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Abstract 

Background As climate change events become more frequent, drought is an increasing threat to agricultural pro-
duction and food security. Crop rhizosphere microbiome and root exudates are critical regulators for drought adapta-
tion, yet our understanding on the rhizosphere bacterial communities and root exudate composition as affected by 
drought stress is far from complete. In this study, we performed 16S rRNA gene amplicon sequencing and widely 
targeted metabolomic analysis of rhizosphere soil and root exudates from two contrasting rice genotypes (Nippon-
bare and Luodao 998) exposed to drought stress.

Results A reduction in plant phenotypes was observed under drought, and the inhibition was greater for roots than 
for shoots. Additionally, drought exerted a negligible effect on the alpha diversity of rhizosphere bacterial communi-
ties, but obviously altered their composition. In particular, drought led to a significant enrichment of Actinobacteria 
but a decrease in Firmicutes. We also found that abscisic acid in root exudates was clearly higher under drought, 
whereas lower jasmonic acid and L-cystine concentrations. As for plant genotypes, variations in plant traits of the 
drought-tolerant genotype Luodao 998 after drought were smaller than those of Nipponbare. Interestingly, drought 
triggered an increase in Bacillus, as well as an upregulation of most organic acids and a downregulation of all amino 
acids in Luodao 998. Notably, both Procrustes analysis and Mantel test demonstrated that rhizosphere microbi-
ome and root exudate metabolomic profiles were highly correlated. A number of differentially abundant genera 
responded to drought and genotype, including Streptomyces, Bacillus and some members of Actinobacteria, were sig-
nificantly associated with organic acid and amino acid contents in root exudates. Further soil incubation experiments 
showed that Streptomyces was regulated by abscisic acid and jasmonic acid under drought.

Conclusions Our results reveal that both drought and genotype drive changes in the compositions of rice rhizos-
phere bacterial communities and root exudates under the greenhouse condition, and that organic acid exudation 
and suppression of amino acid exudation to select specific rhizosphere bacterial communities may be an important 
strategy for rice to cope with drought. These findings have important implications for improving the adaptability of 
rice to drought from the perspective of plant–microbe interactions.
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Background
Global food security and crop production are greatly 
threatened by drought (Lesk et  al. 2016; Mathobo et  al. 
2017; Zhao et  al. 2021). The frequency, intensity and 
duration of drought events are predicted to increase 
due to global climate change, which further exacerbates 
the damage of drought on global agricultural produc-
tion (Ault 2020). Therefore, extensive research has been 
conducted to explore plant responses and adaptations 
to drought to ensure agricultural productivity (de Vries 
et al. 2019; Gupta et al. 2020; Mu et al. 2021; Ghatak et al. 
2022). Rice (Oryza sativa L.) is an important food crop, 
and its high and stable yields effectively insure higher 
global agricultural productivity. However, owing to the 
uneven spatial and temporal distribution of rainfall, rice 
is susceptible to drought stress (Liu et al. 2011). Drought 
significantly alters the physiological and metabolic pro-
cesses of rice, ultimately reducing dry matter accumu-
lation and grain yield (Yang et  al. 2019). Additionally, 
different rice genotypes differ greatly in their responses 
to drought. For example, in a rice pot experiment, grain 
yields of the tolerant genotypes are less affected by 
drought than those of the sensitive genotypes (Wang 
et al. 2022a).

As a microecological region connecting plant roots 
and soil, the rhizosphere contains a large number of 
soil microbial communities that are involved in com-
plex ecological and biological processes; hence, it is one 
of the most active interfaces in ecosystems (Tian et al. 
2020). It has been reported that rhizosphere microbi-
ome is closely related to host development (Lu et  al. 
2018; Chen et al. 2019; Li et al. 2021), nutrient absorp-
tion (Tao et  al. 2019; Zhang et  al. 2019) and pathogen 
immunity (Shi et  al. 2019; Gu et  al. 2020a; Tao et  al. 
2020). In particular, the role of rhizosphere microbiome 
in alleviating crop abiotic stresses has also attracted 
unprecedented attention in recent years (de Vries et al. 
2020; Xu et al. 2021; Jin et al. 2022). Drought is proba-
bly the abiotic stress with the greatest impact on rhizo-
sphere microbial communities (Leng and Hall 2019). 
A recent study has shown that drought alters nutri-
ent availability and living environment of rhizosphere 
microbial communities, thereby affecting their diver-
sity, composition and stability (Santos-Medellín et  al. 
2017; Jansson and Hofmockel 2020). These variations 
in rhizosphere microbial communities have the poten-
tial to affect soil carbon and nitrogen cycling, which 
can feed back into plant phenotypes under drought (de 
Vries et  al. 2019). In addition, bacterial communities 

are more sensitive to drought than fungal communities 
(de Vries et  al. 2018). Crop genotype is also responsi-
ble for some of the observed changes in rhizosphere 
microbial communities. However, knowledge about the 
effects of drought and different rice genotypes on the 
rhizosphere microbial communities is still limited.

Different parts of the plant root system exude or 
release a series of compounds into the rhizosphere—a 
process defined as root exudation (Shahzad et al. 2015; 
Williams and de Vries 2020). It is estimated that 5–21% 
of the carbon fixed by photosynthesis or 15–25% of the 
carbon allocated to the root system enters the soil as 
root exudates (Li et  al. 2018). Root exudates consist 
predominantly of low-molecular-weight organic com-
pounds such as amino acids, organic acids, sugars and 
secondary metabolites (Bais et  al. 2006; Vives-Peris 
et al. 2020). In particular, amino acids and organic acids 
not only provide nitrogen and carbon sources for the 
growth and reproduction of rhizosphere microbial 
communities, respectively, but also act as chemotactic 
agents for specific microbial populations (Weisskopf 
et  al. 2008; Gu et  al. 2020b). Interest in root exudates 
has spiralled with the realization of their importance 
in crop responses to variations in the external environ-
ment (Chai and Schachtman 2022; Xiong et  al. 2019). 
Drought can change the quantity and composition of 
root exudates (Calvo et  al. 2017; Preece et  al. 2018). 
Although some studies have focused on changes in root 
exudate quantity after drought, later studies have paid 
increasing attention to shifts in root exudate composi-
tion (Gargallo-Garriga et al. 2018; Bornø et al. 2022). It 
has been demonstrated that plants are able to actively 
modify root exudate composition and changes in the 
content of specific compounds in root exudates have 
an impact on the composition of rhizosphere micro-
bial communities (Zhalnina et  al. 2018). Furthermore, 
a growing number of researchers have found that the 
indirect effects via root exudates can outweigh the 
direct effects of drought on rhizosphere microbial com-
munities (Preece and Peñuelas 2016). The composition 
of root exudates is also strongly dependent on plant 
genotype. For example, in a maize study, the concentra-
tion of fumaric acid in root exudates of drought-intol-
erant cultivars increases significantly under drought 
stress, while that of drought-tolerant cultivars has a 
minor variation (Song et  al. 2012). Currently, metabo-
lomic techniques have been utilized to explore the 
composition of root exudates. However, to the best of 
our knowledge, metabolome has rarely been used to 
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examine the effects of drought and genotype on root 
exudate composition. The association between rhizos-
phere microbial communities and root exudates under 
different watering treatments and different genotypes 
has also not been investigated.

Therefore, rhizosphere soil samples and root exudates 
from two contrasting rice genotypes were collected at the 
end of a drought event in this study. The major objectives 
of this study were (1) to determine the effects of drought 
and genotype on the diversity and composition of rhizo-
sphere bacterial communities using 16S rRNA gene 
amplicon sequencing and identify differentially abun-
dant genera between different groups, (2) to conduct 
metabolomic profiling of root exudates from different 
watering treatments and two contrasting rice genotypes 
with widely targeted metabolomic analysis based on ultra 
performance liquid chromatography–tandem mass spec-
trometry (UPLC–MS/MS) and screen for differential 
metabolites in response to different conditions, and (3) 
to explore the associations between rhizosphere bacterial 
communities and root exudates. The results of this study 
can facilitate a deeper understanding of the differences in 
rhizosphere bacterial communities and root exudates in 
response to drought between two distinct rice genotypes, 
and provide new insights for improving the adaptation 
of rice production to drought from the perspective of 
plant–microbe interactions.

Materials and Methods
Experimental Design and Set‑Up
A pot culture experiment was conducted in a greenhouse 
at Northwest A&F University, Yangling, Shaanxi, China 
(34.28 N and 108.07 E; 521 m a.s.l) in 2019. The soil used 
in the study was obtained in October 2018 from the 
upper 20  cm of a rice experimental field in Hanzhong, 
Shaanxi, China (33.18  N and 106.98  E; 548  m a.s.l). 
It was naturally air-dried and sieved through a 2  mm 
mesh. The soil contained 33.25  g   kg−1 organic matter, 
2.32 g   kg−1 total nitrogen, 0.98 g   kg−1 total phosphorus, 
26.42 mg  kg−1 available phosphorous, 19.77 g   kg−1 total 
potassium, 181.00 mg  kg−1 available potassium and a pH 
5.62 at the beginning of the study.

Two contrasting rice genotypes were used in this 
study, of which Nipponbare was sensitive to drought 
and Luodao 998 was relatively drought tolerant. The rice 
seeds germinated and grew in seed trays using collected 
field soil in a light-temperature incubator. When the rice 
seedlings grew to the three-leaf and one-heart stage, 4 
holes of consistently growing seedlings with 2 plants per 
hole were transplanted into each plastic bucket (height 
19.5 cm, diameter 22.5 cm) containing 4 kg of field soil 
and receiving 1.62  g urea, 1.90  g  NaH2PO4·2H2O and 
1.44 g KCl before transplanting and grew to the five-leaf 

stage. For each genotype, 10 buckets were subsequently 
exposed to a 12-day drought treatment, and the oth-
ers were fully watered. For the drought buckets, water-
ing was stopped until a soil water potential of − 25 to 
− 35 kPa was reached, after which the buckets remained 
at this water potential until the end of drought, while 
the control buckets maintained shallow water layers of 
1–2 cm throughout the treatment period. There were 10 
replicates for each treatment, which resulted in a total 
of 40 buckets. All buckets were arranged in a completely 
randomized design in a greenhouse with a daily cycle 
of 30  °C during the day followed by 25  °C at night. The 
greenhouse was illuminated with natural light and sup-
plemented with 600 μmol  m−2  s−1 light for 2 h per day on 
cloudy or rainy days.

Plant Sampling and Measurements
At the end of the simulated drought event, the plants 
were divided into shoots and roots. An EPSON 10000XL 
scanner was then employed to scan the roots, and the 
scanned images were analyzed using a LA-S root analyzer 
software (Wanshen Detection Technology Co., Hang-
zhou, Zhejiang, China) to obtain root morphological 
characteristics. After the analysis, the shoots and roots 
were dried at 80 °C for 72 h before weighing.

Rhizosphere Soil Collection
Rhizosphere soil samples were collected according to the 
method described by Bulgarelli et al. (2012). Specifically, 
the aboveground plants were first removed. After the 
roots were gently shaken and kneaded with sterile gloves 
to shake off large chunks of soil, they were placed in ster-
ile 50 mL tubes with 25 mL phosphate buffer, which was 
prepared from 130  mM NaCl, 7  mM  Na2HPO4, 3  mM 
 NaH2PO4 and 0.02% Silwet L-77. Following vortexing at 
maximum speed for 15 s, the roots were transferred with 
sterilized tweezers to another sterile 50  mL tube con-
taining 25  mL phosphate buffer and continued to vor-
tex for 15  s. Subsequently, the collected soil suspension 
was filtered through a 100-µm nylon mesh cell strainer 
into a new 50  mL tube and centrifuged at 10,000  rpm 
for 15  min to form fine sediment particles; these were 
defined as the rhizosphere soils. Finally, the rhizosphere 
soils were snap-frozen in liquid nitrogen and stored at 
− 80 °C until later high-throughput sequencing.

Soil Incubation Experiment
To further determine whether root exudates have the 
potential to select specific bacterial communities in the 
rhizosphere under drought stress, an additional soil incu-
bation experiment was performed. Abscisic acid and 
jasmonic acid (0.2  mM), two organic acids identified in 
both rice genotypes in response to drought, and a sterile 
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ultrapure water control were added to 30 g of soil placed 
in a sterile glass bottle. The soil used in the incubation 
experiment was the same as that used in the greenhouse 
experiment. Before drought stress treatment, the glass 
bottles were pre-incubated for 1 week by maintaining a 
shallow water layer of 1–2 cm in an incubator with a daily 
dark cycle of 30  °C for 14 h followed by 25  °C for 10 h. 
Each glass bottle was then subjected to drought stress at 
a soil water potential of − 25 to − 35 kPa, while receiving 
2 mL of additives adjusted to a neutral pH (7.0) per day. 
After 12 days, soil samples were collected for 16S high-
throughput sequencing. Each treatment was incubated in 
triplicate.

DNA Extraction, Illumina Sequencing and Analysis
Total soil genomic DNA was extracted from the collected 
soil (0.5  g) using the FastDNA™ SPIN Kit for Soil (MP 
Biomedicals, Santa Ana, CA, USA) following the manu-
facturer’s instructions, and the DNA concentration and 
quality were then determined with a NanoDrop 2000 
spectrophotometer (Thermo Scientific, Wilmington, 
DE, USA) and 1% agarose gel electrophoresis, respec-
tively. The V3–V4 hypervariable region of the bacterial 
16S rRNA gene was amplified with the primer pair 338F 
(5′-ACT CCT ACG GGA GGC AGC AG-3′) and 806R 
(5′-GGA CTA CHV GGG TWT CTA AT-3′) using a 
PCR thermocycler (ABI GeneAmp 9700, Foster City, CA, 
USA) (Peiffer et  al. 2013). Equimolar amounts of puri-
fied PCR products from each DNA sample were pooled 
and sequenced using the Illumina MiSeq PE300 platform 
(San Diego, CA, USA) at Majorbio Bio Pharm Technol-
ogy Co., Ltd. (Shanghai, China). The detailed protocols 
for PCR thermal cycling and 16S amplicon sequencing 
have been described previously (Caporaso et al. 2010).

The raw 16S rRNA sequences were quality filtered and 
trimmed with fastp version 0.19.6 (Chen et al. 2018) and 
merged using FLASH (Reyon et  al. 2012). USEARCH 
was used to remove chimeras to obtain high-quality 
sequences (Edgar 2010). High-quality sequences were 
assigned to each soil sample by specific barcodes using 
QIIME (Caporaso et  al. 2010) and then clustered into 
operational taxonomic units (OTUs) at a 97% similarity 
level using UPARSE pipeline (Edgar 2013). Each OTU 
was annotated with different levels of taxonomic informa-
tion using the RDP Classifier (Wang et al. 2007) against 
the SILVA 16S rRNA database (Release 138, https:// www. 
arb- silva. de). A total of 486,287 and 218,816 high-quality 
sequences were generated in the greenhouse experiment 
(34,700–45,515 per sample, with a median of 40,119) and 
soil incubation experiment (21,940–26,321 per sample, 
with a median of 24,393), respectively. Both rarefaction 
curves revealed that the sequencing depth of bacterial 
communities had reached saturation (Additional file  2: 

Fig. S1). Each soil sample was rarefied to the minimum 
sequence for downstream diversity analysis.

Root Exudate Collection
Root exudates were collected using the method described 
by de Vries et al. (2019). Briefly, the roots of intact plants 
were carefully washed to remove any remaining soil, dur-
ing which time the roots were left as undamaged as pos-
sible, and dead roots were removed with stainless steel 
tweezers. One hole of rice plants was then transferred to 
100 mL soil solutions made up of 1:10 in situ soil:Milli-Q 
water and incubated for 12  h in  situ greenhouse condi-
tions. After 12 h of incubation, the rice roots were rinsed 
and transferred to conical flasks containing 100  mL 
sterilized Milli-Q water placed on ice. Additionally, the 
conical flasks were shaken at 60  rpm for 2  h at 30  °C 
and ambient light, and the liquid collected in the conical 
flasks was regarded as root exudate. A 30 mL sample of 
each root exudate solution was filtered through a 0.22 μm 
millipore filter membrane to remove any root debris, 
flash-frozen in liquid nitrogen and then stored at − 80 °C 
until further metabolomic analysis.

Metabolomic Analysis of Root Exudates
Metabolomic profiling of root exudates was conducted 
using an ultra performance liquid chromatography sys-
tem (UPLC, SHIMADZU Nexera X2, Kyoto, Japan) with 
tandem mass spectrometry (MS/MS, Applied Biosys-
tems 4500 QTRAP, Framingham, MA, USA). First, root 
exudates were removed from − 80 °C, thawed on ice and 
vortexed for 10 s to mix. A total of 10 mL of the mixed 
sample was transferred to a 15  mL centrifuge tube, 
quickly frozen in liquid nitrogen and lyophilized in a 
vacuum freeze-dryer. When all samples were completely 
lyophilized to powder, 300 μL of 70% methanol internal 
standard extract was added to the sample. Following vor-
texing for 3  min and centrifugation (12,000  rpm, 4  °C) 
for 10 min, the supernatants were transferred to sample 
bottles for subsequent analysis. Each sample was mixed 
in equal amounts as a quality control (QC) sample. When 
root exudate samples were analyzed using an UPLC–MS/
MS, one QC sample was inserted for every 10 samples. 
The detailed conditions for UPLC and MS/MS were set 
according to Wang et  al. (2022b). The primary metabo-
lites in the root exudates were identified using the Met-
ware database (Metware Biotechnology Co., Ltd., Wuhan, 
China) and quantified by multiple reaction monitoring of 
triple quadrupole mass spectrometry.

Statistical Analysis
SPSS 23.0 (SPSS Inc., Chicago, IL, USA) and R software 
(version 4.1.1) were used to conduct all statistical analy-
ses. Two-way analysis of variance (ANOVA) followed by 

https://www.arb-silva.de
https://www.arb-silva.de
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least significant difference (LSD) test was done to test the 
significance of the effects of drought and genotype on 
plant phenotypes, alpha diversity indices of rhizosphere 
bacterial communities and relative abundances of domi-
nant phyla using SPSS 23.0.

Principal coordinate analysis (PCoA) based on Bray–
Curtis distance was calculated and plotted, using the R 
package vegan, to determine the main variable compo-
nents in the rhizosphere bacterial communities (Dixon 
2003). Significant tests of various experimental factors 
and their interactions on bacterial community composi-
tion were performed using permutational multivariate 
analysis of variance (PERMANOVA) with 999 permuta-
tions based on Bray–Curtis distance. Differentially abun-
dant genera in response to different watering treatments 
and the two rice genotypes were generated by the linear 
discriminant analysis (LDA) using the linear discriminant 
analysis effect size (LEfSe) method (Segata et  al. 2011). 
Venn diagrams showing shared and specific genera 
between different groups were also constructed.

Hierarchical cluster analysis and Pearson’s correla-
tion analysis were used to examine the intra-treatment 
homogeneity of root exudate. The PCoA of primary 
metabolites based on Bray–Curtis distance was built 
using the R package vegan. PERMANOVA based on 
999 permutations using Bray–Curtis distance was done 
to analyze the effects of drought and genotype on root 
exudate composition. Orthogonal partial least squares 
discriminant analysis (OPLS-DA) was conducted in the 
R ropls package, and the models were further evaluated 
with 200 permutations (Thévenot 2021). Metabolites 
with (1) variable importance in the projection (VIP) ≥ 1, 
which was extracted from the OPLS-DA result, and (2) 
fold change ≥ 2 and fold change ≤ 0.5 were regarded as 
differential metabolites. Volcano plots were generated 
using the ggpubr package in R to screen for differential 
metabolites between the different watering treatments 
and between the two rice genotypes (Kassambara 2022). 
To identify shared and exclusive differential metabolites 
between different groups, Venn diagrams were con-
structed using the R package venndiagram (Chen and 
Boutros 2011).

To examine the correlation between rhizosphere bac-
terial communities and root exudates, a Procrustes 
analysis based on the PCoA results of the abundance of 
all genera and all identified metabolites was performed. 
Meanwhile, a Mantel test using the Spearman correlation 
method was conducted between them. Spearman’s corre-
lation analysis was further used to assess the associations 
between differentially abundant genera and differential 
metabolites using the corrplot package in R (Wei and 
Simko 2017). All p-values in the Spearman’s correlation 
were adjusted by Benjamini and Hochberg using the false 

discovery rate (FDR) control procedure (Benjamini and 
Hochberg 1995).

Results
Effects of Drought and Genotype on Plant Phenotypes
Tillers, dry matter weights and root traits were signifi-
cantly affected by drought, except for maximum root 
length (Fig.  1). In both Nipponbare and Luodao 998, 
drought considerably reduced tillers, shoot dry weight, 
root dry weight and the ratio of root-to-shoot dry weight 
(Fig. 1a–d). Notably, the reduction in root dry weight was 
stronger than that in shoot dry weight. Additionally, total 
root length, root surface area and root volume were all at 
least 1.7 times higher under well-watered conditions than 
under drought conditions (Fig. 1f–h).

The plant properties of the two rice genotypes dis-
played great differences. On average, the tillers, shoot dry 
weight and root dry weight of Nipponbare were 1.12-, 
1.42- and 1.50-fold greater than those of Luodao 998, 
respectively (Fig.  1a–c). In particular, the reductions in 
these properties (except shoot dry weight) and the ratio 
of root-to-shoot dry weight under drought were more 
pronounced in Nipponbare. The two rice genotypes 
also differed greatly in their root morphology, with Nip-
ponbare having higher maximum root length, total root 
length, root surface area and root volume (Fig.  1e–h). 
Similarly, drought decreased total root length, root sur-
face area and root volume of Nipponbare more than 
those of Luodao 998.

Effects of Drought and Genotype on Rhizosphere Bacterial 
Communities
The alpha diversity of the rhizosphere bacterial commu-
nities was not regulated by drought (Additional file  1: 
Table S1). The Sobs index and Chao 1 index of the rhizo-
sphere bacterial communities of the two rice genotypes 
were similar. However, Luodao 998 had higher Shannon 
index. PCoA ordinations and PERMANOVA analyses 
were employed to determine the effects of various experi-
mental factors and their interactions on composition of 
rhizosphere bacterial communities. Our results demon-
strated that watering treatment was the main driver of 
rhizosphere bacterial community composition  (R2 = 0.28, 
p = 0.001). The impacts of genotype  (R2 = 0.15, p = 0.002) 
and interaction effect  (R2 = 0.19, p = 0.001) were also sig-
nificant (Fig. 2a).

According to taxonomic classification, Proteobacteria 
(19.65–23.69%), Chloroflexi (19.23–22.37%) and Act-
inobacteria (15.17–25.18%) were dominant in all rhizo-
sphere soil samples at the phylum level (Fig.  2b). Bar 
graphs for each taxon further revealed that after a period 
of drought, the relative abundance of Actinobacteria, 
Gemmatimonadetes and Patescibacteria increased by 
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33%, 16% and 34%, respectively, while that of Firmicutes 
decreased by 43% (Fig. 2c and Additional file 1: Table S2). 
In addition, Actinobacteria was dramatically depleted 
in Luodao 998, whereas Patescibacteria and Nitrospirae 
were highly enriched in Luodao 998 (Fig.  2d and Addi-
tional file 1: Table S2).

LEfSe showed that 19 differentially abundant genera 
were identified between different watering treatments in 
Nipponbare and 14 in Luodao 998 (Fig. 3). In particular, 
a total of 8 genera overlapped between the two genotypes 
(Additional file  2: Fig. S2a). The relative abundance of 
Marmoricola, Streptomyces, Sideroxydans and Candida-
tus_Solibacter was greater under drought for both rice 
genotypes, while that of Anaeromyxobacter was lower 
in the drought treatment (Fig. 3). Meanwhile, 11 and 12 
key genera were differently abundant between the two 
rice genotypes under control and drought conditions, 
respectively (Fig.  4). Notably, Bacillus and Candidatus_
Koribacter were elevated in Nipponbare in control group, 
while they were overabundant in Luodao 998 in water 
deprivation.

Effects of Drought and Genotype on Root Exudate 
Composition
To investigate the responses of root exudate composition 
to drought and genotype, widely targeted metabolomic 
analysis using UPLC–MS/MS was carried out on root 
exudate samples. In total, 269 metabolites were detected 

at level 1, including 47 amino acids and their derivatives, 
35 organic acids, 37 phenolic acids, 32 nucleotides and 
derivatives, 70 lipids and 48 other compounds (Addi-
tional file 2: Fig. S3). The three replicates of each group 
were highly correlated, as also evidenced by hierarchical 
cluster analysis, which confirmed the homogeneity of 
the root exudate samples (Additional file 2: Figs. S3 and 
S4). The PCoA exhibited a clear separation between con-
trol and drought samples in Luodao 998 on the first axis 
(Additional file  2: Fig. S5). The PERMANOVA analyses 
further demonstrated that watering treatment explained 
the greatest variation in root exudates  (R2 = 0.31, 
p = 0.001), followed by genotype  (R2 = 0.28, p = 0.001) 
and interaction effect  (R2 = 0.21, p = 0.001) (Additional 
file 1: Table S3).

According to the above findings, OPLS-DA was first 
used to analyze the differences in root exudates between 
the control and drought groups in the two contrast-
ing genotypes. The results revealed that the control and 
drought samples were clearly separated in both geno-
types (Fig.  5a, b). Moreover, we constructed volcano 
plots using fold change and VIP to screen for differential 
metabolites between the control and drought conditions. 
And 48 differential metabolites were identified follow-
ing different watering treatments for Nipponbare and 99 
for Luodao 998 (Fig. 5d, e). Among them, 38 metabolites 
were shared between the two rice genotypes (Fig. 5c). The 
relative content of abscisic acid consistently increased 
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during water deficit in the two genotypes (Additional 
file  2: Fig. S6a). Reductions in L-cystine and several 
organic acids, including jasmonic acid, pyrrole-2-carbox-
ylic acid, D-xylonic acid and 9-oxononanoic acid, were 
distinctly observed in both genotypes (Additional file 2: 
Fig. S6b–f).

Similarly, to distinguish genotypic differences in con-
trol and drought conditions independently, we ran OPLS-
DA on root exudate samples. Our results showed that the 
metabolic composition of Nipponbare deviated obvi-
ously from that of Luodao 998 regardless of the watering 
treatments (Fig.  6a, b). Additionally, volcano plots were 
used to visualize differential metabolites between the two 
rice genotypes, in which 69 and 72 differential metabo-
lites were detected in the control and drought groups, 
respectively (Fig. 6d, e). In particular, most organic acids, 
including jasmonic acid, 2-furoic acid, citraconic acid, 
azelaic acid and suberic acid, exhibited upregulated prop-
erties in Luodao 998 under drought stress (Additional 
file  2: Fig. S7a–e). However, downregulated levels of all 

amino acids such as L-histidine, L-cystine, L-leucine and 
L-proline were found in Luodao 998 under drought con-
ditions (Additional file 2: Fig. S7f–i).

Associations between rhizosphere bacterial communities 
and root exudates
Rhizosphere soil microbiome and root exudate metabo-
lomic profiles were highly correlated across all samples 
(Procrustes analysis,  M2 = 0.2554, p = 0.001; Mantel 
test, r = 0.2780, p = 0.024), confirming the strong links 
between rhizosphere bacterial communities and root 
exudates (Additional file  2: Fig. S8). Subsequently, we 
performed Spearman’s correlation analyses to determine 
the associations between differentially abundant genera 
and differential metabolites. In general, we found strong 
positive correlations between genera and metabolites 
that were both increased or decreased in the same con-
dition, as well as high negative correlations between ele-
vated genera and depleted metabolites (Fig. 7).
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Notably, Streptomyces displayed a positive correlation 
with abscisic acid (r = 0.797, FDR = 0.002) and a negative 
correlation with jasmonic acid (r = − 0.697, FDR = 0.012) 
(Additional file  2: Fig. S9a–b). We also observed that 
Conexibacter, Gaiella, Marmoricola and Nocardi-
oides, some members of Actinobacteria, were positively 
associated with L-threonine (r = 0.943, FDR = 0.005), 
L-threonine (r = 0.943, FDR = 0.005), L-valine (r = 1.000, 
FDR = 0.000) and L-tryptophan (r = 1.000, FDR = 0.000), 
respectively (Additional file  2: Fig. S9c–f). Addition-
ally, Bacillus, a plant growth-promoting rhizobacterium 
elevated in Luodao 998 under drought, was positively 

associated with azelaic acid (r = 0.886, FDR = 0.019) and 
citraconic acid (r = 0.829, FDR = 0.042) (Additional file 2: 
Fig. S9g–h).

To establish more causal relationships between root 
exudates and rhizosphere bacterial communities under 
drought stress, an additional soil incubation experiment 
was conducted. After a 12-day drought event, the rela-
tive abundance of Streptomyces in soil added with absci-
sic acid was higher than in soil added with sterile water 
(Fig.  8a). However, comparative analysis of bacterial 
communities at the genus level between jasmonic acid 
addition and control under drought stress showed that 
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jasmonic acid significantly suppressed the relative abun-
dance of Streptomyces (Fig. 8b).

Discussion
Rhizosphere microbiome and root exudates are criti-
cal in crop response or adaptation to drought, and their 
differential responses are closely related to genotype 
(Calvo et  al. 2017; Gargallo-Garriga et  al. 2018; San-
tos-Medellín et al. 2021; Xie et al. 2021). However, less 
attention has been paid to determining the effects of 

drought and genotype on the diversity and composition 
of rhizosphere bacterial communities and root exudate 
composition. In this study, using 16S rRNA gene ampli-
con sequencing and widely targeted metabolomic anal-
ysis based on UPLC–MS/MS, we explored the shifts 
in plant traits, rhizosphere bacterial communities and 
root exudates as affected by drought stress and geno-
type, identified differentially abundant genera and dif-
ferential metabolites between different conditions and 
investigated associations between rhizosphere bacterial 
communities and root exudates.
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Plant Phenotypes, Rhizosphere Bacterial Communities 
and Root Exudates in Response to Drought
The production, accumulation and distribution of dry 
matter are the bases for rice yield formation. Drought 
can affect dry matter production and accumulation in 
rice (Kumar et  al. 2006). In this study, both shoot dry 
weight and root dry weight of rice under drought were 
significantly lower than those under well-watered con-
ditions (Fig.  1b, c). Moreover, the root dry weight was 
more inhibited by drought than the shoot dry weight, 
which resulted in a significant decrease in the ratio of 

root-to-shoot dry weight. This result is consistent with 
previous studies showing that root growth is more sen-
sitive to water deficit than shoot growth (de Vries et  al. 
2019). It was further confirmed by the fact that root 
morphology, such as total root length, root surface area 
and root volume, was greatly reduced under drought 
(Fig. 1f–h).

The diversity and composition of soil microbial com-
munities can respond to drought (Preece et  al. 2019). 
It is generally believed that the higher the rhizosphere 
microbial diversity, the stronger the stability of the soil 
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ecosystem and the stronger the resistance to drought 
(Xun et  al. 2021). In our study, drought had a negligi-
ble effect on the alpha diversity of rhizosphere bacterial 
communities (Additional file 1: Table S1). This finding is 
supported by previous studies suggesting that drought 
does not directly lead to the death of drought-sensitive 
bacterial communities and the emergence of drought-
tolerant bacterial communities in the rhizosphere, but 
rather keeps the diversity of rhizosphere bacterial com-
munities relatively stable (Bastida et al. 2017; Tóth et al. 
2017; Xie et  al. 2021). In contrast to alpha diversity, 
drought dramatically altered the composition of rhizos-
phere bacterial communities. Our results indicated that 

Actinobacteria, Gemmatimonadetes and Patescibacteria 
were highly enriched in drought (Fig. 2c and Additional 
file 1: Table S2). Notably, Actinobacteria, a Gram-positive 
bacterium, is able to exploit carbon sources that are dif-
ficult to decompose, so it is abundant in nutrient-poor 
but oxygen-rich arid environments (Yuste et  al. 2014; 
Mohammadipanah and Wink 2016). It also has a thicker 
cell wall that can better resist water stress (Lennon et al. 
2012; Xu and Coleman-Derr 2019). In addition, several 
members of Actinobacteria possess filamentous growth 
habits and the abilities to produce spores, which enables 
them to enter dormant states under environmental stress 
(Barka et  al. 2016). These properties may explain the 
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prominent enrichment of Actinobacteria in the rhizos-
phere soil under drought conditions.

Changes in root exudate composition under drought 
have crucial implications for the plants themselves, 
soil properties, and especially soil microbial communi-
ties. In the present study, widely targeted metabolomic 
techniques based on UPLC–MS/MS were employed to 
investigate the response of root exudate composition to 
drought. These techniques can provide comprehensive 
biochemical information on the metabolism involved in 
the biosynthesis of primary metabolites in root exudates. 
We observed that the drought and control samples were 
separated into two distinct groups regardless of the rice 
genotype (Fig. 5a, b). Further differential metabolite anal-
ysis revealed that some compounds, such as jasmonic 
acid and abscisic acid, were strongly affected by drought 
in both rice genotypes (Additional file 2: Fig. S6a, b). Pre-
vious studies have implied that an elevated abundance of 
Streptomyces is found in rhizosphere soil samples of JA 
signalling-compromised Arabidopsis mutants (Carval-
hais et al. 2015). Also in our results, the addition of jas-
monic acid significantly reduced the relative abundance 
of Streptomyces under drought stress, which further 
confirmed the above studies (Fig.  8b). Intriguingly, we 
observed an upregulation of abscisic acid in root exu-
date samples under drought. This result is in agreement 
with recent studies suggesting that abscisic acid in root 
exudates is strongly induced during drought (Yang et al. 
2002; Calvo et  al. 2017; Gargallo-Garriga et  al. 2018). 
Moreover, addition of abscisic acid enriched Streptomy-
ces under drought stress, highlighting the involvement of 
abscisic acid in helping plants shape rhizosphere micro-
bial communities under abiotic stress (Belimov et  al. 
2014).

Plant Phenotypes, Rhizosphere Bacterial Communities 
and Root Exudates in Response to Two Distinct Genotypes
Changes in plant properties under abiotic stress are 
highly dependent on plant genotype. As demonstrated in 
our results, the variations in plant traits under drought 
were more pronounced in Nipponbare than in Luodao 
998 (Fig.  1). Previous researchers have found similar 
results (Ji et al. 2012). These findings reveal that tolerant 
genotypes can reduce the damage of drought stress on 
dry matter production and root morphology to maintain 
plant growth and development.

Plant selectivity is essential for the establishment of 
soil microbial communities under adverse conditions. 
At the genus level, drought led to an increase in the rela-
tive abundance of Bacillus in Luodao 998 (Fig. 4b). Bacil-
lus, a plant growth-promoting rhizobacterium, has been 
reported to improve drought tolerance in many plant 
species (Wang et al. 2019; Xie et al. 2019; Fonseca et al. 
2022; Kim et  al. 2022). For example, Bacillus enhances 
antioxidant enzyme activity and photosynthetic effi-
ciency in wheat, which may be a cause of drought toler-
ance (Rashid et  al. 2022). Bacillus also regulates auxin 
levels to protect wheat from drought stress (Barnawal 
et al. 2017). Additionally, inoculation of Bacillus in maize 
activates the exudation of osmotic substances such as 
proline, amino acids and soluble sugars to promote plant 
survival under drought conditions (Vardharajula et  al. 
2011). These findings highlight that the tolerant genotype 
can mitigate severe drought damage to plants by recruit-
ing plant growth-promoting rhizobacteria.

It has been reported that host can affect the composi-
tion of root exudates (Ghatak et al. 2022). Using a PCoA, 
we found that drought induced greater changes in the 
composition of root exudates in Luodao 998 compared 
to Nipponbare (Additional file 2: Fig. S5). This differential 
response is attributed to the fact that drought can stimu-
late the physiological and metabolic activities of root sys-
tems of tolerant genotypes to alleviate negative effects on 
plants in the short term. For specific root exudate compo-
nents, under drought stress, the vast majority of metabo-
lites, especially all amino acids, displayed downregulated 
properties in Luodao 998 compared with Nipponbare 
(Fig. 6e). We speculated that drought triggered the accu-
mulation of amino acids in roots of the tolerant genotype, 
thereby increasing resistance to drought. This accumula-
tion is believed to strengthen plant stress resistance by 
affecting physiological mechanisms such as adjustment 
of osmotic changes, ROS detoxification and regulation 
of intracellular pH levels (Good and Zaplachinski 1994). 
In a previous study, the accumulation is also conducive 
to maintaining root development for accessing deeper 
water sources (Serraj and Sinclair 2002). It is likely that 
the accumulation effect contributes to reducing drought 
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damage to the roots of Luodao 998. Moreover, our data 
also indicated that under drought stress, amino acids in 
root exudates correlated positively with some members 
of Actinobacteria, including Conexibacter, Gaiella, Mar-
moricola and Nocardioides (Fig. 7b and Additional file 2: 
Fig. S9c–f), which was supported by earlier studies show-
ing that amino acid addition can enrich Actinobacteria 
(Eilers et al. 2010; Gu et al. 2020b). Therefore, the decline 
of Actinobacteria members in Luodao 998 under drought 
may be explained by a reduction in amino acid exudation. 
Although the vast majority of metabolites were down-
regulated in Luodao 998 at the end of drought, most 
organic acids were upregulated (Additional file 2: Fig. S7). 
It is known that drought causes a decrease in the avail-
ability of phosphorus in soil (Sardans and Peñuelas 2004). 
Drought-mediated accumulation of organic acids in the 
drought-tolerant genotype helps solubilize unavailable 
phosphorus from soil (Li et al. 2007; Khademi et al. 2010; 
Pantigoso et  al. 2020; Bi et  al. 2021). In addition, some 
organic acids are potent chemotactic agents for Bacillus, 
which is responsible for the enrichment of Bacillus in the 
tolerant genotype (Allard-Massicotte et al. 2016).

Conclusions
Integrated microbiome and metabolomic analysis 
revealed that both drought and genotype had significant 
effects on the compositions of rhizosphere bacterial com-
munities and root exudates under the greenhouse condi-
tion. Notably, a strong link was observed between various 
differentially abundant genera and levels of organic acids 
and amino acids in root exudates, and the abundance of 
specific bacterial genera was regulated by the identified 
differential root exudates under drought stress, suggest-
ing that organic acid exudation and suppression of amino 
acid exudation to select specific rhizosphere bacterial 
communities might be an important strategy for rice to 
respond to drought stress.
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