 
the selection accuracy relative to conventional pheno-
typic selection (Endelman et al. 2014; He et al. 2016). In 
the middle stages, multi-environment trials are com-
monly deployed and genomic selection loses its superior-
ity to phenotypic selection on selection accuracy (Atanda 
et al. 2022). Therefore, a straightforward use of genomic 
estimated breeding values (GEBVs) from genomic selec-
tion to identify elite candidates is no longer advantaged. 
Despite this, plant breeding can also be assisted by 
genomics through a genomic prediction enhanced sparse 
phenotyping method proposed by Jarquín et  al. (2020). 
Specifically, a complete phenotypic evaluation of total 
selection candidates in all environments in MET is cost-
intensive and not necessitated. Instead, with the help of 
genomic prediction, applying a sparse phenotyping only 
evaluating a subset of candidates in some environments 
to reduce the overall budget or expanding the total evalu-
ation capacity with a fixed cost is more cost-efficient and 
worth to be applied (He et al. 2021; Jarquín et al. 2020). 
The vacant phenotypes can be reliably predicted by the 
observed records using genomic prediction based on the 
relatedness between the selection candidates and the 
correlation between trials or environments. Consider-
ing the pivotal role of training set in genomic prediction, 
the sparse phenotyping can also be used in establishing 
a multi-environment training set. The multi-environment 
training set enables the prediction of selection candi-
dates’ performances in a specific environment, which 
is of value and interest to plant breeders to breed vari-
eties resilient to multiple environments or particularly 
adapted to a specific environment. The sparse phenotyp-
ing approach could make the multi-environment training 
set establishment more cost-efficient. To our knowledge, 
no similar investigation has been reported in rice.

The local epistatic effect existing between adjacent 
molecular markers, e.g., SNPs, has a high chance to be 
conserved and accumulated over breeding generations, 
which is much like additive effect and worth to be accom-
modated in genomic prediction (Akdemir and Jannink 

2015; Jiang et  al. 2018). The haplotype-based genomic 
prediction approach has been theoretically proven to be 
able to explicitly and efficiently capture the local epista-
sis (Jiang et al. 2018). Previous studies mostly straightfor-
wardly set haplotype blocks with a fixed length consisting 
of a few adjacent markers (He et  al. 2017, 2019; Jiang 
et al. 2018). However, this presumption is too arbitrary as 
in fact the length of haplotype block is varying depend-
ing on the LD among the adjacent SNPs. The haplotype 
blocks identified in a diverse population with genetically 
distant individuals are mostly short while in a biparental 
population the blocks could be long. Therefore, it is more 
reasonable to condition the haplotype blocks on LD to 
realistically capture the inheritable local epistatic effects. 
On the other hand, relying on LD could also produce long 
haplotype blocks with a large number of haplotype alleles. 
If the population is small, a great proportion of haplo-
types would have low frequencies. These rare haplotypes 
would be excluded from analyses by the quality control of 
genomic data, resulting in a loss of genetic information. 
To cope with it, the haplotype blocks defined by LD could 
be further divided into small fragments composed by a 
few SNPs, e.g., two or three SNPs. By this way, both the 
resilience in constructing haplotype blocks based on LD 
and the risk of losing genetic information are considered, 
thereupon the local epistatic effects could be effectively 
modelled in genomic prediction.

In our study, we based on three rice inbred line pop-
ulations and two agronomic traits DTH and PH to 
investigate 1) the potential of using genomic prediction 
enhanced sparse phenotyping to establish a cost-efficient 
multi-environment training set, and 2) whether using the 
haplotype-based genomic prediction models based on 
LD-derived haplotype blocks could improve the predic-
tion accuracy relative to the marker-based approaches in 
rice.

Materials and Methods
Rice Populations and Data Processing
The first population is from Spindel et al. (2015) including 
344 elite breeding lines fingerprinted by 108,024 SNPs. 
These lines were phenotyped for DTH and PH in dry sea-
son (DS) and wet season (WS) across four years using a 
randomized complete block design with three replicates. 
The combination of season and year was termed as envi-
ronment. The SNP markers were discovered and called 
from the TASSEL3.0 GBS pipeline (Glaubitz et al. 2014). 
Heterozygous marker scores were all set to missing. SNPs 
with minor allele frequency less than 0.05 or missing rate 
greater than 0.1 were removed by the quality control of 
raw genotypic data. Finally, 44,116 SNPs were available 
for the 344 genotyped lines.
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The second population comes from Liang et al. (2015) 
incorporating 254 lines genotyped by 49,988 SNPs. These 
lines were phenotypically tested for DTH and PH in two 
DS and two WS with different nitrogen fertilizer applica-
tion rates. The combination of season and nitrogen fer-
tilizer application rate was regarded as the environment. 
Eventually, phenotypic data of four environments was 
accessible for the 254 lines. The genotypic data was first 
filtered by assigning all heterozygous SNP scores to miss-
ing values and then quality controlled by removing SNPs 
with minor allele frequency less than 0.05 or missing rate 
greater than 0.1. Ultimately, 1193 SNPs were available for 
the 254 lines.

The third population is provided by Meng et al. (2016) 
and Qu et al. (2020) comprising 1048 recombinant inbred 
lines (RILs) originating from eight genetically distant 
Indica lines. These RILs were phenotypically evaluated 
for DTH and PH in DS and WS of year 2014 in Interna-
tional Rice Research Institute (IRRI) and two locations 
in China, namely Jiangxi (JX) and Shenzhen (SZ), in year 
2016. The combination of season/location and year was 
regarded as the environment, thereupon phenotypic data 
of four environments was available for the 1048 RILs. 
These RILs were fingerprinted by a customized rice 55 K 
SNP array (Qu et al. 2020). After assigning all heterozy-
gous SNP scores to missing data and the quality control 
of removing SNPs with minor allele frequency less than 
0.05 or missing rate greater than 0.1, 33,518 SNPs were 
available for the 1048 RILs.

For the first and second populations, a two-stage phe-
notypic analysis was implemented to derive the repeata-
bility of each environment and best linear unbiased 
estimates (BLUEs) of genetic effects of all lines. Specifi-
cally, in the first stage, the spatial adjustment of field trial 
data was conducted in each environment by fitting the 
model: y = 1iµ+ Xww + Zll + ǫ , where y is a i-dimen-
sional vector of phenotypic records across environments, 
i is the number of phenotypic records across environ-
ments, µ is the intercept, 1i is an i-dimensional vector of 
ones, w is the vector containing experimental design 
effects, l is the vector of environment-specific genetic 
effects of lines, Xw and Zl are design matrices for w and l , 
ǫ is the random residual. The genetic effect of lines was 
respectively treated as a fixed and a random effect to 
derive the environment-specific BLUEs of genetic effects 
of lines and repeatability of each environment. The 
experimental design effects such as replicate, column, 
and row were all regarded as random effects. In the sec-
ond stage, the environment-specific BLUEs were com-
bined and a linear model including environment main 
effect and genetic effect was fitted using formula: 
ŷ = 1nµ+ Zvv + Zgg + e , where ŷ is n-dimensional 
vector of BLUEs of genetic effects of lines across 

environments, 1n is a n-dimensional vector of ones, µ is 
the intercept, v is the vector of environment main effects 
regarded as a random effect, g is the vector of genetic 
effects of lines regarded as a random effect. Zv and Zg are 
the design matrices for v and g , e is the random residual. 
All random effects in the first and second stages were 
assumed to follow identical and independent normal dis-
tributions that could be uniformly expressed as 
φ ∼ N 0, Iσ 2

φ  where φ is the random effect concerned, I 
is an identity matrix, and σ 2

φ is corresponding variance 
component. The repeatability in each environment and 
heritability of trait are both estimated using formula: 
1− c

2σ 2 , where c is the mean variance of a difference 
between two best linear unbiased predictions (BLUP) of 
genetic effects of lines, σ 2 is the variance component of 
genetic effect (Cullis et al. 2006). It is a generalized meas-
ure of heritability which relates to the response to selec-
tion even when field trial data is unbalanced as compared 
to the standard measure based on the variance explana-
tion (Cullis et al. 2006; Falconer and Mackay 1996). The 
third population only has the spatially adjusted pheno-
typic values of RILs in each environment thus the second 
stage analysis was merely implemented. The phenotypic 
analysis models were performed in R (R Core Team 2016) 
using R package sommer (Covarrubias-Pazaran 2016).

Haplotype Block and Haplotypic Data
To infer the haplotypes, the genotypic data after qual-
ity control was specifically imputed and phased using 
SHAPEIT software (Delaneau et al. 2012). The haplotype 
blocks were detected from the phased genotypic data 
based on LD using PLINK software (Chang et  al. 2015) 
with the flag “–blocks” with the default settings including 
1) the LD was assessed between SNPs within a 200 kilo-
base window; 2) block was formed if 95% of informative 
SNP pairs were in strong LD; the strong LD being defined 
as the 90% confidence interval for D-prime, considering 
the pairwise LD was between 0.7 and 0.98 (Chang et al. 
2015; Gabriel et al. 2002). The identified haplotype blocks 
were further divided into small fragments with a fixed 
length of two and three SNPs respectively. The genotypic 
scores of the haplotypic data with complete haplotypic 
block were the number of copies of each haplotype in the 
haplotype blocks. The genotypic scores of small haplo-
type fragments with a fixed length were the number of 
copies of haplotype in the fragments.

Multi‑Environment Genomic Prediction Approaches
Three multi-environment genomic prediction models 
were used in our study. The genetic effect in all models 
was respectively described by marker genotypes 
(marker-based model) and haplotypes (haplotype-based 
model). Following variables were identically defined in 
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all models: ŷ is the n-dimensional vector containing 
BLUEs of genetic effects of lines in each environment, n 
is the number of BLUEs across environments, 1n is a 
n-dimensional vector of ones, µ is the intercept, v is the 
vector of environment main effects, g is the vector of 
additive genetic effects of lines for marker-based model 
or additive plus local epistatic genetic effects of lines for 
haplotype-based model. Zv and Zg are the design matri-
ces for v and g , e is the random residual. v , g , and e were 
all assumed as random effects following v ∼ N

(

0, Iσ 2
v

)

 , 
g ∼ N

(

0,Kσ 2
g

)

 and e ∼ N
(

0, Iσ 2
e

)

 where I  is an identity 

matrix, σ 2
v  , σ 2

e  and σ 2
g  are the corresponding variance 

components. The genomic relationship matrix 

K =

{

G marker − based model
H haplotype − based model

 was estimated fol-

lowing Jarquín et  al. (2014). In marker-based models, 
the relationship matrix G was established solely using 
the SNP marker scores in which the scattered missing 
scores per SNP were naively imputed using the mean 
value of entries fingerprinted. For haplotype-based 
models, the relationship matrix H  was a combined 
matrix of relationship matrix based on marker scores of 
SNPs not included in any haplotype blocks and haplotypic 
relationship matrix derived from the haplotypes. The entries 
in K  are given by Kii′ =

∑p
m=1

(xim−2δm)(xi′m−2δm)
2δm(1−δm)

/p where 
xim is the number of copies of alternative allele of mth 
SNP in ith line when marker scores were used, i.e., SNPs 
in marker-based models and those not included in any 
haplotype blocks in haplotype-based models, or mth 
haplotype carried by ith line when haplotypes were used, 
i.e., haplotypes in haplotype-based models, δm is the fre-
quency of alternative allele of mth SNP or mth haplotype, 
p is the total number of SNPs in marker-based models 
or the number of SNPs not included in any haplotype 
blocks plus the amount of haplotypes in haplotype-
based models.

The first model considers no genotype-by-environ-
ment interaction formulated as

The second model explicitly portrays genotype-by-
environment interaction as

where r is a n-dimensional vector of genotype-by-environ-
ment interaction effects following r ∼ N

(

0,ZvZ
′

v ◦ ZgKZ
′

gσ
2
r

)

 
where ◦ denotes the Hadamard product of matrices and 
σ 2
r  is the variance component of genotype-by-environ-

ment interaction effect.

(VG)ŷ = 1nµ+ Zvv + Zgg + e

(VGR)ŷ = 1nµ+ Zvv + Zgg + r + e

The third model is the factorial analytic (FA) model 
(Burgueño et al. 2012; Smith et al. 2001) able to accom-
modate the covariances between environments, formu-
lated as

where µ =

(

µ′
1
, . . . ,µ′

j , . . . ,µ
′
l

)′ , u =

(

g ′
1
, . . . , g ′j , . . . , g

′
l

)′ , 

ε =

(

e′
1
, . . . , e′j , . . . , e

′
l

)′

 , µ′
j , g

′
j and e′j are the vectors of 

intercept, genetic effects and residuals in jth environment. 
We assumed u ∼ N (0,Ψ u ⊗ K ),ε ∼ N (0,Ψ ε ⊗ I) , where 

Ψ u =



















σ 2
g1

· · · covg1gj · · · covg1gl
.
.
.

. . .
.
.
.

. . .
.
.
.

covgjg1 · · · σ 2
gj

· · · covgjgl
.
.
.

. . .
.
.
.

. . .
.
.
.

covglg1 · · · covglgj · · · σ 2
gl



















 is the variance–

covariance matrix of genetic effect of lines across envi-
ronments, ⊗ denotes the Kronecker product of matrices, 
σ 2
gj

 is the genetic variance of jth environment, covgjgl 
denotes the genetic covariance between environment j 
and l. In FA model, the variance–covariance matrix is 
Ψ u =

(

��′ +Π
)

= FA(t) in which t is the number of 
latent factors, Λ is a l × t-dimensional matrix containing 
environment loadings, Π is a l × l diagonal matrix (Bur-

gueño et  al. 2012), Ψ ε =



















σ 2
e1

· · · 0 · · · 0

.

.

.
. . .

.

.

.
. . .

.

.

.

0 · · · σ 2
ej

· · · 0

.

.

.
. . .

.

.

.
. . .

.

.

.

0 · · · 0 · · · σ 2
el



















 where 

σ 2
ej

 is the residual variance of jth environment. In our 
study, we specified t = 1 (one latent factor) in all the three 
populations.

All the models were implemented in R (R Core Team 
2016). VG and VGR models were realized using R pack-
age BGLR (Pérez and de los Campos 2014). FA was 
implemented in R package MTM (de los Campos and 
Grüneberg 2016). Bayesian algorithm was used to esti-
mate the model components. The number of iterations 
in all models were set to 10,000 and first 4000 iterations 
were discarded as burn-in.

Cross‑Validation and Sparse Phenotyping Scheme
We used the first cross-validation strategy (CV1) with 
5 folds in Burgueño et  al. (2012) to assess the genomic 
prediction accuracy. It mimicked the situation of pre-
dicting newly developed lines that have never undergone 
field test in breeding. All genotyped lines were randomly 

(FA)ŷ = µ+ u+ ε
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divided in two 5 equal-size folds. Four folds were com-
bined as the training set and the remaining fold was the 
test set. In each division of training and test sets, the 
procedure of generating sparse phenotypes in the train-
ing set was: the lines in the training set were shuffled and 
one environment-specific BLUE per line was randomly 
selected and masked attempting to reach the missing 
rate specified. If masking one BLUE of all lines was insuf-
ficient to reach the missing rate, another BLUE of some 
lines were randomly picked and marked until the missing 
rate was reached. To balance the volume of available phe-
notypic information in each environment, the stochastic 
masking process of the environment-specific BLUEs of 
all environments was looped until the missing rate per 
environment was larger than half of total missing rate 
and smaller than 1. The detailed procedure of generating 
the sparse phenotypes was illustrated in Fig. 1. The miss-
ing rate ranged from 10 to 90%. The process of stochas-
tically masking phenotypes under each missing rate was 
repeated 10 times. For comparison, the training sets with 
complete environment-specific BLUEs were also used to 
train the genomic prediction models.

The 5-fold cross-validation was repeated 10 times, 
yielding 50 divisions of training and test sets. Finally, 
there were totally five hundred times (5 × 10 × 10) cali-
brations and predictions for each training set missing 
rate (10–90%). Considering the test set size in the cross-
validations is just 1/5 of the size of total population, we 

combined the environment-specific genomic predicted 
genetic values of the lines in the five test sets per repeat 
of cross-validation and used the Pearson correlation 
coefficient between the combined genomic predicted 
genetic values and corresponding environment-specific 
BLUEs to assess the genomic prediction accuracy. To sta-
tistically compare the prediction accuracies of different 
genomic prediction models, we firstly transformed the 
accuracies (correlations) using Fisher’s z transformation 
i.e., z = 0.5 × ln((1 + r)/(1 − r)) where r is the correlation. 
The Student’s t-test was used to test the difference based 
on the transformed correlations.

Result
Phenotypic Data Quality and Genetic Diversity
The repeatability estimates of DTH in each environment 
of both the first and the second populations were all 
higher than 0.9 (Additional file 1: Table S1). The repeat-
ability estimates of PH in each environment ranged from 
0.744 to 0.886 in the first population, and were all above 
0.8 in the second population (Additional file 1: Table S1). 
The heritability estimate of DTH was lowest (0.762) in 
the third population and highest (0.915) in the first popu-
lation (Additional file 1: Table S1). For PH, the heritabil-
ity estimates were similar in all populations, which were 
around 0.9 (Additional file  1: Table  S1). For both DTH 
and PH, the distributions of environment-specific BLUEs 
of genetic effects of lines were asymptotically normal 

Fig. 1  The procedure of generating sparse phenotypes in the multi-environment training set
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for most environments in the three populations (Addi-
tional file 2: Figs. S1–S3). The first and third populations 
were more diverse in contrast to the second population 
(Additional file  2: Fig. S4). No conspicuous families or 
subpopulations was observed in all the three populations 
(Additional file 2: Fig. S4).

Haplotype Blocks Identified
The number of haplotype blocks identified in the first to 
third population were 2620, 176, and 2740 respectively. 
The proportion of SNPs included in the haplotype blocks 
was 96.3%, 47.1%, and 96.3% respectively for the first to 
third population (Table 1). The shortest haplotype block 
of each of the three populations invariably consisted of 2 

SNPs. The longest haplotype block identified in the first 
population included 116 SNPs while a large proportion 
of haplotype blocks contained no more than 10 SNPs. 
For the second and third population, the largest haplo-
type block respectively contained 12 and 83 SNPs (Fig. 2). 
There were a large number of long haplotype blocks of 
more than 195,000 base pair (bp) identified in the first 
and third populations. The number of short haplotype 
blocks of less than 5000 bp found in the first population 
was much more than that identified in the third popula-
tion (Fig. 2).

Table 1  The size and genomic data statistic of each rice population

Population The number of lines The number of SNPs The number of haplotype blocks 
identified

Proportion of SNPs in 
haplotype blocks (%)

Population 1 344 44,116 2620 96.3

Population 2 254 1193 176 47.1

Population 3 1048 33,518 2740 96.3

Fig. 2  The frequency distribution of haplotype block length measured by the number of SNPs included (SNPs) and base pairs (bp) in the three 
populations
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Genomic Prediction Accuracies of Genotyped‑ 
and Haplotype‑Based Models with Training Set of Different 
Phenotyping Intensities
The genomic prediction accuracies were overall declin-
ing as the missing rates of environment-specific BLUEs 
increased irrelevant to the population, prediction model, 
and trait (Fig. 3; Additional file 3: Table S2). For both the 
traits studied, there was mostly no distinct decrease of 
prediction accuracy until the missing rate of training set 
rose to 70% disregarding the population and prediction 
approach (Fig. 3; Additional file 3: Table S2).

Comparing the predictive ability of different genomic 
prediction models, in the first population, for both DTH 
and PH, the prediction accuracies of FA model which 
is able to accommodate the covariances between envi-
ronments were apparently higher than those of VG and 
VGR both considering no environmental correlation. The 
advantage of FA model over VG and VGR approaches 
was more conspicuous in PH than that in DTH. VG and 
VGR performed similarly indicating an inconsequen-
tial genotype-by-environment interaction effect (Fig. 3a; 
Additional file  3: Table  S2). In the second population, 
FA model also outperformed VG and VGR approaches 
in both DTH and PH while not as distinct as that in the 
first population. The genotype-by-environment interac-
tion was also inconspicuous inspecting the prediction 
accuracies of VG and VGR approaches. The decrease of 
prediction accuracy for training set including more than 
70% of missing data in FA model for both traits was more 
evident as compared to those observed in VG and VGR 
approaches (Fig.  3b; Additional file  3: Table  S2). In the 
third population, thanks to the large population size, pre-
diction accuracies of all models were overall improved for 
both PH and DTH. The superiority of FA model over VG 
and VGR approaches was still present in DTH but dis-
appeared in PH (Fig. 3c; Additional file 3: Table S2). The 
variation of prediction accuracies for all models in both 
traits was generally in line with the size of each popula-
tion (Fig. 3; Additional file 3: Table S2).

For the different ways describing the genetic effect, in 
the first population, the prediction accuracies of haplo-
type-based approaches using complete haplotype blocks 
were all significantly (p < 0.05, t-test) higher than those of 
marker-based model disregarding the trait and pheno-
typing intensity of training set. There was no benefit of 

segmenting the haplotype blocks into small fragments 
with two or three SNPs despite the VG and VGR mod-
els using small haplotype blocks occasionally outper-
formed their marker-based counterparts in PH (Fig.  3a; 
Additional file 3: Table S2). In the second population, the 
haplotype-based approaches irrespective of using com-
plete or segmented blocks were universally significantly 
(p < 0.05, t-test) superior to the marker-based models in 
DTH except for a high phenotypic missing rate in the 
training set. As compared, the image in PH was con-
versed that the haplotype-based methods were basically 
inferior to the marker-based model especially for the FA 
model (Fig.  3b; Additional file  3: Table  S2). In the third 
population, the prediction accuracies of haplotype-based 
methods were comprehensively lower than their marker-
based counterparts irrelevant to the trait and pheno-
typing intensity of training set. However, using small 
haplotype segments with two or three SNPs was able to 
greatly compensate the loss by using haplotypes instead 
of marker genotypes in the models, which almost caught 
up with marker-based models though a statistically sig-
nificant difference of prediction accuracies was shown 
(Fig. 3c; Additional file 3: Table S2).

Discussion
Phenotyping Intensity of 30% is Sufficient for a Sparse 
Phenotyping Multi‑Environment Training Set
The genomic prediction enhanced sparse phenotyp-
ing holds a huge potential in plant breeding in terms of 
reducing overall phenotyping cost of MET or multi-trait 
and increasing the number of environments for pheno-
typing or traits of interest without additional expense 
(He et  al. 2021; Jarquín et  al. 2020). The ways to utilize 
the sparse phenotyping were 1) from the calibration set 
selecting a subset of reference genotypes that are most 
representative of total calibration set or most genetically 
close to the individuals in the test set to form the train-
ing set (Akdemir et  al. 2015; Isidro et  al. 2015; Rincent 
et  al. 2012); 2) mimicking the breeding situations that 
a subset of individuals are phenotyped in MET to pre-
dict the performance of untested genotypes (CV1), or 
the individuals are evaluated in some environments or 
for some traits and the missing records in the MET or 
multi-trait dataset are predicted based on the observa-
tions (CV2) (Burgueño et  al. 2012; Jarquín et  al. 2014). 

(See figure on next page.)
Fig. 3  Genomic prediction accuracies of days to heading (DTH) and plant height (PH) in the a first, b second, and c third populations using 
three prediction models (VG, VGR, FA) with different missing rates of environment-specific best linear unbiased estimates (BLUEs) of genetic 
effects of lines in the training set. The genetic effect was respectively described by SNP genotypes (Marker-based), haplotype using complete 
blocks (Haplotype-based-block-complete), and short haplotypes containing two SNPs (Haplotype-based-block-2SNP) and three SNPs 
(Haplotype-based-block-3SNP) within a haplotype block. The whiskers at the top of the bars indicate the standard deviations of prediction 
accuracies in different cross-validation repeats. The asterisks above the bars indicate the prediction accuracies of haplotype-based approaches were 
statistically significantly (p < 0.05, t-test) higher (black) and lower (red) than those of the marker-based approach after a Fisher’s z transformation



Page 8 of 12He et al. Rice           (2023) 16:27 

Fig. 3  (See legend on previous page.)
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The cross-validation scheme with sparse phenotyping of 
training set could be regarded as an extension of CV1 in 
which the training set is in addition parsimoniously phe-
notyped. It was observed that maintaining merely 30% 
phenotypic records in the multi-environment training 
set was able to achieve a comparable prediction accuracy 
to high phenotyping intensities for both DTH and PH in 
all the three populations used in our study (Fig. 3; Addi-
tional file 3: Table S2). As we performed a random mask-
ing for the phenotypic records in the multi-environment 
training set, the optimal trade-off phenotyping intensity, 
i.e., 30%, could be further reduced by composing the 
training set using the most related genotypes to a specific 
test set (Akdemir et  al. 2015; Isidro et  al. 2015; Rincent 
et al. 2012) and optimizing the resource allocation in the 
sparse phenotyping to fully exploit the environmental 
correlations (Atanda et  al. 2022; Jarquín et  al. 2020). It 
is also worth to investigate the relevance of the training 
set size to the optimal sparse phenotyping intensity, rela-
tive to the 5-fold cross-validation scheme adopted in our 
study with a fixed number of reference and test lines.

Segmenting the Haplotype Blocks into Small Fragments 
for Genomic Prediction is Recommended Especially 
in a Large Population
Theoretically, the haplotype-based models should out-
perform their marker-based counterparts as the local 
epistatic effects are accommodated in addition to the 
additive effects (Jiang et al. 2018). However, using a rice 
public dataset including 413 varieties phenotyped for 
26 traits the authors showed that the haplotype-based 
approach using small haplotypes with varying lengths of 
two to ten SNPs was generally advantageous for DTH, 
but not for PH (Jiang et al. 2018). This result is in accord-
ance to our findings in the second population (Fig.  3b; 
Additional file  3: Table  S2). Actually, only the perfor-
mances of marker-based and haplotype-based models in 
the second population were comparable as the number of 

available molecular variants in different models are alike 
(Tables 1, 2).

It was shown that the haplotype-based model using 
complete haplotype blocks was superior for both DTH 
and PH in the first population consisting of a few hun-
dred genotypes despite the lower number of available 
variants in the haplotype-based model using complete 
blocks relative to those in the marker-based model and 
haplotype-based model with segmented haplotypes 
(Fig.  3a; Tables  1, 2; Additional file  3: Table  S2). The 
phenomenon that using more molecular variants would 
have a negative impact on the prediction accuracy was 
also observed by the data providers in their study (Spin-
del et al. 2015). It means, for a small population, a large 
number of molecular variants would be unnecessary. 
By comparison, the third population is large comprising 
more than one thousand lines, in which abundant SNPs 
are favoured. Thus, the deficiency of number of available 
molecular variants in the prediction models would be the 
reason for the conspicuously low prediction accuracy of 
haplotype-based model using complete block relative to 
the marker-based model. In this case, segmenting the 
complete haplotype blocks into small fragments which 
could keep a sufficient number of haplotypes available 
holds the potential to improve the prediction accuracy 
through capturing the local epistatic effects compared to 
the marker-based model (Fig. 3c; Tables 1, 2; Additional 
file  3: Table  S2). However, in our study, no benefit was 
observed by using the haplotype-based models with seg-
mented haplotype blocks. In the second population, the 
superiority of haplotype-based models over the marker-
based model was exclusively observed for DTH (Fig. 3b; 
Additional file 3: Table S2). This might be due to the local 
epistatic effects prevailing in long haplotypes while the 
number of available haplotypes from complete haplotype 
blocks is insufficient, thereby the advantage of model-
ling local epistatic effects could not be reflected on the 
prediction accuracy. This hypothesis could be corrobo-
rated by Jiang et  al. (2018) in which the highest predic-
tion accuracy of haplotype-based model for DTH was 
achieved when seven SNPs were used to compose the 
haplotypes.

More studies using larger rice populations and other 
critical traits such as grain yield are necessitated to vali-
date the potential of haplotype-based genomic prediction 
using complete and segmented haplotype blocks.

Modelling Environmental Covariances in Genomic 
Prediction Improves Predictive Ability
It was observed that the genomic prediction model 
including genotype-by-environment interactions with-
out the accommodation of environmental covariances, 
i.e., VGR, could not improve the prediction accuracy for 

Table 2  The number of molecular variants available in different 
haplotype-based approaches in each rice population

Haplotype-based-block-complete: haplotype-based genomic prediction model 
using complete haplotype blocks; Haplotype-based-block-2SNP: haplotype-
based genomic prediction model using small haplotype fragments composed 
by two SNPs; Haplotype-based-block-3SNP: haplotype-based genomic 
prediction model using small haplotype fragments composed by three SNPs

Population Haplotype-based-
block-complete

Haplotype-
based-block-
2SNP

Haplotype-
based-block-
3SNP

Population 1 9054 51,482 38,494

Population 2 969 1183 1082

Population 3 10,186 39,230 29,882
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both DTH and PH compared to the baseline model con-
sidering no genotype-by-environment interaction, i.e., 
VG (Fig.  3; Additional file  3: Table  S2), which is in line 
with the findings in Ben Hassen et  al. (2018) and Cui 
et al. (2020). It could be accounted for by the fact that the 
cross-validation scheme, i.e., CV1, we adopted is not as 
robust as CV2 with a dispersed phenotype missing pat-
tern in modelling genotype-by-environment interaction 
because Ben Hassen et al. (2018) observed a conspicuous 
increase of prediction accuracy when CV2 was examined 
in place of CV1. A similar result was shown in Mon-
teverde et al. (2019) that the reaction norm models, like 
the approaches used in our study, including genotype-by-
environment interactions was not superior to the mod-
els without interactions in a “leave one environment out” 
scenario aiming to predict the performance of genotypes 
in new environments.

Modelling the covariances between environments 
in multi-environment genomic prediction was over-
all advantageous in our study (Fig.  3; Additional file  3: 
Table S2). The extent of the benefit depends on the trait 
and population. Referring to the literature, Monteverde 
et al. (2018) found using an unstructured environmental 
covariance matrix could slightly improve the prediction 
accuracy of PH in an indica population under scenario 
CV1 in contrast to a diagonal variance–covariance struc-
ture assuming no correlations between environments. 
Unsurprisingly, the extent of improvement on predic-
tion accuracy by modelling correlations between envi-
ronments was remarkably boosted in scenario CV2. Ben 
Hassen et  al. (2018) compared the predictive abilities of 
Reproducing Kernel Hilbert Space (RKHS) approaches 
with and without the consideration of genetic correlations 
between environments and found no noticeable difference 
between them for three studied traits including DTH. Jar-
quín et al. (2014) revealed a great potential of using envi-
ronmental covariates (enviromics data) to specifically 
portray the environments in a reaction norm model in 
wheat. The potential was validated by Monteverde et  al. 
(2019) in a japonica rice population using reaction norm 
models. In the indica population, another genomic pre-
diction approach namely partial least square regression 
(PLS) held the superiority of using environmental covari-
ates to depict environments and their relationships.

Wang et  al. (2017) proposed to utilize the multi-
environment phenotypic values as phenomics data in 
genomic prediction models to account for the pheno-
typic variance not explained by the genetic effect. It was 
shown that within a target environment the prediction 
of rice hybrids in the test set was marginally enhanced 
by fitting a phenomics kernel in the single environment 
model. Taking the advantage of using enviromics data to 
describe the environments together, the modern plant 

breeding technology should be an integrated approach 
efficiently making use of multi-omics information 
(Crossa et al. 2021).

Conclusion
The multi-environment genomic prediction can help to 
discover the elite rice varieties resilient to diverse envi-
ronments or particularly suited to a specific environment. 
To improve the efficiency of multi-environment genomic 
prediction, sparse phenotyping can be used to establish 
a multi-environment training set. We demonstrated that 
a 30% phenotyping intensity in the multi-environment 
training set is sufficient to provide a comparable predic-
tion accuracy to high phenotyping intensities for traits 
like PH and DTH. Basing on LD to identify haplotype 
blocks and accordingly making haplotypes for genomic 
prediction could capture local epistatic effects more rea-
sonably compared to a fixed length of haplotypes. We 
demonstrated that the haplotype-based models are worth 
to be implemented in the prediction of DTH and seg-
menting the haplotype blocks into small fragments with 
two or three SNPs could maintain the predictive ability of 
haplotype-based models in large populations. Modelling 
the covariances between environments improves multi-
environment genomic prediction accuracy irrespective of 
capitalizing on marker genotypes or haplotypes.
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